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Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling
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Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba
spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We
explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp
junctions as a concrete example. A real-space Green’s function formalism based on a tight-binding model is
adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based
on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to
indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation
are observed within the single-band n ↔ p transmission regime. The former comes from real-spin conservation,
in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall
mechanism of the Rashba coupling.
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I. INTRODUCTION

After the first successful isolation of monolayer graphene
(MLG) was announced,1 intriguing properties based on its
low-energy excitation that mimics massless, gapless, and chiral
Dirac fermions were intensively investigated.2,3 Spin-orbit
coupling (SOC), on the other hand, is the key ingredient
of semiconductor spintronics4,5 that was undergoing a rapid
development before the rise of graphene.6 The question about
the role of SOC effects in graphene then naturally emerged,
including the proposal of graphene as a topological insulator,7

which attracted the attention of various first-principles-based
studies.8–10

SOC in MLG includes an intrinsic and an extrinsic term.
The former reflects the inherent asymmetry of electron
hopping between next nearest neighbors7 (i.e., a generalization
of Haldane’s model11). The latter is induced by the electric
field perpendicular to the graphene plane, which can be
externally controlled, and resembles the Rashba model12,13

for the two-dimensional electron gas. Agreement has been
achieved, based on first-principles calculations,9,10 that the
intrinsic SOC term opens a gap of the order of 2λI ≈ 24 μeV,
while the Rashba SOC removes the spin degeneracy and
creates a spin-splitting 2λR at the K and K ′ points that has
a linear dependence on an external electric field E with the
slope of about 100 μeV per V/Å of E. Under a strong gate
voltage, the Rashba coupling may in principle dominate the
intrinsic SOC in MLG.9,10

The low-energy spectrum of MLG plus the Rashba coupling
(MLG + R) was derived by Rashba,14 based on the Kane-Mele
model7 (i.e., an effective Dirac Hamiltonian). An earlier work
by one of us15 started with a tight-binding model (TBM) and
obtained an equivalent form of the low-energy expansion,16

EMLG+R(q) ≈ μ 1
2 [

√
(3tR)2 + (3ta · q)2 + ν(3tR)], (1)

which also agrees with expressions given in Refs. 9 and 10
when λI = 0. Here μ,ν = ±1 are band indices, t and tR are
nearest-neighbor kinetic and Rashba hopping parameters, re-
spectively, a ≈ 1.42Å is the bonding length, and q = K + δk

with |δk|a � 1. Recall for comparison the low-energy spec-
trum of bilayer graphene (BLG),2,17

EBLG(q) ≈ μ 1
2

(√
γ 2

1 + (3ta · q)2 + νγ1
)
, (2)

where γ1 is the nearest-neighbor hopping between the two
graphene layers. Note that the next nearest-neighbor interlayer
hoppings γ3 and γ4 do not influence the band dispersion near
K . The completely different mechanisms of (i) pseudospin
coupling between carriers from the two graphene layers of
BLG through interlayer hopping γ1 and (ii) real-spin coupling
between up and down spins within MLG through Rashba
hopping tR happen to lead to an identical mathematical form in
Eqs. (1) and (2) that can be clearly mapped onto each other18,19

with γ1 ↔ 3tR as sketched in Fig. 1. This unambiguously
implies that low-energy physics in MLG + R and BLG should
behave similarly.

In this paper we tackle the question of whether the transport
in MLG + R behaves as in BLG by choosing the issue of
Klein tunneling2,3,20,21 (or, in general, chiral tunneling) as
a concrete example. Chiral tunneling in graphene has been
shown to exhibit completely different behavior in MLG and
BLG based on the Dirac theory.22 Tunneling at normal inci-
dence in MLG shows a suppression of backscattering, which
resembles the original Klein paradox in relativistic quantum
electrodynamics23 and hence the name Klein tunneling, while
in BLG it shows a perfect reflection, which is strictly speaking
a consequence of forbidden interband transition also due to the

γ1

tRγ1 3tR

K (K )

