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Metal-dielectric-metal surface plasmon-polariton resonators
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A theoretical study of standing-wave resonances of surface plasmon polaritons (SPPs) in finite-length metal-
dielectric-metal cavities is presented. A Fabry-Pérot model is constructed to describe the cavity resonances,
and the associated optical parameters are calculated analytically. One key parameter is the phase acquired by
resonating SPPs upon reflection from cavity end faces. This phase pickup is associated with the near-field energy
storage at these end faces, and the imaginary part of the reflection coefficient is shown to be approximately
proportional to the stored energy. Using the Fabry-Pérot model, we also calculate the transmission cross section,
peak position, as well as the Q factor of the cavity, and we find good agreement with full-field numerical
simulations for a wide range of wavelengths and device dimensions.
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I. INTRODUCTION

Plasmonic cavities allow deep subwavelength modes with
high field concentration, and are therefore very attractive for
small footprint active nanophotonic devices. The possibility of
concentrating light into a nanoscale volume has a profound ef-
fect on the efficiency of linear and nonlinear optical processes,
which often scale with the ratio of the optical quality factor Q

to the mode volume Vm. Despite their modest quality factors
(typically between 10 and 100), metallic cavities can have such
small mode volumes that they can outperform much higher Q

dielectric microcavities (Q ∼ 106). As such, they have been
proven useful for a variety of applications, including single
molecule sensing,1 spectroscopy,2,3 optical trapping,4 surface
enhanced reactions,5,6 spontaneous emission modification,7–10

surface plasmon-polariton (SPP) modulators,11–14 and SPP
sources.15,16

Finite-length metal-dielectric-metal (MDM) cavities have
attracted particular attention for their ability to concentrate
light to nanoscale dimensions17 through the excitation of
wavelength-tunable cavity resonances.18 The high field inten-
sity in the dielectric region makes these structures well-suited
for active plasmonic structures. MDM plasmonic slits have
also been shown to enhance optical absorption within materials
adjacent to the MDM end face.19,20 The relative ease of
fabricating the MDM structures together with the possibility
of using the metal layers as electrical contacts also make this
geometry well-suited for optoelectronic applications.11,16,21,22

Plasmonic cavities are most readily studied with full-field
simulations, which, although exact, do not lend themselves to
a clear physical interpretation. The resonant optical properties
of wavelength-scale plasmonic antennas and cavities are most
easily understood if seen as truncated waveguides supporting
SPPs with a well-defined λSPP.23–25 In such finite-sized
structures, the SPPs undergo reflections from the end faces,
and the constructive interference of multiply reflected SPPs
can give rise to Fabry-Pérot resonances.24,26 The optical quality
factor associated with the resonances is determined by the SPP
reflection amplitude as well as propagation losses. On the other
hand, λSPP and the phase acquired upon reflection from the end
faces determine the resonant length, Lres, of the cavity. This
point follows directly from the resonance condition that the
round-trip phase for SPPs must be an integer multiple of 2π .

It has been shown that plasmonic resonators can exhibit large
reflection phases, and in these cases our microwave intuition
that suggests a resonance length of mλ

2 is insufficient.23,24,27,28

From the above discussion, it is clear that a quantitative
prediction of MDM cavity resonances requires knowledge
of the reflection phase and amplitude. The problem of
SPP reflection has been extensively studied in the past for
single interface surface plasmons with various dielectric29

and metallic30 discontinuities and thin dielectric overlayers.31

An exact analytical treatment of SPP reflection in multilayer
structures is complicated by the presence of multiple SPP
modes in addition to the bulk propagating and evanescent
modes. Calculation of SPP waveguide modes along finite-
width metallic stripe waveguides by using an effective index
model has been done before,32 but this framework is not
ideally suited to the problem at hand, in which SPPs run
into an abrupt termination of a waveguide. It has been shown
that for a metallic rod antenna, an approximation for this
phase pickup with a factor for the finite reactance of the
rod end faces correctly predicts the resonance wavelengths.24

Recently, numerical calculations of the reflection amplitude
and phase for a terminated metal sheet have been made using
full-field simulations, and these were used successfully to
predict the resonant properties of stripe antennas (truncated
DMD waveguides).28 These calculations are in reasonable
agreement with recent experiments.27 For MDM cavities,
analytical calculations of the reflection phase exist for lossless
and dispersion-free metals,33 but an extension to real metals
would be of value.

