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Double-layer graphene and topological insulator thin-film plasmons
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We present numerical and analytical results for the optical and acoustic plasmon collective modes of coupled
massless-Dirac two-dimensional electron systems. Our results apply to topological insulator (TI) thin films and
to two graphene sheets separated by a thin dielectric barrier layer. We find that, because of strong bulk dielectric
screening, TI acoustic modes are locked to the top of the particle-hole continuum and, therefore, probably
unobservable.
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I. INTRODUCTION

The physics of closely spaced but unhybridized two-
dimensional electron systems (2DESs) has been a subject
of theoretical and experimental interest since it was first
appreciated1,2 that electron-electron interactions allow energy
and momentum to be transferred between layers, while
maintaining separate particle-number conservation. Remote
Coulomb coupling has commanded a great deal of attention
during the past 30 years or so because it provides a potential
alternative to the inductive and capacitive coupling of conven-
tional electronics. Until recently, remote Coulomb coupling
research focused on quasi-2D electron systems confined to
nearby quantum wells in molecular-beam-epitaxy grown semi-
conductor heterostructures. The study of Coulomb-coupled
2D systems has now been revitalized by advances that have
made it possible to prepare robust and ambipolar 2DESs, based
on graphene3 layers or on the surface states of topological
insulators4 that are described by an ultrarelativistic wave
equation instead of the nonrelativistic Schrödinger equation.

Single- and few-layer graphene systems can be produced
by mechanical exfoliation of thin graphite or by thermal
decomposition of silicon carbide.5 Isolated graphene lay-
ers host massless-Dirac two-dimensional electron systems
(MD2DESs) with a fourfold (spin × valley) flavor degeneracy,
whereas topologically protected MD2DESs that have no
additional spin or valley flavor labels appear automatically4,6

at the top and bottom surfaces of a three-dimensional (3D)
topological insulator (TI) thin film. The protected surface
states of 3D TIs are associated with spin-orbit interaction
driven bulk band inversions. 3D TIs in a slab geometry
offer two surface states that can be far enough apart to
make single-electron tunneling negligible but close enough
for Coulomb interactions between surfaces to be important.
Unhybridized MD2DES pairs can be realized in graphene by
separating two layers by a dielectric7 (such as Al2O3) or by
a few layers of a one-atom-thick insulator such as BN.8,9 In
both cases interlayer hybridization is negligible and the nearby
graphene layers are, from the point of view of single-particle
physics, isolated. Isolated graphene layers can be also found on
the surface of bulk graphite10,11 and in “folded graphene”12 (a
natural byproduct of micromechanical exfoliation) or prepared
by chemical vapor deposition.11 We use the term double-layer

graphene (DLG) to refer to a system with two graphene
layers that are coupled only by Coulomb interactions, avoiding
the term bilayer graphene, which typically refers to two
adjacent graphene layers in the crystalline Bernal-stacking
configuration.13

DLG and TI thin films are both described at low energies
by a Hamiltonian with two MD2DES3 coupled only by
Coulomb interactions. The importance of electron-electron
interactions in MD2DESs has been becoming more obvious
as sample quality has improved,14 motivating investigations
of charge and spin or pseudospin dynamics in DLG and
thin-film TIs in the regime in which long-range Coulomb
forces give rise to robust plasmon collective modes.15,16

Because of their electrically tunable collective behaviors, DLG
and thin-film TIs may have a large impact on plasmonics,
a very active subfield of optoelectronics17–19 whose aim is
to exploit plasmon properties in order to compress infrared
electromagnetic waves to the nanometer scale of modern
electronic devices.

