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Spin freezing by Anderson localization in one-dimensional semiconductors
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One-dimensional quantum wires are considered as prospective elements for spin transport and manipulation
in spintronics. We study spin dynamics in semiconductor GaAs-like nanowires with disorder and spin-orbit
interaction by using a rotation in the spin subspace gauging away the spin-orbit field. If the disorder is sufficiently
strong, the spin density after a relatively short relaxation time reaches a plateau. This effect is a manifestation of
the Anderson localization and depends in a universal way on the disorder and the spin-orbit coupling strength.
As a result, at a given disorder, semiconductor nanowires can permit a long-term spin polarization tunable with
the spin-orbit interactions.
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I. INTRODUCTION

The main idea of spintronics—the design and application
of devices controlling not only the charge dynamics but also
the electron-spin evolution—can be useful for information
storage, transfer, and manipulation technologies.1–3 Possible
realizations of spintronics devices can be based on semi-
conductor nanowires4–10 for quasiballistic electron transport,
coherent transmission of information, and spin control. These
systems attract a great deal of attention due to a clear interplay
of transport and spin-orbit (SO) coupling physics.11–16

This control faces the problem of inevitable spin relaxation
due to the coupling of electron spin to environment through SO
coupling. As a result, the factors determining the spin relax-
ation rate become of crucial importance. Two limiting cases of
spin relaxation are well understood. For the itinerant electrons,
spin relaxation in mainly determined by the Dyakonov-Perel
mechanism, that is by random precession of electron spin due
to the random in time electron momentum.

A different approach should be applied for electrons
localized in a regular external potential forming quantum
dots promising for quantum information applications.17 Here
momentum is not a well-defined quantity, and the momentum-
dependent splitting required for the Dyakonov-Perel mech-
anism vanishes. In this case inelastic spin relaxation due to
SO coupling occurs via phonon-induced transition between
orbital states in external magnetic field.18 In the absence of
magnetic field and spin-orbit coupling, spin relaxation can
occur due to the hyperfine coupling of electron spin to spins of
lattice nuclei.19 In both cases, the initial spin polarization goes
asymptotically to zero. The characteristic timescale of spin
relaxation of electrons localized in quantum dots is expected
to be several orders of magnitude longer than that of itinerant
electrons.

While these two limits of free and strongly localized elec-
trons are well understood, the interplay of disorder-induced
localization and spin relaxation of itinerant electrons remains
an open question, although some aspects of the problem
have been addressed.20–23 The questions here are (i) how the
localization forms the spin relaxation, and (ii) whether the

initially prepared spin density relaxes to zero. As a nontrivial
example of this interplay, we mention that weak localization
of two-dimensional electrons leads to a long powerlike rather
than exponential spin relaxation.24,25 Here we analyze this
problem for the one-dimensional system, providing, on one
hand, the basic example of localization physics in a random
potential,26,27 and, on the other hand, an example of a system
where spin-orbit coupling can be gauged away by a SU(2)
transformation.

This paper is organized as follows. In Sec. II, we show
how to treat spin relaxation in one-dimensional systems with
the gauge transformation and introduce the tight-binding
Hamiltonian for the model. The spin dynamics will be analyzed
by a numerically exact calculation in Sec. III, where we
show that spin density does not relax to zero, in contrast
to what is expected. In addition, in Sec. III, we study how
asymptotic value of spin polarization depends on the disorder
and spin-orbit coupling. Conclusions summarize the results in
Sec. IV.

II. MODEL

A. Hamiltonian and gauge transformation

The investigated structure is a quantum wire extended along
the x axis, as shown in Fig. 1. The total Hamiltonian has the
form

Ĥ = h̄2

2m
(kx − Ax)2 + U (x) − mα2

2h̄2 , (1)

where Ax = −mασy/h̄
2 stands for the Rashba coupling28

with strength α, σy is the Pauli matrix, kx is the electron
wavevector, and m is the effective mass. The Dresselhaus
coupling29 is obtained with Ax = −mβσx/h̄

2, where β is the
coupling constant. Without loss of generality, we concentrate
here on the Rashba coupling, which can be changed on
demand by applying an external electric field across the
structure.30