In this paper, we start by calculating analytically the reflec-
tion coefficient and phase acquired by SPPs upon reflection
from the cavity end face using a simple mode-matching
model for real metals exhibiting both dispersion and loss. Our
approach is similar to that in Refs. 33 and 34, but it employs an
intuitive energy conservation boundary condition in addition to
the field matching at the cavity termination. The model clearly
demonstrates the origin of the reflection phase as arising from
coupling to the evanescent, near-field modes in the free-space
region. We also show that the imaginary part of the reflection
coefficient is approximately proportional to the energy stored
in the near field of the MDM cavity end face. The calculations
demonstrate that by choosing the right dielectric thickness, it
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is possible to maximize this near-field energy stored, resulting
in a high electric field intensity in that region. With knowledge
of the excitation and reflection coefficients, we finally also
calculate analytically the transmission cross section and the
quality factor (Q) of finite-length MDM cavities with real
material properties including losses. Comparison with full-
field finite-difference simulations shows that the model can
very accurately predict the resonance behavior of MDM cavity
structures for a wide range of dielectric thicknesses and cavity
lengths. The design of a plasmonic device for operation at
a particular wavelength, accounting for the SPP dispersion
and scattering, will require the use of full-field simulations.
However, an analytical model that captures the essential details
of surface plasmon resonance conditions in these devices can
serve as a good design rule and further our understanding of
the physics of SPP reflections in MDM devices. This would
enable the leveraging of familiar concepts and designs from
other areas, such as microwave and radiofrequency circuits.

II. SPP MODES OF MDM STRUCTURES

Figure 1 shows a schematic of the truncated MDM waveg-
uide resonator that is investigated in this paper. It consists of
two infinitely thick metallic layers separated by a thin dielectric
region, through which power is guided in an MDM or gap SPP
mode. The thickness of the dielectric is denoted by dins and the
SPPs propagate in the x direction. The dielectric and the metal
dielectric constants are denoted by εd and εm, respectively.

It is important to understand the dependence of the
wavelength and propagation loss of the allowed SPPs in the
MDM cavity as they determine the resonant cavity lengths
and the associated quality factors. SPP modes in planar MDM
structures have been extensively studied in the past.35–39 In
general, these waveguides support SPP modes with both
symmetric and antisymmetric field profiles (Hy field), but for
sufficiently thin dielectrics, only the mode with a symmetric
field profile is allowed; such structures are considered here.
Also, the symmetry of the structure prevents mixing between
the modes at the reflective cavity termination. For this reason,
only the symmetric mode is included in this study. The
validity of using only this mode will be verified by full-field
simulations. As the dielectric thickness dins is reduced, the
mode index as well as the propagation loss for the symmetric
mode increase. It is clear that the increased lateral mode

FIG. 1. Schematic of a finite-length MDM cavity. The Hy-field
profile of the symmetric SPP mode is shown.

confinement comes at the cost of lowered SPP propagation
length. This in turn could affect the Q in the regime where
the losses are dominated by propagation losses rather than
reflection losses. A detailed analysis of the variation in SPP
dispersion with the structure dimensions can be found in
Ref. 38.

In the following section, we look at resonances in finite-
length MDM cavities, ascribing them to constructive inter-
ference of field symmetric modes reflected from the cavity
end faces. We assume that the field inside the MDM cavity
can be described only using forward propagating and reflected
SPPs. In addition to the propagating modes, the structure also
supports a continuum of evanescent (in the propagation direc-
tion) modes, which are required for a complete description of
the fields inside the cavity.40 Such local modes are important
near terminations of waveguides and compact cavities. We
assume that the contribution of these modes on the SPP
reflection coefficient can be ignored. No assumption is made
regarding the nature of the fields outside the cavity. We look at
resonance properties in the visible to near-infrared frequency
range for very thin dielectric MDM cavities. The theory is
developed assuming infinite metal outer layer thickness and a
small dielectric thickness. Only an outline of the derivation
is included here. A more detailed description of the steps
involved can be found in Appendix A.