In this paper we use the random-phase approximation
(RPA)15,16 to evaluate the optical and acoustic plasmon mode
dispersions in DLG and in thin-film TIs. In particular, we
obtain an exact analytical formula for the RPA acoustic
plasmon group velocity valid for arbitrary substrate and barrier
dielectrics that points to a key difference between these two
MD2DES’s, namely that the velocity in TI thin films is strongly
suppressed. The RPA collective modes of DLG have been
calculated earlier by Hwang and Das Sarma;20 Below we will
comment at length on the relation between our results and
theirs. Plasmon collective modes formed from TI surface states
have also been considered previously by Raghu et al.21 in the
regime in which coupling between top and bottom surfaces can
be neglected. Based on our analysis, we are able to clarify how
dielectric screening influences plasma frequencies in this limit.
Finally, we wish to mention that the role of optical and acoustic
plasmon modes in relation to DLG exciton condensates has
been studied in Ref. 22.

Plasmons can be observed by a variety of experimen-
tal tools, including inelastic light scattering,23 which has
been widely used to probe plasmons in semiconductor
heterostructures,24 but also by surface-physics techniques
like high-resolution electron-energy-loss spectroscopy25 and,
more indirectly, angle-resolved photoemission spectroscopy.14
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FIG. 1. (Color online) A side view of the double-layer system
described by Eq. (1), which explicitly indicates the dielectric model
used in these calculations. The two layers hosting massless Dirac
fermions are located at z = 0 and z = d .

Double-layer field-effect transistors with a grating gate26

can also be used to detect plasmons. Coupling between
far-infrared light and Dirac plasmons in single-layer graphene
has recently been achieved by employing an array of graphene
nanoribbons27 and by performing near-field scanning optical
microscopy through the tip of an AFM.28

This paper is organized as follows. In Sec. II we present the
model we have used to describe a pair of Coulomb-coupled
MD2DESs and introduce the linear-response functions that
describe collective electron dynamics. In Sec. III we present
and discuss our main analytical and numerical results for
the dispersion of optical and acoustic plasmons in these
systems. Finally, in Sec. IV we present a summary of our
main conclusions.

II. MODEL HAMILTONIAN AND RANDOM-PHASE
APPROXIMATION

We consider two unhybridized MD2DESs separated by a
finite distance d and embedded in the dielectric environment
depicted in Fig. 1. The two systems are assumed to be coupled
solely by Coulomb interactions. The Hamiltonian describing
this system reads29 (h̄ = 1)

Ĥ = v
∑

k,�,α,β

ψ̂
†
k,�,α(σ αβ · k)ψ̂k,�,β

+ 1

2S

∑
q,�,�′

V��′(q)ρ̂q,�ρ̂−q,�′ , (1)

where v is the bare Dirac velocity, taken to be the same in the
� = 1,2 tunnel-decoupled layers, S is the area of each layer,
V��′(q) is the matrix of bare Coulomb potentials, and

ρ̂q,� =
∑
k,α

ψ̂
†
k−q,�,αψ̂k,�,α (2)

is the density-operator for the �-th layer. The Greek letters
are honeycomb-sublattice-pseudospin labels and σ = (σx,σ y)
is a vector of Pauli matrices. A sum over flavor labels is
implicit in Eq. (2) in the case of DLG. The relative strength
of Coulomb interactions is measured by the dimensionless
coupling constant3 (restoring h̄ for a moment) αee ≡ e2/(h̄v)
which has a value ≈2.2 in DLG and ≈4.4 in Bi2Te3 TIs
if we use the respective Dirac velocities vG ≈ 106 m/s and
vTI ≈ 5 × 105 m/s.

Several important many-body properties of the Hamiltonian
Ĥ are completely determined by the 2 × 2 symmetric matrix
χ (q,ω) whose elements are the density-density linear-response
functions

χ��′(q,ω) = 1

S
〈〈ρ̂q,�; ρ̂−q,�〉〉ω, (3)

with 〈〈Â,B̂〉〉ω the usual Kubo product.16 Within the RPA
these functions satisfy the following matrix equation:

χ−1(q,ω) = χ−1
0 (q,ω) − V (q), (4)

where χ0(q,ω) is a 2 × 2 diagonal matrix whose elements
χ

(0)
� (q,ω) are the well-known30–32 noninteracting (Lindhard)

response functions of each layer at arbitrary doping n�. The off-
diagonal (diagonal) elements of the matrix V = {V��′ }�,�′=1,2

represent interlayer (intralayer) Coulomb interactions.
The bare intra- and interlayer Coulomb interactions are

influenced by the layered dielectric environment (see Fig. 1).
A simple electrostatic calculation29 implies that the Coulomb
interaction in the � = 1 (top) layer is given by

V11(q) = 4πe2

qD(q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd ], (5)

where

D(q) = [(ε1 + ε2)(ε2 + ε3)eqd + (ε1 − ε2)(ε2 − ε3)e−qd ].

(6)

The Coulomb interaction in the bottom layer, V22(q), can
be simply obtained from V11(q) by interchanging ε3 ↔ ε1.
Finally, the interlayer Coulomb interaction is given by

V12(q) = V21(q) = 8πe2

qD(q)
ε2. (7)

Note that in the “uniform” ε1 = ε2 = ε3 ≡ ε limit we recover
the familiar expressions V11(q) = V22(q) → 2πe2/(εq) and
V12(q) = V21(q) → V11(q) exp(−qd). Previous work on TI
thin-film and DLG collective modes has assumed this limit,
which rarely applies experimentally.

III. COLLECTIVE MODES

The collective modes of the system described by the model
Hamiltonian (1) can be determined by locating the poles of
χ (q,ω) in Eq. (4). A straightforward inversion of Eq. (4) yields
the following condition:33,34

ε(q,ω) = [
1 − V11(q)χ (0)

1 (q,ω)
][

1 − V22(q)χ (0)
2 (q,ω)

]
−V 2

12(q)χ (0)
1 (q,ω)χ (0)

2 (q,ω) = 0. (8)

The collective modes occur above the intraband particle-hole
continuum where χ (0) is real, positive, and a decreasing
function of frequency. Equation (8) admits two solutions, a
higher-frequency solution30,31,35 at ωop(q) that corresponds
to in-phase oscillations of the densities in the two layers
and a lower-frequency solution at ωac(q) that corresponds to
out-of-phase oscillations.

The plasmon collective modes of MD2DESs are of special
interest because of the ease with which they may be altered
by changing the carrier densities in either layer using gates.
We note, in particular, that the carrier densities in different
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layers can easily differ radically. For this reason, we present
our results in terms of the total 2D carrier density n = n1 + n2

and the density polarization ζ = (n2 − n1)/n ∈ [−1,1]: ζ = 1
when the carrier density is nonzero only in the bottom layer
(n1 = 0), while ζ = 0 when the two layers have identical
carrier densities (n1 = n2).

A. Analytical results

In this section we report on exact analytical expressions for
the RPA optical and acoustic plasmon dispersions ωop,ac(q)
that are valid in the long-wavelength q → 0 limit where
ωop(q → 0) ∝ √

q and ωac(q → 0) ∝ q.
We start by deriving an exact expression for the RPA long-

wavelength acoustic-plasmon group velocity,

cs = lim
q→0

ωac(q)

q
. (9)

Following Santoro and Giuliani,34 we, first, introduce the
power expansion

ωac(q) = csq + c2q
2 + c3q

3 + · · · (10)

for the acoustic-plasmon dispersion relation and then define a
function

F (q) = ε(q,csq + c2q
2 + c3q

3 + · · ·). (11)

In the limit q → 0 the function F (q) has the following Laurent-
Taylor expansion:

F (q) = f−1q
−1 + f0 + f1q + f2q

2 + · · · , (12)

where the coefficients fi can be extracted from the analytical
expression30–32 for the MD2DES Lindhard function χ

(0)
� (q,ω).

