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Directing self-assembly of nanostructures kinetically: Patterning and the Ehrlich-Schwoebel barrier
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We present the results of kinetic Monte Carlo simulations of homoepitaxial growth on a patterned substrate in
the presence of an extra barrier to a diffusing adatom crossing of steps from above (Ehrlich-Schwoebel barrier)
on topographically patterned surfaces. Our results indicate that over a wide range of Ehrlich-Schwoebel barrier
heights, incident atom fluxes, and temperatures that multilayer islands or “growth mounds” grow in arrangements
which are directed by the topographical pattern. Our simulations indicate that a series of arrangements should
form as the temperature is changed due to a competition between the temperature-dependent mound size and
the pattern period. We compare these predictions with experimental observation of directed mound assembly on
nanopatterned GaAs(001).
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A means of fast assembly of extremely large numbers of
nanostructures with positional and size control will be required
if technology is to keep pace with the ever-decreasing size scale
of devices called for by such timetables as Moore’s Law1 and
the international technology roadmap for semiconductors.2

Directed self-assembly,3 in which a template influences the
otherwise spontaneous arrangement of atoms during processes
such as growth4–18 is an appealing candidate for achieving this.
Mechanisms by which templates influence control over how
atoms assemble are often based upon either local chemistry3 or
strain.19,20 Here we demonstrate that a qualitatively different
type of mechanism, in which an extra diffusion barrier to an
atom crossing a step21,22 can lead to self-assembly of a variety
of ordered arrangements of nanometer-sized “mounds” during
epitaxial growth on a patterned substrate.

A familiar example of self-assembly is crystal formation, in
which atoms align in periodic arrangements which are dictated
by local bonding. In this process kinetics limits the degree
to which the lowest energy, ordered arrangements can form.
On the other hand, kinetic barriers have long allowed for
the fabrication of structures in which atoms are not in their
lowest free energy configurations. A particularly interesting
type of diffusion barrier at step edges21,22 has been shown to
lead both to the formation of multilayer islands or “mounds”
during crystal growth23–30 and step bunching or meandering
instabilities during sublimation31 or growth,32 respectively.
Our recent work on epitaxial growth of GaAs on patterned
GaAs(001) substrates showed evidence that this “Ehrlich-
Schwoebel” (ES) barrier might play a role in a transient growth
instability we observe.33 Below we investigate the role of the
ES barrier during growth on patterned surfaces using kinetic
Monte Carlo simulations.

I. METHODS

Our kinetic Monte Carlo simulations are carried out using
a Fortran-based code we developed.34,35 They use a standard
solid-on-solid (SOS) description of the growth of a simple
cubic crystal. Our SOS model assigns an integer height z( �R//),
measured above the average vicinal plane, to each point �R//

on a square grid of dimensions 500a × 500a, where a is the
lattice constant. We use periodic boundary conditions in both
directions. The simulations start with a surface containing a
square array of flat-bottomed square pits, each of width 50
lattice constants and with a center-to-center spacing of 100
lattice constants. We start with pits 10 lattice constants deep,
bounded by side walls, which form angles of 45◦ with respect
to the surrounding surface.

The microscopic processes considered are the deposition
of atoms with an incident flux F and diffusion; desorption is
not considered. In most of the results reported here we fixed
the incoming flux at a value corresponding to the arrival of
1 monolayer of atoms per second. Absorbed adatoms hop
from site to site in the presence of three energetic barriers: the
diffusion barrier Ed , the in-plane nearest-neighbor interaction
barrier Ea , and the ES barrier EES, at step edges. The overall
barrier to hopping is

EX = Ed + nEa + ηEES. (1)

Here n is the number of nearest-neighbor adatoms with
which a diffusing atom interacts; it ranges from 0 to 3, as
atoms with 4 neighbors are immobile.34,35 η is equal to 1 if
there is an ES barrier for a particular hop and 0 otherwise. The
hopping frequency follows an Arrhenius form with a rate:

� = ν0 exp (−EX/kBT ) , (2)

where ν0 = 1013 Hz is a typical adatom vibration frequency,
T is the substrate temperature, and kB is Boltzman’s constant.
We use typical values for the diffusion barrier and the in-plane
nearest-neighbor interaction barrier as 1200 and 300 meV,
respectively,36 and vary EES. In the simple model used here no
preferential diffusion along step edges is considered.