A. Transmission into the cavity

In this section, we explore the coupling of a normally in-
cident, transverse magnetic (TM) plane wave, H = (0,Hy,0),
with a free-space wavelength λ, into an MDM cavity Fig. 1.
The wave that is transmitted into the cavity is assumed to be
a symmetric gap SPP. The reflected light is described by a
continuum of waves moving back away from the cavity. From
the continuity of the Ez field, we then find

Epw
z + Eref

z = tEsp
z . (1)

Here, t is the amplitude of the forward propagating symmetric
SPP electric field E

sp
z and can be viewed as an SPP excitation

coefficient. By assuming unity amplitude for the incoming
plane-wave field, E

pw
z , and expanding the reflected field, Eref

z ,
into a continuum of plane-wave modes with amplitude g(k),
Eq. (1) can be rewritten as

1 +
∫ ∞

−∞
g(k)eikzdk = tEsp

z . (2)

By taking the Fourier transform of Eq. (2), we get

g(u) = t

2π

∫ ∞

−∞
Esp

z e−ik0uzdz − δ(u), (3)

where k is written as k0u with k0 = 2π
λ

and δ is the Dirac
impulse.

In addition to the field continuity equation, we need
another boundary condition to calculate t , the SPP excitation
coefficient. One physically meaningful boundary condition is
the continuity of the total integrated x-directed Poynting flux
passing through the y-z plane at the cavity termination. As
the system is translationally invariant along the y direction,
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this boundary condition can be expressed in terms of integrals
along the z direction. With this, we get∫ ∞

−∞
dz

(
Epw

z + Eref
z

)(
H pw

y + H ref
y

)∗

= t t∗
∫ ∞

−∞
dz Esp

z H sp∗
y . (4)

Here, ∗ denotes the complex conjugate of the quantity.
Simplifying Eq. (4) with Eq. (2) and solving for t , we arrive
at the following expression:

t =
⎛
⎝ 2I1(0)

√
ε0
μ0

1
λ

√
ε0
μ0

∫ ∞
−∞ du

|I1(u))2|√
1−u2 − ∫ ∞

−∞ dz E
sp
z H

sp∗
y

⎞
⎠

∗

, (5)

where

I1(u) =
∫ ∞

−∞
Esp

z e−ik0uzdz. (6)

B. Calculation of the SPP reflection coefficient

Figure 1 also schematically indicates the SPP reflection
process, which is considered next. It shows how a symmetric
SPP mode is incident from the left and propagates toward the
cavity termination on the right. Upon reflection from the end
face, a backward propagating SPP is generated together with
a continuum of forward propagating plane waves, Efs, outside
of the cavity. Again, we can write a continuity equation for the
electric field, which looks as follows:

(1 + r)Esp
z = Efs

z . (7)

By balancing the total Poynting flux through the y-z plane at
the cavity termination, we obtain

(1 + r)(1 − r∗)
∫ ∞

−∞
dz Esp

z

(
H sp

y

)∗

=
∫ ∞

−∞
dz Ef s

z

(
H fs

y

)∗
. (8)

Using the same simplifications as in the calculation of the ex-
citation coefficient, and expanding the free-space transmitted
electric field into a continuum of plane waves, we arrive at the
following expression for the reflection coefficient:

1 − r∗

1 + r∗ = 1

λ
√

μ0

ε0

∫ ∞
−∞ dz E

sp
z H

sp∗
y

×
∫ ∞

−∞
du

−|I1(u)2|√
1 − u2

. (9)

A detailed derivation of the reflection coefficient is included
in Appendix A.

C. Cavity properties

In this section, we discuss cavity properties of interest and
how they can be determined from the SPP behavior described
in the previous sections. One of the key properties of a cavity
that can be verified experimentally is the total transmitted

power through the cavity, Pout. This quantity can be derived
analogous to that of a conventional Fabry-Pérot cavity as41

Pout =
∣∣∣∣ teiβL

1 − r2e2iβL

∣∣∣∣
2 ∫ ∞

−∞
dz Esp

z H sp∗
y (1 − |r|2). (10)

The spectral behavior of Pout near a resonance can be
approximated by a Lorentzian line shape centered at an angular
frequency ω0 and whose full width at half maximum, �ω, is
determined by the optical quality factor for the cavity,

Q = ω0

�ω
. (11)

We can also define a transmission efficiency for a finite-length
cavity by normalizing Pout to the power coupled into a cavity
as

Teff =
∣∣∣∣ eiβL

1 − r2e2iβL

∣∣∣∣
2

(1 − |r|2). (12)

From Eq. (12), it can be seen that the cavity transmission
efficiency has a maximum when reiβL is purely real. This
resonance condition provides an expression for the resonance
length of the cavity:

Lres,m = mπ − φ

π

λSP

2
, (13)

where m = 1,2,3, . . . is the order of the resonance and φ is
the phase of the reflection coefficient such that r = |r|eiφ .