For Eq. (8) to be valid we have to require that the coefficients
fi vanish identically. The coefficient f−1 depends only on cs

and by equating its expression to zero we arrive after some
tedious but straightforward algebra at the following equation
for x = cs/v, the ratio between the plasmon group velocity cs

and the Dirac velocity v:

2gsgvαeed̄(ζ 2 − 1)[1 + 2x(
√

x2 − 1 − x)]

−
√

2ε2[1 + x(
√

x2 − 1 − x)]f (ζ ) = 0, (13)

where gs (gv) are real-spin (valley) degeneracy factors. In the
case of DLG, gs = gv = 2, while in the case of thin-film TIs
gs = gv = 1. In Eq. (13) d̄ = dkF is a dimensionless interlayer
distance calculated with kF ≡ √

4πn/(gsgv) and n = n1 + n2

and

f (ζ ) = (1 + ζ )
√

1 − ζ + (1 − ζ )
√

1 + ζ . (14)

Equation (13) can be conveniently solved for x by making
the change of variables x �→ � = √

x2 − 1 − x. After some
straigthforward algebra we find that

cs

v
= 1 + �(αeed̄/ε2,ζ )

[1 + 2�(αeed̄/ε2,ζ )]1/2
(15)

with

�(αeed̄/ε2,ζ ) = gsgv

√
2(1 − ζ 2)

f (ζ )

αeed̄

ε2
. (16)

Equations (15) and (16) are the principle results of this
paper. We see from this analytic expression that cs is
independent of ε1 and ε3 and depends only on the barrier
material dielectric constant, which in the case of TI thin films
is simply the TI bulk dielectric constant. This behavior is a
consequence of the out-of-phase character of this collective
mode in which the double-layer total charge is locally constant
but shifts dynamically between layers. Because TIs tend to
have narrow gaps they tend to have large dielectric constants
(ε2 ∼ 100 in the case36 of Bi2Te3). Thin-film collective modes
will, therefore, tend to have cs/v values that are quite close to
1 unless d̄ is very large. (For large d̄ the long-wavelength limit
formula, which applies when both qd and q/kF are small, will
have a limited range of applicability.)

It follows from Eq. (15) that the ratio cs/v is larger than
unity for any value of the parameters αee, d̄ , ζ , and ε2 so the
acoustic plasmon always lies outside of the MD2DES particle-
hole continuum. This implies than the acoustic plasmon
is, strictly speaking, never Landau damped at small q. (A
similar conclusion was reached previously34 for the case of
conventional 2D electron gases but was limited to the case of
identical density and, hence, identical Fermi velocity.)

For moderate values of d̄ , however, Eq. (15) predicts a TI
thin-film sound velocity so close to the top of the particle-hole
continuum that it will likely be unobservable because of
damping effects not captured by the RPA and because of
disorder, which is always present to some degree. For the case
of DLG, on the other hand, we expect that acoustic plasmon
collective modes will be well defined. This is particularly
true in the case of DLG with a small number of layers
of BN as barrier material. When the BN barrier layer is
very thin, the use of macroscopic dielectric parameters to
characterize its screening properties is approximate; in that
case, measurement of the acoustic plasmon group velocity
combined with Eqs. (15) and (16) would allow the effective
value of ε2 to be determined experimentally.

We note that an analytic result for cs was reported previously
in Ref. 20 [see their Eq. (5b)] for the special case of DLG
embedded in a uniform dielectric, i.e., for ε1 = ε2 = ε3. In our
notation, their result reads

cs

v

∣∣∣
HDS

=
[

2
√

2
√

1 − ζ 2

√
1 − ζ + √

1 + ζ

αeed̄

ε2

]1/2

. (17)

This equation evidently differs from Eq. (15) above. We believe
that Eq. (15) is the correct RPA result for the acoustic-plasmon
group velocity and that Eq. (17) is incorrect. The difference is
due to the singular behavior of the Lindhard function χ

(0)
� (q,ω)

as a function of wave vector q and frequency ω in the region
in which both these quantities are small. (See Sec. 4.4.3 of
Ref. 16.) In particular, the limit of χ