II. RESULTS

Example results of our simulations are shown in Fig. 1. In
this case the ES barrier is set equal to 0.1 eV, a typical value
for a number of metal surfaces. Figure 1(a) shows the starting
surface, while Figs. 1(b)–1(g) show the topography that results
after the simulated growth of a film of 1000 monolayers
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FIG. 1. (Color online) Simulated topography vs growth temperature. (a) Initial patterned surface; pits are 50a wide, 10a deep, and
separated by A = 100a center-to-center, where a is the lattice constant. (b)–(g) Simulated topographies after 1000 ML-grown thickness
at 1 ML/s. Energetic barriers are Ed = 1.2 eV, Ea = 0.3 eV, EES = 0.1 eV. Growth temperatures are (b) 550 K, (c) 650 K, (d) 680 K,
(e) 695 K, (f) 725 K, (g) 755 K, and (h) summary of average mound size vs grown thickness at a series of temperatures; dashed line indicates
1000 ML.

average thickness at rate of 1 ML/s and a series of increasing
temperatures. Figure 1(h) summarizes the average mound size
vs grown thickness for temperatures across this range and
shows that by 1000 monolayers the topography has nearly
reached a steady state in each case. Figure 1(b) is for simulated
growth at a temperature of 550 K and shows a high density of
irregular mounds decorating the surface. The dendritic shapes
of individual mounds indicate that diffusive motion of atoms is
slow compared to the arrival of new atoms from the flux at this
temperature. Increasing the temperature results in the forma-
tion of larger mounds of more regular shapes, as can be seen
in Figs. 1(c) and 1(d). By 680 K a strong correlation between
the positions of the mounds and the original pattern is visibly
evident. Further increases in the temperature result in even
larger mounds, whose shapes evolve from nearly isotropic,
to distinctly diamondlike at 725 K, to square at 755 K.
Growing above this temperature produces mounds whose size
exceeds that of the pattern cell, and the shapes become less
regular.

We statistically analyze the effect of the initial topograph-
ical pattern on the self-assembly of the growth mounds,
particularly evident in Figs. 1(d), 1(f), and 1(g), using a
correlation function, defined as

G2(�r//) ≡ 〈(z( �R//)z( �R// + �r//))〉 �R//
. (3)

In this expression z( �R//) is the local height of the surface
at a particular lateral position �R//, z( �R// + �r//) is the height at

position displaced laterally from this by �r//, and 〈〉 �R//
denotes

the average over all values of �R//. Maps of this correlation func-
tion from kinetic Monte Carlo (kMC) simulations of growth
at 550, 680, 725, and 755 K are shown in Figs. 2(a)–2(d).
The height of the central peak in each of these maps is equal
to the mean-square corrugation amplitude, with contributions
from both the mounds that assemble spontaneously during
growth and what remains of the original pattern. The height
of the “first-order” peaks, i.e., those displaced from the map
center by a distance equal to the pattern period A along
the horizontal 〈100〉 and vertical 〈010〉 directions, gives a
measure of the persistence of the pattern during growth. The
most interesting features of these maps are the intermediate,
“satellite” peaks whose positions correspond to separations
between mounds. The observed series of regular arrays of
satellite peaks in the correlation maps confirms the impression
obtained from a visual inspection of the simulated images of
Fig. 1: arrangement of mounds locks into a series of ordered
arrays whose period is related to that of the pattern as the
temperature is increased. This behavior is in sharp contrast to
what we find for simulated growth on an unpatterned surface.
As seen in Figs. 2(e)–2(h) the corresponding correlation maps
for such simulations show a nearly isotropic ring surrounding
an excluded area around the central peak, but otherwise no
indication of ordering of the mounds: the arrangement is
“liquidlike.” The radius of the ring (Ru) in the correlation
maps corresponds to the “natural” nearest-neighbor mound
separation.
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FIG. 2. (Color online) Correlation maps for growth on patterned and unpatterned surfaces after 1000 ML-grown thickness, at 1 ML/s.
(a) Growth at 550 K on patterned surface showing weak ordering. (b) Growth on patterned surface at 680 K, showing square ordering;
double-dot dash lines show a separation of A/3. (c) Growth on patterned surface at 725 K, showing diagonally ordered structure; dotted lines
show a spacing of