D. Origin of the reflection phase

The phase pickup on reflection is critically important when
determining the resonant wavelengths of the MDM cavity. The
origin of this phase pickup, which is present even in a perfect
electrical conductor (PEC),42 is related to the small metal-to-
metal spacing. When the size of the aperture is small compared
to the wavelength of light, there is a substantial transmission
to evanescent diffraction orders. This can be seen clearly if
we simplify Eq. (8). By substituting the expressions for the
free-space fields and normalizing the field profiles such that
the incident time-averaged SPP Poynting flux is unity, we find

(1 + r)(1 − r∗) = |(1 + r)|2
2λ

√
μ0

ε0

∫ ∞

−∞
du

|I1(u)|2√
1 − u2

. (14)

Splitting the reflection coefficient r into its real and imaginary
parts gives

r = rre + irim. (15)

Substituting for r on the left-hand side of Eq. (14) and
simplifying, we obtain

1 − |r|2 + 2irim = |(1 + r)|2
2λ

√
μ0

ε0

∫ ∞

−∞
du

|I1(u)|2√
1 − u2

. (16)

As expected, the real part of the integrated time-averaged
power flow through the interface, (1 − |r|2), corresponds to the
propagating (|u| � 1) field components. Also, the contribution
to the imaginary part of the reflection coefficient comes entirely
from the arm of the integral with |u| > 1, the evanescent
components. From the definition of time-averaged Poynting
flux,43 this is proportional to the difference between the stored
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magnetic and electric energies in the near field. We have for
harmonic time varying fields,

We = 1

4

∫
V

E · D∗dV (17)

Wm = 1

4

∫
V

B · H ∗dV (18)∮
C

S · ndA + 2iω(We − Wm) = 0, (19)

where We and Wm are the energies stored in the electric and
magnetic fields, respectively. S is the time-averaged Poynting
flux. Here V is the volume under consideration and C is
the area of the closed surface enclosing it with an outward
normal n. If the volume V is chosen as the semi-infinite
half-space ahead of the MDM structure, the imaginary part
of the Poynting flux has contributions only from the input face
(y-z plane) near the cavity termination. With this, we get

−2irim + 2iω(We − Wm) = 0, (20)

rimλ

2πc
= We − Wm = |1 + r|2ε0

4π

×
∫ ∞

u=1

|I1(u)|2√
u2 − 1

du. (21)

Even though the imaginary part of the reflection coefficient is
directly related to the difference in the electric and magnetic
energy, the quantity of interest in most situations is the total
near-field energy stored. High energy storage in the electric
near field could lead to a higher electric field intensity in the
near-field region of the cavity. Energy stored in the electro-
magnetic field is not usually an easy quantity to calculate, but
in this case we can easily decompose the total electromagnetic
field in front of the cavity into normal modes and sum
up the energy in each mode. The total energy, including
that of the propagating modes, is obviously infinite, but if
we only consider the near-field contribution we get, after a
straightforward calculation (for more details, see Appendix B),

We + Wm = |1 + r|2ε0

4π

∫ ∞

u>1

|I1(u)|2√
u2 − 1

×
(

1 + 1

u2 − 1

)
du. (22)

The integral blows up at u = 1 due to the second term in
the large parentheses. This term decays very fast for larger u,
contributing to the integral only very near u = 1, and hence
these correspond to waves with very slow spatial decay away
from the cavity. This energy contribution, though substantial, is
of limited interest as the fields are not localized near the cavity.
If we are only interested in the rapidly decaying high-intensity
near fields in front of the cavity, we can neglect that term and
write an approximate expression for the energy stored in the
near field of the cavity as

WNF ≈ |1 + r|2ε0

4π

∫ ∞

u=1

|I1(u)|2√
u2 − 1

du. (23)

This is equal to the difference in the stored electric and
magnetic energy. From Eq. (21), we can thus obtain a very

simple expression of the energy stored in the near field in
terms of the imaginary part of the reflection coefficient:

WNF = rimλ

2πc
. (24)

We find that the imaginary part of the reflection coefficient
is directly proportional to the near-field energy stored at the
cavity termination.