FIG. 1. (Color online) Schematic of the pseudospin coupling
through γ1 in BLG (left panel) and real-spin coupling through tR
in MLG (right), which lead to an identical low-energy dispersion
near K and K ′.
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chiral nature of graphene. The theoretical discussion of chiral
tunneling so far focuses mainly on spin-independent tunneling
through pn and pnp junctions,21,22,24–30 while SOC effects
are less discussed.18,31–33 In addition, the relevant theoretical
understanding so far is based on Dirac theory, which is valid
only for the Fermi level close to the charge neutrality point and
allows one only to consider certain relatively simple systems.
A recent study discussing the interplay between the Aharanov-
Bohm effect and Klein tunneling in graphene, started with a
TBM,34 but the nanoribbon type of the leads used in that work
may have edge effects included that can be very different from
the bulk properties of graphene. A more transparent theoretical
study of chiral tunneling in graphene directly bridging the
analytical Dirac theory and the numerical TBM computation
is so far missing and deserves consideration.

In the present work, we re-treat this issue of chiral
tunneling in graphene based on the TBM and show a unified
description, allowing for a broad range of geometries and
complementing the existing results based on the Dirac theory.
Straightforward generalization to the case of MLG + R reveals
a spin-dependent tunneling behavior in close analogy with
that in BLG, with the role of pseudospin in BLG replaced
by real spin in MLG + R. Specifically, a combined behavior
of spin-Hall-based spin separation and suppression of normal
transmission will be shown.

This paper is organized as follows. In Sec. II we briefly
summarize the theoretical formalism applied in the present
calculation, namely, real-space Green’s function formalism
in noninteracting bulk graphene. In Sec. III we show our
TBM results including the consistency with the Dirac theory, a
direct comparison between BLG and MLG + R, and a deeper
discussion of the MLG + R case. We review also briefly the
recent experimental progress on the Rashba spin splitting and
Klein tunneling in graphene in Sec. IV, and finally conclude
in Sec. V.

II. FORMALISM

A. Tight-binding model for “bulk” graphene

We choose the TBM for describing the electronic properties
of graphene, which is a well established way to treat graphene
numerically. For spin-degenerate MLG, the Hamiltonian reads

HMLG =
∑

i

Vic
†
i ci − t

∑
〈i,j〉

c
†
i cj , (3)

where the operator c
†
i (ci) creates (annihilates) an electron at

site i (including both sublattices A and B). The first sum in
Eq. (3) runs over all the atomic sites in the considered region
with on-site potential Vi , and the second sum runs over all
the pairs of neighboring atomic orbitals 〈i,j 〉 with kinetic
hopping parameter t (≈3 eV). The next nearest neighbor
kinetic hopping term, usually characterized by t ′ ≈ 0.1t , can
be added in Eq. (3) but will not be considered in the present
work due to the minor role it plays in the bulk transport
properties for low-energy excitation.

Spin-orbit interactions can be incorporated into the TBM
by altering the spin-dependent hopping between nearest and
next-nearest neighbors,7,35 modifying Eq. (3) as

HMLG+R =
∑

i

Viσ
0c

†
i ci +

∑
〈i,j〉

c
†
i [−tσ 0 + itR(�σ × dij )z]cj .

(4)

Here σ 0 is the 2 × 2 identity matrix, tR is the Rashba spin-orbit
hopping parameter, dij is the unit vector pointing from site j

to i, and �σ = (σx,σ y,σ z) is the vector of (real-) spin Pauli
matrices. We take into account only the extrinsic SOC and
neglect the intrinsic term in order to highlight the role of the
Rashba SOC.

For spin-degenerate BLG, we consider

HBLG =
∑

m=1,2

H(m)
MLG − γ1

∑
j

(b†2,j a1,j + H.c.), (5)

where H(m)
MLG is HMLG given by Eq. (3) of the mth graphene

layer, am,j (bm,j ) annihilates an electron on sublattice A

(B) in layer m = 1,2 at unit cell j (that contains two
sublattice sites belonging to A and B), and the interlayer
coupling strength γ1 ≈ 0.4 eV corresponds to the nearest
neighbor hopping between the two MLG layers. Further
interlayer hopping terms,2 −γ4

∑
j (a†

2,j a1,j + b
†
2,j b1,j+ H.c.)

and −γ3
∑

j (a†
2,j b1,j+ H.c.), are not considered in the present

calculation, since they do not influence the low-energy exci-
tation. Throughout the presentation of the numerical results
in Sec. III, the kinetic hopping parameters will be fixed at
t = 3 eV and γ1 = 0.39 eV, while the value of the Rashba
hopping parameter tR depends on the context.