(0)
� (q,ω) for q → 0 and

ω → 0 depends on the ratio ν = ω/(vq), i.e., on the direction
along which the origin of the (q,ω) plane is approached:
different limits are obtained for different values of ν. In an
acoustic plasmon, the ratio ν approaches a constant as q → 0
and, thus, the limit of χ

(0)
� (q,ω) that matters is the one in which

q → 0 while the ratio ω/q is kept constant. This is the limit
we have taken34 in the derivation of Eq. (15) [see Eq. (11)].
Equation (17) is obtained by incorrectly letting q → 0 while ω

is kept constant [see Eq. (4) in Ref. 20]: In this limit ν diverges
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FIG. 2. (Color online) Long-wavelength acoustic plasmon disper-
sion of Coulomb-coupled massless-Dirac two-dimensional electron
systems. The circles and squares are acoustic plasmon frequencies
ωac(q) (in units of εF = vkF ) as functions of q/kF calculated
numerically from the solution of Eq. (8). Here kF is the Fermi
wave vector evaluated at the total density n = n1 + n2, i.e., kF =√

4π (n1 + n2)/(gsgv). The parameters we have used to calculate the
curve labeled by “ζ = 0” are gs = gv = 2, n1 = n2 = 5 × 1012 cm−2,
αee = 2.2, d = 3.35 Å, ε1 = ε2 = 1, and ε3 = 3.9. These parameter
values correspond to the case of two graphene layers on SiO2 that
are decoupled by rotation. The data labeled by “ζ = 0.8” have been
calculated by setting n1 = 1 × 1012 cm−2 and n2 = 9 × 1012 cm−2

with the same values for the other parameters. The solid lines plot
ω = csq for the ζ = 0 and ζ = 0.8 cases with the plasmon group
velocity cs calculated from the analytical result, Eq. (15). These
numerical results confirm the validity of our analytic result for cs

and the importance of accounting for the delicate dependence of
the long-wavelength Lindhard function on ν = ω/(vq). The dashed
line plots the upper-bound of the intraband electron-hole continuum,
ω = vq.

instead of going to a constant value. A careful comparison
between our analytical prediction in Eq. (15) and the result
obtained by the brute-force numerical solution of Eq. (8) is
shown in Fig. 2. We clearly see that Eq. (15) compares very
well with the full numerical result.

The analytical analysis of the long-wavelength optical
plasmon mode is simpler since this mode satisfies ωop(q) ∝√

q for q → 0 and, therefore, occurs at ν = ω/(vq) → ∞. We
obtain an analytic result using the well-known high-frequency
(ω � vq and ω � 2εF,�) dynamical limit of χ

(0)
� (q,ω):

lim
q→0

χ
(0)
� (q,ω) = gsgv

εF,�

4π

q2

ω2
, (18)

with εF,� = vkF,� = v
√

4πn�/(gsgv). Using Eq. (18) in Eq. (8)
we immediately find

ω2
op(q → 0) = gsgvαee

2ε̄
v2kF

(√
1 + ζ

2
+

√
1 − ζ

2

)
q,

(19)

with ε̄ = (ε1 + ε3)/2. Note that Eq. (19) does not depend on
the interlayer distance or on the dielectric constant ε2, but only
on the average ε̄ between top and bottom dielectric constants.

FIG. 3. (Color online) (a) Optical and acoustic plasmon disper-
sions (in units of the Fermi energy εF = vkF) in a twisted double-layer
graphene system on a SiO2 substrate as functions of wave vector q

[in units of kF = √
4π (n1 + n2)/(gsgv)]. The values of the parameters

that we have used to produce the data in this figure are gs = gv = 2,
n1 = n2 = 5 × 1012 cm−2 (corresponding to n = 1013 cm−2 and
ζ = 0), αee = 2.2, d = 3.35 Å, ε1 = ε2 = 1, and ε3 = 3.9. The
intersections between the plasmon dispersions and the short-dashed
line give the critical wave vector qc at which Landau damping starts.
(b) Same as in panel (a) but for ζ = 0.5 [in producing the data shown
in panel (b) we have fixed the total density at the value used to produce
the data in panel (a), i.e. n = 1013 cm−2].