E. Model validation

The above-described intuitive model for MDM cavity res-
onances involves several simplifications in terms of the exact
field distributions throughout the structure. In order to have
complete field matching at all points along the cavity edges,
we need, in addition to the propagating modes in the cavity,
a continuum of evanescent modes that exist in the cavity as
well as laterally propagating (along the z direction) SPP modes
at the cavity edge surface.40 The simplification ignoring the
evanescent modes inside the cavity will lead to some error in
the field calculations, but since these modes are not expected to
transmit energy in the direction of propagation for sufficiently
long cavities, we expect that the energy-matching method
will lead to a reasonably accurate calculation of the relevant
quantities. Also, the generation of laterally propagating SPPs
is expected to be most efficient at higher dielectric thicknesses
than what is mostly considered in this study.44 It is expected
that the approximations made are more valid in cases in
which the metal properties and the structure dimensions favor
the simplifications involved. For example, ignoring the finite
penetration of the plane wave at the in-coupling face in the
transmission coefficient calculation will be a good approxima-
tion at longer wavelengths where the metal has a large negative
dielectric constant. In order to check the validity of the assump-
tions, for our cavity geometries and our choice of metal (Ag),
we compared the results with those obtained from full-field
finite-difference frequency domain (FDFD) simulations.45 In
all cases analyzed in Sec. III, we see excellent agreement
between the two, confirming the validity of the assumptions.

III. NUMERICAL RESULTS

In this section, we explore the dependence of the cav-
ity properties on the different cavity parameters, such as
dins, εm, L, λ, etc. This dependence is somewhat complicated
by the frequency dependence of the materials response. In
order to understand the effects of each of these variables
separately, we first look at the variation in the magnitude and
phase of the reflection coefficient with the normalized insulator
thickness dins

λ
for various wavelength-independent values of the

metal dielectric constant.
As shown in Fig. 2(a), the reflection coefficient magnitude

(|r|) increases as the cavity dielectric thickness is reduced,
and the metal dielectric constant moves toward resonance
(εm → −1). This can be attributed to two main factors: a
higher effective-index contrast due to the increasing gap SPP
mode index, and an increased mode mismatch due to tighter
vertical confinement of the mode. On the other hand, the phase
pickup on reflection, shown in Fig. 2(b), increases as the metal
properties move toward resonance and decreases on reducing
the cavity dielectric thickness.
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FIG. 2. |r| and φ (phase) for different values of εm as a function
of scaled dielectric thickness.

The electric energy stored is greater than the magnetic
energy as seen from the positive sign of rim (0 � φ � π ).
Thus the cavity end faces have associated with them a
finite capacitance, which originates from excitation of the
evanescent modes in the free-space region.

When the cavity thickness dins decreases, the near-field
energy stored is lower and the reflection phase decreases. For
real metals supporting SPPs, there is, in addition to the aperture
effect, a contribution from the evanescent nature of the SPP
mode profile into the metal. When |εm| decreases, the SPP
extends further into the metal, resulting in a higher coupling to
the free-space evanescent modes, and we get high near-field en-
ergy ahead of the cavity, which increases the reflection phase.

Next, we explore the reflection properties for a cavity
metal with wavelength-dependent material properties. The
calculations are done for silver (Ag), and its material properties
for the metal are taken from Rakic et al.46 In our study,
we consider Ag with and without loss. Lossless material
properties are obtained by considering only the real part of
the dielectric constant. Figure 3 shows the variation of the
reflection coefficient magnitude and phase as a function of
wavelength for different cavity dielectric thicknesses. The
lossless case is plotted with solid lines and the case with loss
is shown with dashed lines. Clearly evident is the presence
of two regimes in the variation of the reflection coefficient
magnitude as a function of wavelength. As seen in Fig. 3(a),
the cavity truncation becomes a better reflector near the
surface plasmon resonance frequency (short wavelength). On
increasing wavelength, |r| goes through a minimum, which
is the result of two competing factors that contribute to the
reflection. At short wavelengths, the rapid variation in the
mode index with wavelength due to a change in εm determines
the behavior of r . So |r| decreases with increasing wavelength.

FIG. 3. Reflection amplitude |r| and φ (phase) for an Ag-air-Ag
MDM structure as a function of wavelength for different dins values.
Solid lines: without loss. Dotted lines: with loss.

But for larger wavelengths, the cavity termination, which
acts as a radiating antenna, becomes less effective due to
the size mismatch between the free-space wavelength and
the SPP mode, increasing the reflection coefficient. Together,
these two competing factors result in a minimum in the
magnitude of the reflection coefficient. The introduction of
losses [dotted line in Fig. 3(a)] changes the short-wavelength
characteristics of the cavity. In a lossy MDM structure, the
mode index does not rise as high as in the lossless case
at short wavelengths. Consequently, the low index and the
decreased vertical confinement lead to a decrease in the
reflection coefficient magnitude. At longer wavelengths, losses
are negligible as the SPP mode is pushed out of the metal, and
the reflection characteristics are similar to the lossless case.
On the other hand, the reflection phase [Fig. 3(b)] decreases
monotonically with increasing wavelength and is larger for a
thicker insulating spacer in the cavity. The phase pickup is
almost unaffected by the introduction of losses in the metal,
even very close to the surface plasmon resonance frequency.
This fact is interesting from a device design perspective as it
facilitates easy design rules for resonant cavity devices without
introducing the complexity of loss at a given wavelength.