√
2A/2. (d) Growth at 755 K on patterned surface showing original pattern period. (e)–(h) Growth on unpatterned initial

surface showing liquidlike ordering: (e) at 550 K, (f) at 680 K, (g) at 725 K, (h) at 755 K; Ru indicates the radius of the ring in the correlation
maps corresponding to the near-neighbor mound separation.

An analysis of the positions of the satellites as a function
of temperature reveals an intriguing behavior in the assembly
of mounds when an initial topographical pattern is present.
This can be seen in Fig. 3, where we plot the position of
the nearest satellite peaks along both the horizontal 〈100〉
and diagonal 〈110〉 directions vs the radius of the ring on
the unpatterned surface. The overall behavior seen here is
reminiscent of “devil’s staircases,” or sequences of higher-
order commensurate phases, which form as temperature
or pressure are changed in adsorbate systems when there
is a competition between preferred adsorbate-spacings and
substrate periodicities.38 For growth at or below 600 K the
distances from center of the closest satellites along both of
these directions are equal and given by the radius of the ring
(Ru). At these low temperatures the mound separations are
thus isotropic and relatively insensitive to the presence of the
pattern, which shows up as a background in the correlation
maps. By a growth temperature of 660 K the pattern clearly
exerts an influence on the mound spacing: the symmetry of
the satellites visually indicates that the mounds assemble into
a square lattice, with the ratio of the distances to the nearest
diagonal satellite and to the nearest horizontal satellite in the
ratio of

√
2 : 1. Interestingly, the mound lattice has adopted a

lattice spacing of A/3, rather than the “natural” value of 0.26A,
which it would have in the absence of the pattern. It remains
locked into this structure up until a temperature of 700 K,
in spite of an increase in the unpatterned mound spacing to
0.43A. An analysis of Figs. 1(d) and 1(e) indicates that there
is a strong tendency for a single mound to form within each pit,
pinning the arrangement of mounds to that of the pattern, with

FIG. 3. (Color online) Evidence for lock-in of mounds to se-
ries of ordered structures. Nearest satellite peak position from
correlation maps after growth on patterned surface vs ring ra-
dius for unpatterned surface, along [110] (red open circles) and
[100] (blue solid squares). After 1000 ML-grown thickness at 1
ML/s, with temperature as indicated. Solid blue line has slope
1, corresponding to mound spacing along [100] equal to that
on an unpatterned surface. Solid red line has slope

√
2. Mound

lattice vectors relative to pattern are indicated for three ordered
structures. Insets from top to bottom show the correlation maps
of surface morphologies after growth at 755, 725, and 680 K,
respectively.
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two mounds forming in the bridge between pits. Increasing the
growth temperature slightly to 710 K causes an abrupt change
in the arrangement in which the mounds assemble. Evidently
driven by the significantly larger natural spacing, the mound
lattice rotates by 45◦ and adopts an (A/