Note also that, in the limit n1 → 0 (ζ = 1), Eq. (19) reduces to
the well-known plasmon frequency in a single-layer graphene
sheet30,31,35 with electron density n2. This expression applies
for qd � 1, in which case the entire double-layer MD2DES
acts in the optical plasmon mode like a single conducting
layer at the interface between dielectric media characterized
by constants ε1 and ε3.

B. Numerical results

In this section we briefly report some representative nu-
merical results for the optical and acoustic plasmon dispersion
relations obtained by solving Eq. (8), discussing, first, DLG
and then TI thin films.

In Fig. 3 we illustrate the typical properties of DLG plasmon
modes for the case with the smallest MD2DES separation,
two adjacent layers on a SiO2 substrate (ε1 = ε2 = 1 and
ε3 = 3.9) that are weakly hybridized, e.g., because of a twist
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between their orientations.37 Figure 3(a) is for a symmetric
system with the same electron concentration on the two layers
(ζ = 0), while Fig. 3(b) refers to a system with a 50% density
imbalance. The characteristic behaviors ωop(q) ∝ √

q of the
optical plasmon and ωac(q) ∝ q of the acoustic plasmon are
clearly visible. The collective modes are not Landau damped
when they appear in the gap between intraband and interband
particle-hole continua. When the two layers have different
densities, their particle-hole continua differ and the gap is
smaller for the lower density layer. For adjacent but twisted
DLG systems d̄ is small even when the carrier density is
large (d̄ ≈ 0.2 in Fig. 3). It follows that qd is small and
the two MD2DESs are strongly coupled over the entire
relevant frequency regime. In this small d̄ example the acoustic
plasmon frequency is close to the particle-hole continuum
because the capacitive energy associated with charge slosh-
ing between the layers is proportional to the small layer
separation.

In Fig. 4 we illustrate the strength of plasmon decay by
emission of single electron-hole pairs (Landau damping).
Note that Landau damping occurs when the curves ωop,ac(q)
in Fig. 3 hit the interband electron-hole continuum of the layer
with lower density (layer “1” in our convention). The larger
ζ , the sooner this happens. In particular, in the limit in which
layer “1” is neutral (ζ = 1), Landau damping is present from
vanishingly small wave vectors: damping of the optical plas-
mon excitation associated with electrons in the high-density
layer starts at arbitrarily small wave vectors since decay can
easily occur via the emission of interband electron-hole pairs
in the neutral layer. The many-body properties of two or more
decoupled graphene layers thus can be strongly affected by
interlayer Coulomb interactions, even by apparently innocuous
geometric features such as the presence of a nearly neutral
layer.

In Fig. 5 we compare optical and acoustic plasmon
dispersions for DLG and TI thin-film systems. For the TI
thin-film case we have chosen the following parameters: (i)
ε1 = 1, ε2 = 100 (this roughly corresponds to the dielectric
constant of Bi2Te3), and ε3 = 4.0; (ii) a total electron density
on the top and bottom surface states of n = 1013 cm−2; and
(iii) a thickness of the TI slab of d = 6 nm, corresponding to
a six quintile layer MBE-grown Bi2Te3 film (d̄ ≈ 6.7). The
DLG example has the same total density and layer separation
(d̄ ≈ 3.4; the difference in d̄ in the two cases stems from the
gs/gv spin/valley degeneracy factors) and dielectric constants
ε1 = 1 and ε2 = ε3 = 4.0, corresponding to two graphene
layers separated by approximately 15 BN layers and lying on
a BN substrate. In both cases we see that a crossover occurs at
intermediate values of q between strong (small q) and weak
(large q) coupling of the two collective modes. In the TI case
the higher frequency optical plasmon mode deviates much
more strongly from simple