The near-field energy stored in front of the cavity, WNF,
is proportional to λrim. Figure 4 shows a plot of λrim as
a function of dins for different free-space wavelengths. We
see that for longer wavelengths, there exists a maximum in
the near-field energy. The near-field energy storage in front
of the cavity is the result of mode mismatch and coupling
to the evanescent modes. For a low reflection coefficient
with little mode mismatch there is very little energy stored
in the near field. Hence for large dielectric thickness with
low |r|, near-field energy storage decreases with increasing
dielectric thickness. The increase in near-field energy storage
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FIG. 4. rimλ for Ag-air-Ag cavity for different dins.

with wavelength in the large insulator thickness regime is also
the result of increasing |r|. But for small dielectric thickness,
the contribution from the evanescent mode profile is larger for
smaller λ, resulting in higher energy storage. The existence
of the maximum for a given wavelength allows us to tune the
cavity to have larger near fields at a wavelength of choice. This
can be of importance for applications where high local fields
are desired, such as surface plasmon Raman spectroscopy.
This maximum arises from a single reflection event at the
cavity termination and is different from the cavity resonance
of the finite-length cavity.

The transmission efficiency of the cavity, as defined in
Eq. (12), will be considered next. This quantity can be
obtained from experiments and is most directly linked to
the fundamental optical processes associated with the cavity.
Shown in Fig. 5 is the transmission efficiency of a lossy Ag
cavity as a function of wavelength for a dielectric thickness
dins = 20 nm and for different cavity lengths. The plot shows
the cavity resonances, which move to longer wavelengths as
the cavity length is increased. The results from full-field FDFD
calculations are also plotted in the figure, showing excellent
agreement with the analytical calculations.

The cavity resonance length (Lres) for different resonance
orders, as a function of dielectric thickness, is plotted in Fig. 6.
The good correspondence between the analytical calculation
and the full-field simulations confirms the validity of our
model for the considered parameters. From the figure it can
be seen that the resonant length calculations made by ignoring
the phase pickup on reflection (dotted lines) would result in
substantial error, especially at higher dielectric thicknesses.

dins 20 nm

FDFD

Theory

L    480nm     500nm             525nm

900 950 1000 1050 1100
0.0

0.5

1.0

1.5

2.0

Wavelength nm

T
ef

f

FIG. 5. Transmission efficiency (Teff) through an Ag-air-Ag
cavity for different cavity lengths (L) as a function of wavelength.

FIG. 6. Cavity resonance length as a function of dielectric
thickness for different orders. Free-space wavelength λ = 900 nm.
(Ag-air-Ag cavity with loss.)

Another interesting feature in the plots is the relatively weak
dependence of the resonance length on the dielectric layer
thickness for sufficiently large thicknesses (> 50 nm). This can
be understood from Eq. (13), which shows that the resonance
length is dependent on two factors: (i) the gap SPP wavelength
and (ii) the phase pickup on reflection. As the dielectric layer
thickness is increased, the gap SPP wavelength increases and
approaches that of the single interface mode. As the same
time, the reflection phase also increases. As the effects of an
increased wavelength and phase work in opposite directions,
the resonant length stays more or less the same.

As the dielectric thickness is reduced in an MDM cavity,
the symmetric SPP mode is more confined, resulting in a
very small mode volume. This is very advantageous for active
plasmonic devices, allowing, for example, efficient coupling
of quantum emitters to SPP gap modes in MDM cavities.7

Strong emission rate enhancement is also predicted even
for nonresonant conditions in an infinite-length MDM slab
geometry.47 The transmission cross section can be used to
calculate the quality factor (Q) of the finite-length MDM
cavities. Shown in Fig. 7 is a plot of Q versus cavity length
for different dielectric thicknesses at λ = 800 nm for an
Ag-air-Ag MDM cavity with metal losses included. The cavity
Q increases with length, showing evidence of being reflection
loss limited. This is true even for dielectric thickness as low as
10 nm with cavity lengths as large as 1500 nm, demonstrating
that propagation loss is not the dominating loss mechanism in
these cavities. This suggests the possibility of increasing the