√
2 × A/

√
2) unit cell;

satellites appear only along 〈110〉 directions. The simulated
images in this range [e.g., Fig. 1(f)] show that a single mound
forms in each bridge-site between near-neighbor pits; mounds
do not form within pits at these temperatures. As for the lower
temperature (A/3 × A/3) structure, the mounds lock into this
lower coverage structure over a range of temperature, up to
735 K. Raising the temperature to 740 K causes the mounds
to assemble into a third, even lower coverage arrangement in
which all satellites are absent in the correlation maps. The
simulations show that the larger natural spacing of the mounds
is accommodated by the assembly of individual mounds in
the fourfold sites between pits. At the approximate center of
the temperature range for this structure, 755 K, the pattern
period A coincides with the spacing mounds would naturally
adopt. Increasing the growth temperature above 770 K results
in a disordered structure; there is no simple relation of the
placement of these large mounds to the topographical pattern,
and even the first-order peaks are absent in the correlation
maps.

One might wonder how general the series of self-assembled
mound structures seen in Figs. 1–3 is. In particular, would
a different set of barriers produce mound structures with
different periods? To address this we also carried out additional
simulations, varying the diffusion barrier (Ed ) from 0.8
to 1.2 eV, the in-plane nearest-neighbor interaction barrier
(Ea) from 0.25 to 0.4 eV, and the ES barrier (EES) from
0.05 eV to 0.2 eV. In each case the same sequence of
structures occur, although at different temperatures ranges.
Evidently these directed self-assembly structures should occur
over a range of energy barriers on surfaces and incident
fluxes.

Our simulations indicate that it should be possible to use
patterning to direct the assembly of nanometer-size mounds
into a series of structures in which the spacings are directed
by the pattern. What does this mean about the sizes of the
mounds? Interestingly, as shown in Fig. 4, we find that the
mound sizes show some differences from what might be
guessed from the temperature dependence of the correlation
map satellite positions. No obvious break in the dependence of
the mound size on temperature is seen in the range in which the
(1/3×1/3) structure forms. Our analysis shows a continuous
decrease in the intensity of the nearest satellite along 〈100〉
relative to that along 〈110〉 as the temperature is increased from
670 to 700 K, indicating that the mound lattice accommodates
the increase in natural size by a continuous increase in the
fraction of near-neighbor mound pairs, which are separated
along 〈110〉 rather than 〈100〉 directions in this range. Indeed
such a change in the near-neighbor arrangement of mounds is
evident by comparing Figs. 1(d) and 1(e).

An interesting question concerns how the choice of initial
geometrical parameters might affect which ordered mound
arrangements occur for growth on a patterned surface. To
investigate this we carried out additional simulations for
geometries in which the relative values of different pattern

FIG. 4. (Color online) Average mound size on patterned vs
unpatterned surfaces. After growth of 1000 ML at 1 ML/s, with
temperatures as indicated. Insets at lower right are correlation maps
for 690 and 700 K, as indicated.

length scales are changed. We find that changing the depth
of the pattern at fixed width and pitch has a subtle effect, as
summarized in Fig. 5(a) for the case of the same pattern pitch
and pit-width as in Figs. 1–3, but with the depth tripled to h =
30a. The same sequence of phases as in the h = 10a case
occurs, with only changes in the transition regions between
them. This may be in part due to the finite sidewall angle
which causes a decrease in the widths of the flat mesa widths
between pits with increasing pit depth. On the other hand,
changing the starting pit-widths for a fixed pitch and depth
gives rise to a different sequence of mound structures with
increasing temperature. Figure 5(b) summarizes the results for
growth simulations in which the pitch and depth are maintained
at the same values as in Figs. 1–3, but in which the initial width
of the pits is 0.75 times the pitch, i.e., w = 75a. In this case
the simulations predict four, rather than three ordered mound
structures, with unit meshes given by A/5 × A/5, A/3 ×
A/3, A/2 × A/2, and A × A as the growth temperature is
increased. Interestingly, the rotated A/

√
2 × A/

√
2 structure

is “missing” in this case.
We do not have a detailed understanding of the relationship

between the pattern parameters and the mound structures
which form, however, we expect that it involves a competition
between a temperature-dependent natural nearest-neighbor
mound spacing, discussed previously, and the pattern lateral
length scales. The mound-pattern interaction is seemingly
based upon the formation of mounds only on the flat
mesas around and at the bottoms of pits; this restricts
the configurational entropy of mounds on the surface and
results in an effective interaction which is entropic in
nature.