The SO interaction can be removed from Ĥ in Eq. (1)
through a gauge transformation31,32 with a SU(2) spin
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FIG. 1. (Color online) Semiconductor nanowire with random
impurities shown as filled circles. Although we consider a one-
dimensional electron motion, impurities can be randomly distributed
over the crosssection of the wire.

rotation: Ŝ = exp
(−ixσy/2ξ

)
, where ξ = h̄2/2mα is the

spin-precession length. After this transformation, the system

Hamiltonian has the form: ˆ̃
H = h̄2k2

x/2m + U (x).
Since for the Hamiltonian (1) σy is the integral of motion,

the spin density component along the y axis is time indepen-
dent. A nontrivial dynamics of the transformed spin occurs for
the γ = (x,z) spin components 〈 s̃γ (x,t)〉 and can be expressed
in terms of the spin diffusion

〈 s̃γ (x,t)〉 =
∫

Dγβ(x − x ′,t)〈 s̃β(x ′,0)〉dx ′, (2)

where Dγβ(x,t) is the exact disorder-dependent one-
dimensional spin diffusion Green’s function. In a nonmag-
netic system without SO coupling, Dγβ(x,t) = δγβD(x,t)
is diagonal in the spin subspace. As a result of the gauge
transformation, the uniform density dynamics is determined
by the Fourier component25

D(q,t) =
∫ ∞

−∞
dxe−iqxD(x,t) (3)

with q = 1/2ξ , and Eq. (2) simplifies for the physical
measurable spins as 〈sγ (t)〉 = 〈sγ (0)〉D(1/2ξ,t). Here we will
use a similar, however, somewhat different approach based on
numerically exact analysis of the direct time evolution of the
initial spin-polarized states. It will be shown that the resulting
spin dynamics has unexpected features, including a long-time
plateau in the spin polarization.

The eigenfunctions of ˆ̃
H can be taken in the form ψ(x) =

ψ(x)|1〉 and ψ(x) = ψ(x)|−1〉, where |±1〉 are the eigenstates
of σz with the corresponding eigenvalues. The eigenstates of
Ĥ , φ(x), can be obtained by spin rotation of the ψ(x)|σ 〉 states.
For example, with spin-up initial state ψ(x)|1〉, one obtains

φ(x) = ψ(x)

[
cos

(
x

2ξ

)
|1〉 + sin

(
x

2ξ

)
|−1〉

]
. (4)

The spin dynamics and spin relaxation in the system, as will
be shown below, are solely due to the entanglement of spin
and coordinate in Eq. (4).

B. Tight-binding model and disorder

We perform numerical analysis using the tight-binding
model, employing the approach similar to Refs. 16 and 33.
The one-dimensional electron gas is sampled with N = 213

(8192) grid points xn = nl, where 1 � n � N , and l is the
effective lattice constant with periodic boundary conditions.34

The effective hopping matrix element between two nearest
neighbors is chosen as t = 50 meV, and the kinetic energy is
E(kx) = 2t[1 − cos(kxl)]. The eigenenergies span the range
0–200 meVs. The distance between two neighbor grid points
becomes l = h̄/

√
2mt = 3.37 nm to satisfy the electron

effective mass m = 0.067m0 in a GaAs semiconductor, with
m0 being the free electron mass.

The random potential Un = U (xn) uniformly spans
the range [−U0/2,U0/2], with the white noise correla-
tor 〈U (xn1 )U (xn2 )〉 = 〈U 2〉δn1,n2 , where 〈U 2〉 = U 2

0 /12. The
effects of disorder can be approximately characterized through
the energy-dependent momentum relaxation time τE , which
we define as h̄/τE = 〈U 2〉lνE , where νE = √

m/πh̄
√

2E

is the density of states per spin component. The resulting
mean free path is 
E = vEτE , where vE = √

2E/m is the
electron speed, and the corresponding diffusion coefficient is
DE = v2

EτE .

In this representation, the eigenstates of ˆ̃
H and Ĥ form

basis sets, {ψi} and {φi} respectively, where 1 � i � 2N . For
the same i, these two sets are related by the local spin rotation
Ŝ. We assume that ψi = ψi(xn)|1〉 for 1 � i � N , and ψi =
ψi−N (xn)|−1〉 for N < i � 2N.