           FDFD

Theory

10 nm

20 nm

dins 40 nm

Λ  800 nm

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

Cavity Length nm

Q

FIG. 7. Q factor of the cavity vs cavity length for different
dielectric thicknesses. Free-space wavelength λ = 800 nm. (Ag-Air-
Ag cavity with loss.)
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quality factor of these cavities further by end face shaping,
thus realizing very low reflection losses. Such a device will
exhibit larger Q/V values and enable very effective coupling
of optical emitters to a well-defined SPP mode.

IV. CONCLUSION

In conclusion, we have developed a fully analytical theory
for SPP resonances in finite-length MDM cavities. It builds on
previous results that indicate that a variety of wavelength-scale
plasmonic systems can be viewed as resonators for SPPs.23,24,28

Such a model requires knowledge of the basic optical proper-
ties of SPP modes supported by an extended MDM waveguide
and the SPP reflection and transmission properties at the termi-
nation of such a waveguide. We have presented an analytical
framework to determine these properties for cavities consisting
of real metals exhibiting loss and dispersion. Similar to what
was found for other wavelength-scale plasmonic cavities, these
calculations predict a substantial phase pick up by the SPP
upon reflection from the cavity end faces. We showed that the
origin of this phase pick up lies in the excitation of evanescent
modes in the free-space region just outside the cavity. Fur-
thermore, we found that the imaginary part of the reflection
coefficient is proportional to the energy storage in the near field
of the cavity termination. From the calculation of this phase
pick up, one can correctly predict both the position and shape
of the MDM cavity transmission resonances over a wide range
of wavelength and geometric parameters. The results agree
very well with full-field FDFD simulations. The dependence
of the quality factor on the length of the cavity shows that these
resonances are reflection loss limited even at very small dielec-
tric thickness and suggests the possibility of further improving
the quality factor of these resonances by end face shaping.

APPENDIX A: DERIVATION OF THE
REFLECTION COEFFICIENT

For calculating the reflection coefficient we primarily use
two boundary conditions; the continuity of the z-directed
electric field and the continuity of the total integrated x-
directed poynting flux. In all the derivations the fields are
invariant in y-direction and variation along x-direction is
implicit. With the same definitions as in the main text we
have for the continuity of the electric field,

(1 + r)Esp
z = Efs

z . (A1)

We also have from the continuity of the H-field,

(1 − r)H sp
y = H fs

y . (A2)

For the continuity of the x-directed poynting flux we have,∫
Scav

x dz =
∫

Sfs
x dz, (A3)

which gives

− (1 + r)(1 − r∗)
∫ ∞

−∞
Esp

z H ∗sp
y dz

= −
∫ ∞

−∞
H fs∗

y Efs
z dz. (A4)

Expressing the free space electric field in terms of Fourier
transformed quantities, we can write

Efs
z =

∫
f (kz)e

ikzzdkz (A5)

=
∫

f (u)eik0uzk0du. (A6)

substituting for Efs
z from Eq. (A1) and solving for f (kz), we

get

f (kz) = (1 + r)

2π

∫ ∞

−∞
Esp

z e−ikzzdz (A7)

= (1 + r)

2π

∫ ∞

−∞
Esp

z e−ik0uzdz (A8)

f (u) = 1 + r

2π
I1(u), (A9)

where kz = k0u and k0 = 2π
λ

with

I1(u) =
∫

Esp
z e−ikzzdz =

∫
Esp

z e−ik0uzdz. (A10)

We can now use Maxwell’s equations to derive H fs
y in terms

of the Fourier component terms as

H fs
y = −1

ωμ0

∫ ∞

−∞

(1 + r)I1

2π

k2
0e

ikzz√
k2

0 − k2
z

dkz. (A11)

Now, for the poynting flux balance we have∫
Sfs

x dz = −
∫

Efs
z H fs∗

y dz (A12)

= −(1 + r)
∫

Esp
z H fs∗

y dz. (A13)

Now substituting from Eq. (A11) and simplifying with
Eq. (A10), we get∫

Sfs
x dz = (1 + r)(1 + r∗)

2πωμ0

∫ |I1|2k2
0√

k2
0 − k2

z

dkz. (A14)

Finally, substituting this back on to Eq. (A4) and simplifying,
we get

(1 − r∗)