Are there any real physical systems which show evidence
for pattern-directed assembly of growth mounds? The answer
is possibly yes. In recent work our group has explored the
effect of lithographically patterning GaAs(001) surfaces on
the subsequent topography, which evolves as more GaAs is
deposited, “homoepitaxial growth.” In our first experiments we
used photolithography followed by etching to create patterns
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(a)

(b)

FIG. 5. (Color online) Effect of pattern parameters on sequence
of mound structures with temperatures as indicated. Nearest satellite
peak position from correlation maps after simulated growth on
patterned surface vs ring radius for unpatterned surface, along
[110] (red open circles) and [100] (blue solid squares). After 1000
ML-grown thickness at 1 ML/s, with temperature as indicated.
(a) Satellite positions for initial pattern pitch A = 100a and width
w = 50a, as for Fig. 3, but depth increased to h = 30a. Insets from top
to bottom show the correlation maps of surface morphologies after
growth at 740, 710, and 680 K, respectively. (b) Satellite positions
for initial pattern pitch A = 100a, depth h = 10a, and pit width
w = 75a. Insets from top to bottom show the correlation maps of
surface morphologies after growth at 760, 720, 675, and 630 K,
respectively.

in which the dimensions and spacings of the pits were microns,
much larger than the nanometer scale structures we explored
in our simulations. Nevertheless, these experiments produced
interesting results which suggest that a small ES barrier is
present on these surfaces, at least for steps of a certain
orientation. Specifically, on these “micro-patterned” surfaces

we found that depositing Ga and As2 (the latter in excess) at
a temperature of 500 ◦C and a rate of 1 monolayer per second
results in the formation of mounds selectively at the edges of
pits along [110] directions.33 At these length scales, the pits
are apparently too far apart to result in formation of ordered
mound arrangements between them. More recently we have
implemented electron beam lithography to make structures
whose dimensions and spacings are much smaller, approaching
those used in the simulations.

Figure 6 shows a series of atomic force microscopy maps
of the topography which results from GaAs growth on such
nanopatterned (001) surfaces at two different temperatures.
At the lower of the two temperatures, 460 ◦C, individual
mounds span bridges between neighboring pairs of nanopits
separated along [110] directions, (“[110] twofold bridges”). It
is at these same sites that mounds form in the second ordered
arrangement, A/

√
2 × A/

√
2 structure, in the simulations for

the first pattern geometry discussed previously [Fig. 1(f)]. A
difference is that the mounds which form at the centers of
the twofold bridges along [110] directions in the simulations
are missing in the experiments. The GaAs(001) surface in
fact is not fourfold symmetric: both the Ga diffusivity37,39

and adatom-step sticking probabilities40 are different along
[110] and [110], as is the geometry of steps running along
[110] (“B-type”) and [110] (“A-type”) for both the c(4×4)37

of interest here and the β2(2×4) reconstruction,39–44 which
occurs above ∼550 ◦C.33,45 In addition, our earlier results on
micropatterned GaAs(001) suggested the presence of a finite
ES barrier along [110] but not obviously along [110]. The
height variations visible as gray belts in Fig. 6(b) and 6(c)
reflect these effects; even more striking is the observation after
increasing the experimental growth temperature to 525 ◦C. In
this case mounds again form at the centers of the fourfold
bridges between the corners of nanopit neighbors and lead to
the same A × A structure seen at the higher temperatures in the
simulations [Fig. 1(g)]. Additional preliminary experiments
at lower temperatures than those explored here suggest that
directed assembly of higher density mound structures is
possible as well.45