For the simulation of bulk graphene, we impose the Bloch
theorem along the transverse direction with periodicity W .
This is equivalent to considering a nanoribbon and modifying
the hopping between atomic sites connected through the peri-
odic boundary conditions by a Bloch phase factor eikBW with
a Bloch momentum kB ,36 as schematically shown for MLG in
Fig. 2. At the same time the Bloch momentum is the component
of the electron’s momentum perpendicular to the nanoribbon,
hence defining the propagation angle φ = sin−1(kB/kF ),
where kF is the Fermi wave vector. To be consistent with
the literature related to Klein tunneling based on the Dirac
theory, in Sec. III we will refer to the Bloch momentum as ky .

In the present calculations, we will apply a minimal TBM
by imposing the periodic boundary conditions on a zigzag
nanoribbon with chain number Nz = 2, that is, periodicity
of W = 3a (as the case sketched in Fig. 2). The present
model applies equally well for metallic armchair ribbon (chain

eikyW eikyW eikyW

· · ·

L lead

eikyWeikyWeikyW

· · ·

R lead

eikyW eikyW eikyW eikyW eikyW

S region

FIG. 2. Schematic of a minimum tight-binding model that sim-
ulates a bulk MLG up to nearest neighbor hoppings with W = 3a.
Further nearest neighbor hoppings can be accounted for by enlarging
the transverse periodicity W to at least 6a.
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number Na being a multiple of 3) with periodic boundary
conditions, but the minimal model would require Na = 3 (i.e.,
periodicity of W = 3

√
3a).

B. Brief summary of real-space Green’s function formalism

We consider open systems connected to the outer world by
two leads (see Fig. 2). According to the real-space Green’s
function formalism37 we numerically calculate the Green’s
functions of our system,

G
r/a

S = [E − HS − �r/a ± iη]−1, (6)

where the self-energies of the leads (�r/a = �
r/a

L + �
r/a

R )
reflect the fact that our system is open. The powerful recipe
constructed in Ref. 36 for graphene handles a lead as a semi-
infinite repetition of unit cells and allows for incorporating
any kind of lattice structure and one-body interaction such as
SOCs. The transmission probability for an electron traveling
from lead L to lead R is given by the Fisher-Lee relation,36,37

TRL = Tr
(

LGr

S
RF a
S

)
, (7)

where the trace is done with respect to the lattice sites.
The spectral matrix functions 
L/R are given by the lead
self-energies as 
L/R = i(�r

L/R − �a
L/R).

For a given Bloch momentum ky and a given Fermi energy
EF [subject to a Fermi wave vector kF via Eq. (1) for MLG + R
or Eq. (2) for BLG], the incoming propagation angle φ of
the electron wave can be defined as φ = sin−1(ky/kF ). The
angle-dependent transmission function T (φ) is obtained from
Eq. (7), which can be generalized to a spin-resolved version.38

III. TRANSPORT RESULTS

In this section we present numerical results of our tight-
binding transport calculations. We first show the consistency of
our tight-binding calculations with the existing effective Dirac
theory in Sec. III A. A direct comparison between BLG and
MLG + R will then be shown in Sec. III B. Finally, Sec. III C
is devoted to MLG + R for pn junctions, in particular the role
of Rashba SOC for chiral tunneling.

A. Consistency with Dirac theory

We first consider tunneling in graphene without SOC and
confirm existing results, limited to low-energy excitations,
by our tight-binding calculations. We pick two pioneering
theoretical works to demonstrate the consistency explicitly.
Consistency with recent works of tunneling in graphene
heterojunctions in the presence of SOC18,31 has also been
checked, but is not explicitly shown here.