(1 + r∗)
= 1

λ
√

μ0

ε0

∫
E

sp
z H

∗sp
y dz

∫ −|I1|2√
1 − u2

du. (A15)

APPENDIX B: ENERGY STORED IN THE NEAR FIELD

The energy stored in the near field has contributions from
the electric and magnetic fields. For the energy stored in the
electric field, WE , we can write

WE =
∫

1

4
ε0|E|2dV (B1)

=
∫

1

4
ε0(|Ez|2 + |Ex |2)dV. (B2)
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From the derivation of the reflection coefficient, we have

Efs
z =

∫ ∞

−∞

1 + r

2π
I1e

ikzzei
√

k2
0−k2

z xdkz. (B3)

For the near fields, we have

Efs
zNF =

∫
k2
z >k2

0

1 + r

2π
I1e

ikzzei
√

k2
0−k2

z xdkz. (B4)

Also, from ∇ · E = 0

Efs
x = −

∫ ∞

−∞

1 + r

2π

I1√
k2

0 − k2
z

eikzzei
√

k2
0−k2

z xdkz, (B5)

Efs
xNF = −

∫
k2
z >k2

0

1 + r

2π

I1√
k2

0 − k2
z

eikzzei
√

k2
0−k2

z xdkz. (B6)

We can rewrite the expression for the near-field energy
using Fourier-transformed quantities,

WNF,E =
∫

1

4
ε0|ENF|2dV =

∫
1

4
ε0|ENF|2dxdz, (B7)

= 1

4π2

∫
1

4
ε0|F (ENF)|2dkxdkz. (B8)

For the Fourier transforms of the near fields, we have

F (ENF) =
∫ ∞

−∞
ENFe

ikxxeikzzdzdx. (B9)

Substituting from Eq. (B4) and writing ei
√

k2
0−k2

z as e−
√

k2
z −k2

0 ,
we get after simplification

F (EzNF ) = (1 + r)I1(kz)√
k2
z − k2

0 + ikx

, |kz| > k0,

= 0, |kz| < k0. (B10)

We can now calculate the energy stored in the nearfield in
Efs

z as

WNF,Efs
z

= ε0

16π2

∫
|F (EzNF)|2dkzdkx

= ε0|1 + r|2
16π2

∫ ∞

|kz|=k0

dkz

∫ ∞

kx=−∞
dkx

|I1(kz)|2
k2
z − k2

0 + k2
x

(B11)

= 2
ε0|1 + r|2

16π2

∫ ∞

kz=k0

dkz

∫ ∞

kx=−∞
dkx

|I1(kz)|2
k2
z − k2

0 + k2
x

(B12)

= ε0|1 + r|2
8π2

∫ ∞

kz=k0

dkz

|I1(kz)|2π√(
k2
z − k2

0

) (B13)

= ε0|1 + r|2
8π

∫ ∞

kz=k0

dkz

|I1(kz)|2√(
k2
z − k2

0

) . (B14)

Similarly for the Efs
x field we get

WNF,Efs
x

= ε0|1 + r|2
8π

∫ ∞

kz=k0

dkz

|I1(kz)|2k2
z(

k2
z − k2

0

)3/2 . (B15)

The calculation for the energy in the magnetic field can be
performed similarly, and we get

WNF,H fs
y

= ε0|1 + r|2
8π

∫ ∞

kz=k0

dkz

|I1(kz)|2k2
0(

k2
z − k2

0

)3/2 . (B16)

Now we can write the total energy in the near field as,

WNF = WNF,H
fs
y + WNF,E

fs
x + WNF,E

fs
z

= ε0|1 + r|2
8π

∫ ∞

kz=k0

dkz

|I1(kz)|2√
k2
z − k2

0

(
1 + k2

z + k2
0

k2
z − k2

0

)

(B17)

= ε0|1 + r|2
8π

∫ ∞

kz=k0

dkz

|I1(kz)|2√
k2
z − k2

0

(
2 + 2k2

0

k2
z − k2

0

)

(B18)

= ε0|1 + r|2
4π

∫ ∞

u=1
du

|I1(u)|2√
u2 − 1

(
1 + 1

u2 − 1

)
,

(B19)

Where u = kz

k0
.

Also from above, we can verify that

We − Wm = WNF,Efs
x

+ WNF,Efs
z

− WNF,H fs
y

= ε0|1 + r|2
4π

∫ ∞

u=1
du

|I1(u)|2√
u2 − 1

. (B20)
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