III. DISCUSSION

We now consider how an artificially imposed topographical
pattern might act in directing the assembly of mounds during
growth. One possibility is based upon the modification of the
local density of adatoms on the surface. On relatively flat
regions of a surface such as those between the pits, growth
via the formation of atom clusters (“islands”) is favored over
the addition of atoms to existing steps. As islands are most
likely to form where adatom density is high, a seeming
explanation for our observations is that the positions of the
maxima in the adatom density relative to the pattern changes
with temperature owing to thermal activation across the ES
barriers at the edges of pits. This possibility, however, is ruled
out by a simple solution of the diffusion equation, which
shows that initially the adatom density is always at the fourfold
bridge sites; a moderate ES barrier flattens this maximum out
but does not shift its position.46 Initially this favors island
formation near the centers of the bridges between pits. We
thus consider a second possibility, suggested by the inset of
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(a) (b) (c)

(e)(d)

FIG. 6. (Color online) Mound structures during growth of GaAs on nanopatterned surfaces. (a) Atomic force microscope image of
topography of patterned GaAs(001) before growth. Pits are 30 nm deep, 150 nm wide, and spaced at A = 300 nm. (b) AFM image after growth
of 60 nm of additional GaAs at 460 ◦C. The blue square shows the unit cell of the initial square pattern. (c) After growth of 100 nm at 460 ◦C.
(d) After growth of 30 nm, at a temperature of 525 ◦C. (e) After growth of 60 nm at 525 ◦C.

Fig. 4, that beneath 700 K the mound sizes on the patterned
surfaces follow those determined by kinetics in the absence
of a pattern. This natural size arises from the competition of
the ES barrier, which favors vertical growth of multi-island
stacks24–31 and arrival of diffusing adatoms on the underlying
surface favors lateral growth due to attachment to the edges of
the bottom-most island. For this to be the correct explanation
the mound positions would need to evolve during growth
from the initial nucleation sites favored by highest adatom

density to relative positions determined by their natural size
and the effects of the pattern. One of these is the reduction
of the area of the underlying terrace, and thus the supply
of adatoms for lateral growth, if a mound approaches the
upper edge of a pit. Some evidence for this evolution is seen
in Fig. 7, which shows series of height profiles from our
simulations for increasing grown thickness. Successive panels
in this figure are for temperatures corresponding to the centers
of the ranges in which the three ordered mound structures

(a) (b) (c)

FIG. 7. (Color online) Height profiles of simulated surfaces for increasing amounts of growth. (a), (b) Evolution of morphologies of the
twofold bridges at growth temperatures 680 and 725 K; the arrow in (a) indicates a local height maximum near the center of twofold bridges
at initial stage of growth. (c) Evolution of morphologies of the fourfold bridges. The heights of profiles are rescaled to display subtle features
at the early growth stage.
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assemble for the pattern geometry of Fig. 1. For the A/3 ×
A/3 arrangement of mounds seen in Fig. 1(d), two mounds can
be accommodated in the bridge between near-neighbor pits,
with a third forming in the pit bottoms; in Fig. 7(a) an initial
height maximum forms near the center of the twofold bridge, as
expected based on the adatom density, but two maxima evolve
near the bridge edges as the growth continues. Raising the
temperature increases the rate of atom diffusion, and thus the
natural size of the mounds. Larger mounds are accommodated
by the twofold bridge sites in the A/

√
2 × A/

√
2 structure,

and the largest in the fourfold bridge sites of the A×A
structure.

The model used in our simulations is extremely simple
and leaves out many effects, including elastic strain near
the edges of pits, interaction between steps like those that
bound the pits and anisotropy in the diffusivity, and atom-
step attachment probabilities. Nonetheless the simulations,
along with early experimental results, suggest that indeed
the extra ES barrier, which impedes atoms crossing steps
from above and has been long known to produce mounds
during growth on certain surfaces,24–31 might be exploited
to direct the arrangement of such mounds on a patterned
surface.