√
q behavior at this crossover be-

cause strong dielectric screening by the TI bulk suppresses the
single-surface plasmon mode. [Note however that the effective
dielectric constant for this limit is (ε2 + ε1,3)/2 rather than ε2 as
used in Ref. 21.] The acoustic plasmon mode of the TI thin film
case is, on the other hand, strongly suppressed in the strong-
coupling limit, as discusses earlier, and has a velocity much
closer to the bare Dirac velocity than in the corresponding
DLG case.

FIG. 4. (Color online) Landau damping of collective modes in
double-layer graphene. (a) The absolute value of the imaginary part of
the Lindhard function of the top layer, |�mχ

(0)
1 (q,ω)|, evaluated at the

frequency ω = ωop(q) [ω = ωac(q)] of the optical [acoustic] plasmon.
The data in this plot refer exactly to the parameters used in Fig. 3(a).
Note that, within RPA, �mχ

(0)
1 (q,ωop,ac(q)) is identically zero for

wave vectors q up to a critical value q�
op,ac at which ωop,ac(q) hits the

interband electron-hole continuum associated with the low-density
layer. Since data in this panel correspond to ζ = 0, top-layer and
bottom-layer Lindhard functions are identical. (b) Same as in panel
(a) but for ζ = 0.8 (n1 = 1 × 1012 cm−2 and n2 = 9 × 1012 cm−2).
Note that the q�

op,ac decreases with increasing ζ becoming zero in the
limit ζ → 1. Since in this panel ζ �= 0 we have plotted both top-layer
(low-density) and bottom-layer (high-density) Lindhard functions.

IV. DISCUSSION AND CONCLUSIONS

We have presented an analysis of the electronic collec-
tive modes of systems composed of two unhybridized but
Coulomb-coupled MD2DESs separated by a vertical distance
d. The primary example we have in mind is TI thin films, which
are always described at low energies by this type of model
because topologically protected MD2DESs always appear on
both the top and bottom surfaces. Also of interest are closely
related systems, which we refer to as DLG systems, containing
two graphene layers that are weakly hybridized either because
they are rotated relative to each other or because they are
separated by a dielectric barrier layer. Importantly, we allow
for a general dielectric environment in which the material
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FIG. 5. (Color online) Optical and acoustic plasmon dispersions
(in units of the Fermi energy εF = vkF) in a double-layer graphene
system [panel (a)] and a topological insulator thin-film [panel (b)] as
functions of wave vector q [in units of kF = √

4π (n1 + n2)/(gsgv)].
The intersections between the plasmon dispersions and the short-
dashed line give the critical wave vector qc at which Landau damping
starts. Panel (a) The values of the parameters that we have used
to produce the data in this figure are gs = gv = 2, n1 = n2 = 5 ×
1012 cm−2 (corresponding to n = 1013 cm−2 and ζ = 0), αee = 2.2,
d = 6 nm, ε1 = 1, and ε2 = ε3 = 4.0. Panel (b) The values of the
parameters that we have used to produce the data in this figure are
gs = gv = 1, n1 = n2 = 5 × 1012 cm−2, αee = 4.4, d = 6 nm, ε1 =
1, ε2 = 100, and ε3 = 4.0. Note that due to the large value of the bulk
TI dielectric constant, the acoustic plasmon is almost locked to the
top of the intraband electron-hole continuum.

above the top MD2DES layer (ε1), between the two layers
(ε2), and below the bottom MD2DES layer (ε3) are all allowed
to have different dielectric constants. In the case of TI thin film
ε2 is the bulk dielectric constant of the TI which is expected to
have large values. The carrier collective modes of MD2DESs
are expected to be most robust in the gap between intraband
and interband particle-hole excitations.