III. SPIN DYNAMICS

We study dynamics of initial ψi states with 1 � i � N ,
corresponding to the evolution after switching on the SO
coupling. The time dependence can be expressed with the
spectral decomposition as:

ψ
so
j (t) =

∑
i=1,2N

aijφie
−itεi /h̄, (5)

where aij = 〈φi |ψj 〉, and εi are the corresponding eigenen-
ergies. The spin component expectation value 〈σz(t)〉j =
〈ψ so

j (t)|σz|ψ so
j (t)〉 is determined by the spectrum and eigen-

states of the system.
In order to give an idea of the entanglement induced by SO

coupling, we present in Fig. 2 the evolution of the φN/4(xn)
state with the increase in spin-orbit coupling. At α = 0, we
obtain a product state φN/4(xn) = ψN/4(xn)|1〉, and with the
increase in α, entangled states are formed. The overlap of
φi(xn) and ψj (xn) eigenstates is characterized by two sets of
matrix elements aij ; for example, for 1 � j � N :

aij =
∑

n

cos

(
xn

2ξ

)
ψi(xn)ψj (xn), 1 � i � N,

(6)

aij =
∑

n

sin

(
xn

2ξ

)
ψi(xn)ψj (xn), N < i � 2N.

The behavior of aij presented in Fig. 3 demonstrates that for
a given j , it has nonnegligible values only in a certain, rather
narrow, range of i.

To illustrate the role of the random potential, we consider
as examples weak (U0 = 15 meV, U0 � t) and strong (U0 =
55 meV, U0 > t) disorder. For free electrons in state j = N/4
and E = 31 meV, the resulting h̄/τE is about 0.1 and 1 meV,
respectively. For a free electron with energy E ≈ 20 meV,
the velocity is vE ≈ 3.5 × 107 cm/s, the mean free path is

E ∼ 2.5 × 10−5 cm (h̄/τE = 1 meV), and the corresponding
diffusion coefficient is DE ∼ 103 cm2/s. These parameters
provide an effective integral characteristic of the disorder
and correspond to realistic parameters of the wires, which,
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FIG. 2. (Color online) Site dependent components of φN/4(xn)
for a qualitative description of entanglement induced by the gauge
transformation for (a) α = 0, (b) α = 0.125 × 10−6 meV cm, and
(c) α = 10−6 meV cm (U0 = 55 meV). The solid and dashed lines
represent |1〉 and |−1〉 components, respectively.

FIG. 3. (Color online) Absolute values of aij around the initial
spin-up state ψN/4; here α = 10−6 meV cm (strong SO coupling) and
U0 = 55 meV (strong disorder).

FIG. 4. (Color online) Inverse participation ratio ζ for the low
part of the energy spectrum; gray circles denote strong disorder
(U0 = 55 meV), and black circles denote weak disorder (U0 =
15 meV). Since even for U0 = 55 meV we obtain ζ � 1, the localized
states spread over many lattice sites, confirming applicability of the
tight-binding Hamiltonian for the localization problem.

FIG. 5. (Color online) Time-dependent polarization in the weak-
disorder regime (U0 = 15 meV). The initial bins are centered at
the states (a) N/4 (bin width 6.8 meV), (b) N/8 (bin width
3.7 meV), and (c) N/16 (bin width 2.1 meV) with energies decreasing
in the same order. The order of plots in all panels is as marked in panel
(c) for SO coupling strengths in units of 10−6 meVcm. Note that after
the relaxation stage, the spin density remains a finite constant.
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FIG. 6. (Color online) Time-dependent spin polarization in the
strong-disorder regime (U0 = 55 meV) with the same notations
as in Fig. 5. (a) N/4 (bin width 7.2 meV), (b) N/8 (bin width
4.5 meV), and (c) N/16 (bin width 3.7 meV). Note that for
α = 0.125 × 10−6 meVcm the spin is almost constant in time, thus
suitable for spin-based operations.

however, can strongly vary from sample to sample and
from experiment to experiment.