IV. CONCLUSIONS

In summary, our results show that a purely kinetic effect,
i.e., an additional diffusion barrier at step edges, can act
not merely to suppress the lowest energy atom arrangement
during growth but to direct a series of ordered arrangements of
nanometer-sized mounds with temperature by controlling the
competition between the natural mound near neighbor spacing
and the length scales imposed by an artificially produced
pattern. The sequence of mound structures varies with the
pattern length scales. Most importantly, the density of mounds
in these structures can exceed that of the initial pattern. We
anticipate that this phenomenon could find application in the
fast, controlled assemblies of nanostructures called for by
current technology.
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Niño, J. E. Prieto, L. Gómez, J. Ferrón, A. L. Vázquez de Parga, J.
M. Gallego, J. J. de Miguel, and R. Miranda, Appl. Phys. A 69, 553
(1999).

26S. Schinzer, S. Kohler, and G. Reents, Eur. Phys. J. B 15, 161
(2000).

27M. Vladimirova, A. Pimpinelli, and A. Videcoq, J. Cryst. Growth
222, 631 (2000).

28H. C. Kan, S. Shah, T. T. Tadyyon-Eslami, and R. J. Phaneuf, Phys.
Rev. Lett. 92, 146101 (2004).

29Z.-J. Liu and Y. G. Shen, Surf. Sci. 595, 20 (2005).
30A. B. H. Hamouda, A. Pimpinelli, and R. J. Phaneuf, Surf. Sci. 602,

2819 (2008).
31J. Krug, V. Tonchev, S. Stoyanov, and A. Pimpinelli, Phys. Rev. B

71, 045412 (2005).
32G. S. Bales and A. Zangwill, Phys. Rev. B 41, 5500 (1990).
33T. Tadayyon-Eslami, H. C. Kan, L. C. Calhoun, and R. J. Phaneuf,

Phys. Rev. Lett. 97, 126101 (2006).
34A. Ben-Hamouda, N. Absi, P. E. Hoggan, and A. Pimpinelli, Phys.

Rev. B 77, 24530 (2008).

085421-7

http://dx.doi.org/10.6028/jres.112.002
http://dx.doi.org/10.6028/jres.112.002
http://dx.doi.org/10.1038/nmat2496
http://dx.doi.org/10.1063/1.119625
http://dx.doi.org/10.1063/1.119625
http://dx.doi.org/10.1116/1.590070
http://dx.doi.org/10.1063/1.121915
http://dx.doi.org/10.1063/1.121915
http://dx.doi.org/10.1063/1.126716
http://dx.doi.org/10.1063/1.1336554
http://dx.doi.org/10.1063/1.1434307
http://dx.doi.org/10.1063/1.1434307
http://dx.doi.org/10.1016/S0039-6028(02)01600-X
http://dx.doi.org/10.1063/1.1536265
http://dx.doi.org/10.1063/1.1566455
http://dx.doi.org/10.1063/1.1581986
http://dx.doi.org/10.1021/nl048443e
http://dx.doi.org/10.1021/nl048443e
http://dx.doi.org/10.1103/PhysRevLett.92.025502
http://dx.doi.org/10.1103/PhysRevLett.92.025502
http://dx.doi.org/10.1063/1.1848195
http://dx.doi.org/10.1063/1.1848195
http://dx.doi.org/10.1063/1.2358003
http://dx.doi.org/10.1063/1.2358003
http://dx.doi.org/10.1103/PhysRevB.77.075311
http://dx.doi.org/10.1103/PhysRevB.77.075311
http://dx.doi.org/10.1103/PhysRevLett.97.215501
http://dx.doi.org/10.1103/PhysRevLett.97.215501
http://dx.doi.org/10.1103/PhysRevLett.101.216102
http://dx.doi.org/10.1103/PhysRevLett.101.216102
http://dx.doi.org/10.1063/1.1726787
http://dx.doi.org/10.1063/1.1707904
http://dx.doi.org/10.1063/1.1707904
http://dx.doi.org/10.1103/PhysRevLett.72.116
http://dx.doi.org/10.1103/PhysRevLett.72.116
http://dx.doi.org/10.1103/PhysRevB.54.5114
http://dx.doi.org/10.1007/s003390051469
http://dx.doi.org/10.1007/s003390051469
http://dx.doi.org/10.1007/s100510051111
http://dx.doi.org/10.1007/s100510051111
http://dx.doi.org/10.1016/S0022-0248(00)00878-2
http://dx.doi.org/10.1016/S0022-0248(00)00878-2
http://dx.doi.org/10.1103/PhysRevLett.92.146101
http://dx.doi.org/10.1103/PhysRevLett.92.146101
http://dx.doi.org/10.1016/j.susc.2005.07.032
http://dx.doi.org/10.1016/j.susc.2008.07.031
http://dx.doi.org/10.1016/j.susc.2008.07.031
http://dx.doi.org/10.1103/PhysRevB.71.045412
http://dx.doi.org/10.1103/PhysRevB.71.045412
http://dx.doi.org/10.1103/PhysRevB.41.5500
http://dx.doi.org/10.1103/PhysRevLett.97.126101
http://dx.doi.org/10.1103/PhysRevB.77.245430
http://dx.doi.org/10.1103/PhysRevB.77.245430