1. Chiral tunneling in MLG vs BLG

Tunneling in MLG and BLG behaves quite differently as
mentioned in Sec. I and pointed out by Katsnelson et al.22

For a quantitative comparison we consider a barrier of width
D = 100 nm and the incoming Fermi wave vector kF =
2π/50 nm−1 as in Ref. 22 for both MLG and BLG [see
Figs. 3(a) and 3(c)]. Note that in order to exactly match the
barrier width, we set the bonding length a = (4

√
3)−1nm,

which differs from the realistic value of about 1.42 Å by

EF
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top view
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FIG. 3. (Color online) Tunneling through a barrier for (a), (b)
MLG with EF = 3takF /2 = 81.6 meV and (c), (d) BLG with EF =
(3takF /2)2/γ1 = 17.1 meV. In (b), red (light gray) and blue (dark
gray) curves correspond to V0 = 196.8 meV and V0 = 280.3 meV,
respectively. In (d), red (light gray) and blue (dark gray) curves
correspond to V0 = 48.7 meV and V0 = 100.7 meV, respectively.
In both cases the barrier width is D = 100 nm and the incoming
Fermi wave vector is kF = 2π/50 nm−1, as considered in Ref. 22.

only less than 2%, so that the number of hexagons used here
amounts to D/(

√
3a) = 4 × [D]nm = 400.

The resulting transmission probabilities as a function of
the incident angle φ are depicted in Figs. 3(b) and 3(d). They
reproduce the results of Fig. 2 in Ref. 22 almost perfectly,
if we choose slightly different EF and V0, to which the
transmissions at finite angles are sensitive. The remaining tiny
difference between our TBM results and their Dirac theory
results39 simply reflects the basic difference between the two
approaches: For graphene the effective Dirac theory is valid
only for energies close to the Dirac point, while the TBM is
suitable for the entire energy range.

Note that the maximal values of the transmission functions
in Fig. 3 are 2, since the valley degeneracy is automatically
incorporated in the tight-binding formalism. Later when we
take spin also into account, the maximum of the transmission
function will be 4. The transmission probabilities calculated
by the Dirac theory always have their maximum of 1 due to the
normalized incoming wave, unless a proper degeneracy factor
is taken into account.

2. Klein tunneling in MLG: Sharp vs smooth interface

Tunneling in MLG through a pn junction exhibits proba-
bility one at normal incidence and is called Klein tunneling.
In experiments, a graphene pn junction can be realized by
using a backgate, which tunes the carrier density (and hence
the Fermi level) globally, and a topgate that tunes locally the
carrier density, equivalent to the potential step V0 at the other
side.40 The carrier densities on the two sides can be controlled
to be of opposite signs, forming the pn junction. In between,
however, the variation of the carrier density is never abrupt
in reality. Cheianov and Fal’ko showed, based on the Dirac
theory, that the interface of the pn junction actually matters.24

They considered symmetric pn junctions (i.e., V0 = 2EF ) with
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Eq. (8)
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FIG. 4. (Color online) Klein tunneling in MLG through a pn
junction with a (a) sharp and (b) smooth interface. (a) Comparison
between TBM (dashed line) and Eq. (8) [solid green (gray)] showing
perfect agreement (EF = 80 meV). (b) Comparison between TBM
(long and short dashed) and Eq. (11) [solid green (light gray) and
red (dark gray)] for kF d ≈ 6.16 (EF = 200 meV) and kF d ≈ 1.54
(EF = 50 meV), respectively.

sharp and linearly smooth interfaces, which we briefly review
and compare with our TBM results in the following.

a. Sharp interface. For a symmetric pn junction with a
sharp interface [see the schematic in Fig. 4(a)], the transmis-
sion probability as a function of φ was written as24

T (φ) = cos2 φ, (8)

which does not depend on the potential step height. This
surprisingly simple expression matches our TBM result always
perfectly as long as V0 = 2EF , as shown in Fig. 4(a).