The effect of localization by disorder is seen in the
inverse participation ratio35 (IPR) ζi = ∑

n |ψ4
i (xn)|. The IPR

calculated for the low-energy spectrum is presented in Fig. 4.
As expected, the degree of localization increases with U0, and
this effect is more pronounced for the electrons with lowest
energies. In contrast to the results of Ref. 23, the IPR in this
system does not depend on the SO coupling. We now study
the effects of disorder and spin-orbit coupling on the average
spin dynamics of a bin of 256 initial spin-up states and eight
realizations of the random potential. The statistical error of this
approach is therefore 1/

√
2048 = 2.2%, making the results

statistically representative.
We take three example bins with three different degrees of

localization. The bins are centered around the spin-up states
ψN/4, ψN/8, and ψN/16, whose IPR values increase in the
same order (energies decreasing, see Fig. 4). The calculated
bin- and potential realization-averaged spin dynamics is shown
in Figs. 5 and 6, revealing strong influence of the disorder-
induced spatial localization of states. Physically, collisions
of electrons with impurities force electron spin to frequently
reverse the precession direction. In the classical picture, this
leads to a long Dyakonov-Perel spin relaxation. If the quantum

FIG. 7. (Color online) Long-term relative polarization as a func-
tion of ξ〈ζ 〉 for three different degrees of localization. Parameter ξ is
modified by changing the coupling constant α.

effects of localization are important, one observes “freezing”
of the spin density. As one can see in Figs. 5 and 6, the electron-
spin density relaxes for 
5 ps and then remains constant in
time for infinitely long (beyond 0.2 ns in our computation).
As expected, the spin polarization plateau is higher (i) for
localized states and (ii) for weak SO interaction. Almost time-
independent spin states are achieved, e.g., at U0 = 55 meV
and α = 0.125 × 10−6 meV cm.

To gain insight into the problem, we study the dependence
of asymptotic spin density on SO coupling and the localization
of electrons in more detail. The long-term densities are plotted
in Fig. 7 against parameter ξ 〈ζ 〉. This parameter combines
the two factors determining the spin dynamics, SO coupling
and spatial localization, where 〈ζ 〉 is averaged over 256
bin states and eight realizations of the random potential.
The given values follow a universal dependence indicating
a unique trend for long-term spins against SO coupling
and localization through disorder. This trend corresponds
to a fast increase in the asymptotic steady polarization for
ξ 〈ζ 〉 < 1 and a smooth increase and saturation for ξ 〈ζ 〉 > 1.
These results can be understood as follows. To show an
efficient spin dynamics, the electron should move the distance
of the order of πξ . Therefore, the spatial spread of the
corresponding states should be larger than πξ . With a stronger
localization, the spread and the overlap decrease, leading
to the universal behavior shown in Fig. 7. Qualitatively,
in the “clean” ξ 〈ζ 〉 � 1 regime,36 the spin relaxation has
the Dyakonov-Perel mechanism either purely exponential for
�EτE � 1 or a combination of oscillations and exponential
decay if �EτE � 1, where the spin precession rate �E =
2α

√
2mE/h̄ corresponds to the electron momentum at given

energy E.

IV. CONCLUSION

To summarize, localization effects of disorder and
spin-orbit coupling in semiconductor nanowires determine
the dynamics of electronic spins. Our tight-binding model
calculations show that a prepared spin density relaxes until

085430-4



SPIN FREEZING BY ANDERSON LOCALIZATION IN . . . PHYSICAL REVIEW B 85, 085430 (2012)

reaching a plateau, directly related to the disorder and strength
of spin-orbit interaction. In contrast to the expected decay
to zero, a long-time constant polarization plateau survives
to infinite time. The asymptotic spin density has a universal
dependence on the product of the inverse participation ratio
and the spin precession length. In the absence of magnetic
field, the hyperfine coupling to the spins of nuclei will lead to
spin relaxation on timescales at least two orders of magnitude
longer than the timescale of the plateau formation of the
order of 10 ps.19 As the experiments on spin transport did
not reveal electron-electron interaction effects,8 here we have
neglected them. Furthermore, whether there exists a range of
parameters where the Coulomb forces can be strong enough
to modify our results for localized states, remains to be
investigated.

An immediate consequence of this result is the ability,
by choosing the desired Rashba SO parameter for a given
wire, to produce and destroy steady spin states, which are of
interest for spin-based operations. These results suggest that
semiconductor nanowires can be used for coherent transmis-
sion and storage of information, manipulated by spatially and
temporally modulated spin-orbit coupling.
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