The double-layer systems of interest quite generally have
two collective modes which in the limit of small qd involve
density fluctuations in the two layers that are strongly coupled
and in the limit of large qd weakly coupled single-layer
plasmons. One key parameter that controls collective mode
properties is the dimensionless product kF d ≡ d̄ . Small values
of kF d imply that the layer separation is smaller than the typical
distance between electrons within a layer and that collective
modes at all values of q up to ∼kF are strongly coupled

combinations of the two individual layer density-fluctuation
contributions. For large kF d a crossover occurs for q ∈ (0,kF )
between strongly and weakly coupled double-layer collective
modes. Both small and large values of d̄ are achievable in
samples where disorder plays an inessential role in both DLG
and TI thin-film cases.

Our study focuses on the long-wavelength limit in which
both qd and q/kF = qd/d̄ are small. We have derived analytic
expressions for both frequencies of both the low-energy
linearly dispersing acoustic plasmon mode ωac(q) and for
the high-energy optical plasmon mode ωop(q) that has

√
q

dispersion at long wavelengths. In this limit we find that
ωac(q) − vq ∝ 1/ε2, whereas ωop(q) ∝ √

2/(ε1 + ε3); i.e., the
separation of the acoustic plasmon mode from the upper
edge of the intraband particle-hole continuum is very strongly
suppressed by a large bulk TI dielectric constant, whereas
the coupled double-layer plasmon mode is unaffected. This
double-layer optical plasmon behavior contrasts with that of a
large qd single-surface plasmon mode that has a frequency
proportional to

√
2/(ε2 + ε1,3). The long-wavelength limit

of ωac(q) is sensitive not only to the energy associated
with interlayer charge sloshing but also to its microscopic
kinetics as captured by the singular sensitivity of the MD2DES
Lindhard function to ω/(vq). By carefully accounting for
this dependence we are able to correct a previous analytic
expression in a way that is quantitatively particularly important
in the TI thin-film (large ε2) case.

Double-layer collective mode coupling plays an important
role in MD2DES correlations when d̄ is small. Even when d̄

is large, strongly coupled small qd = qd̄/kF modes will often
be experimentally accessible and may play an important role
in graphene multilayer or TI-based plasmonics. The analytic
results derived in this paper can be used to readily anticipate
how these modes depend on system parameters.

From the more theoretical point of view, it will be intrigu-
ing to study physical properties of plasmons in Coulomb-
coupled MD2DESs beyond the random-phase approximation
by employing, e.g., many-body diagrammatic perturbation
theory.38

While this manuscript was being finalized for publication,
we have become aware of a study of optical and acoustic
plasmons in double-layer graphene.39 Moreover, the authors
of this work state that the analytical result for the acoustic-
plasmon group velocity given in Ref. 20 is incorrect (but give
no analytical result for cs) and present extensive numerical
results for the “uniform medium” limit (ε1 = ε2 = ε3). An
appendix in their work reports formal expressions for the
general case ε1 �= ε2 �= ε3. The authors of Ref. 39 also include
in their treatment retardation effects, which are unimportant,
though, for the longitudinal plasmon modes studied in our
paper.
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39T. Stauber and G. Gómez-Santos, Phys. Rev. B 85, 075410
(2012).

085443-8

http://dx.doi.org/10.1063/1.1497433
http://dx.doi.org/10.1063/1.1497433
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1021/nl202362d
http://dx.doi.org/10.1103/PhysRevB.82.085443
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevLett.98.236601
http://dx.doi.org/10.1103/PhysRevB.23.805
http://dx.doi.org/10.1103/PhysRevB.37.937
http://dx.doi.org/10.1103/PhysRevB.77.081411
http://dx.doi.org/10.1002/pssb.2220840226
http://dx.doi.org/10.1002/pssb.2220840226
http://dx.doi.org/10.1126/science.1171810
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevB.84.045429
http://dx.doi.org/10.1103/PhysRevB.85.075410
http://dx.doi.org/10.1103/PhysRevB.85.075410