LIN, HAMMOUDA, KAN, BARTELT, AND PHANEUF PHYSICAL REVIEW B 85, 085421 (2012)

35A. B. Hamouda, A. Pimpinelli, and T. L. Einstein, Surf. Sci. 602,
3569 (2008).

36These values are close to those based upon first principles
calculations for c(4 × 4)-GaAs(001) by Roehl et al., Ref. 37.

37J. L. Roehl, A. Kolagatla, V. K. K. Ganguri, S. V. Khare, and R. J.
Phaneuf, Phys. Rev. B 82, 165335 (2010).

38P. Bak, Rep. Prog. Phys. 45, 587 (1982).
39M. Itoh, Phys. Rev. B 64, 045301 (2001).
40T. Shitara, D. D. Vvedensky, M. R. Wilby, J. Zhang, J. H. Neave,

and B. A. Joyce, Phys. Rev. B 46, 6825 (1992).

41G. R. Bell, T. S. Jones, and B. A. Joyce, Surf. Sci. 429, L492
(1999).

42M. Itoh and T. Ohno, Phys. Rev. B 63, 125301 (2001).
43M. Itoh, G. R. Bell, A. R. Avery, T. S. Jones, B. A. Joyce, and

D. D. Vvedensky, Phys. Rev. Lett. 81, 633 (1998).
44T. Shitara, J. Zhang, J. H. Neave, and B. A. Joyce, J. Appl. Phys.

71, 4299 (1992).
45C. F. Lin, H. C. Kan, S. Kanakaraju, C. J. K. Richardson, N. C.

Bartelt, and R. J. Phaneuf (unpublished).
46N. C. Bartelt (unpublished).

085421-8

http://dx.doi.org/10.1016/j.susc.2008.09.041
http://dx.doi.org/10.1016/j.susc.2008.09.041
http://dx.doi.org/10.1103/PhysRevB.82.165335
http://dx.doi.org/10.1088/0034-4885/45/6/001
http://dx.doi.org/10.1103/PhysRevB.64.045301
http://dx.doi.org/10.1103/PhysRevB.46.6825
http://dx.doi.org/10.1016/S0039-6028(99)00413-6
http://dx.doi.org/10.1016/S0039-6028(99)00413-6
http://dx.doi.org/10.1103/PhysRevB.63.125301
http://dx.doi.org/10.1103/PhysRevLett.81.633
http://dx.doi.org/10.1063/1.350811
http://dx.doi.org/10.1063/1.350811