For a step potential with arbitrary height V0 
= 2EF , the
transmission probability as a function of the incident angle φ

and the outgoing angle θ can be derived as

T (φ,θ ) = 2 cos φ cos θ

1 + cos(φ + θ )
, (9)

which agrees with our TBM calculation equally well as the
symmetric case (not shown). The two angles φ and θ are
connected to each other due to conservation of transverse
momentum by

sin θ = s
|EF |

|EF − V0| sin φ, (10)

where s = +1 for nn′ or pp′ and −1 for np or pn. Equation (9)
clearly recovers the symmetric pn junction case of Eq. (8)
when choosing s = −1 and V0 = 2EF in Eq. (10). Note that
in the case of |EF − V0| < |EF |, the Fermi wave vector in the
outgoing region is shorter than that in the incoming region,
and an additional constraint for φ has to be applied to ensure
| sin θ | � 1 [i.e., φ � |φc| with φc = sin−1(|EF − V0|/|EF |)].

Previously it has been stated that the single-valley Dirac
picture, based on which Eqs. (8) and (9) are derived, is
not equivalent to the TBM.41 The difference in their work,
however, becomes noticeable only when the distance between
one of the involved energies and the Dirac point exceeds
roughly 300 meV. In our simulation, indeed the deviation for
the symmetric pn junction case with, say EF = 300 meV,
is less than 0.5%. The agreement of our TBM and the Dirac

theory therefore confirms that the intervalley scattering, which
is mainly responsible for the nonequivalence at high energies,
is indeed negligible.

b. Smooth interface. For symmetric pn junctions with
a linearly varying region of width d [see the schematic
in Fig. 4(b)], the analytical derivation for the transmission
probability within the Dirac theory yields24

T (φ) = exp

(
−π

kF d

2
sin2 φ

)
(11)

for kF d � 1.42 This formula, together with the validity
criterion kF d � 1, are tested by our tight-binding calculations
shown in Fig. 4(b), where two sets of parameters are con-
sidered. For kF d ≈ 6.16 we find very good agreement with
Eq. (11), while the result for kF d ≈ 1.54 exhibits noticeable
deviations from the analytical prediction at large angles |φ|.
The smoothing function was assumed in their work as linear
but the reality might be much more complicated, which is then
not accessible by the Dirac theory but again straightforward
by our tight-binding calculation. Nevertheless, the exponential
form of Eq. (11) is still a good description regardless of the
actual form of the smoothing function, as we have numerically
checked. What really matters is only the product kF d.

Unlike the sharp pn interface, a compact form of transmis-
sion probability for the asymmetric case does not exist so far.

B. pn junction: BLG vs MLG + R

We next show the direct correspondence between BLG and
MLG + R by considering exactly the same potential barrier
and incident Fermi energy as in Fig. 3(d) for BLG, and set
3tR = γ1 = 0.39 eV for MLG + R here. (A discussion with
weaker, realistic tR will be continued in the next section.)
The total transmission shown in Fig. 5 for MLG + R indeed
resembles the curves in Fig. 3(d) for BLG, as expected due
to the identical form of their low-energy dispersions (1)
and (2). The most important feature of chiral tunneling in
BLG, forbidden normal transmission, now appears also in the
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FIG. 5. (Color online) (a) Angle-resolved total transmission T

for tunneling through a pnp junction in MLG + R with the same
barrier height V0, barrier width D, and Fermi energy EF as used in
Fig. 3(d) for BLG, and a substitution 3tR = γ1 = 0.39 eV. (b) and
(c) show spin-resolved transmission probabilities for V0 = 48.7 meV
and V0 = 100.7 meV, respectively.
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case of MLG + R. In BLG, T (φ = 0) = 0 was understood as
the consequence of pseudospin conservation. For MLG + R,
T (φ = 0) = 0 can be expected as the consequence of real-spin
conservation. Indeed, this can be demonstrated by computing
the nonequilibrium local spin density, which can be obtained
from the lesser Green’s function,43 considering two cases, 0 <

EF < 3tR and −3tR < EF < 0, both with ky = 0. Within this
single-band transmission, the local spin densities for positive
and negative EF point to opposite directions, indicating that
normal incidence transmission between n and p regions will
be forbidden.

Next we discuss the spin-resolved transmission. The quan-
tization axis is chosen as the out-of-plane direction, so that
the transmission of, for example, T↓↑ means the probability of
an incoming +Sz electron ending up as an outgoing −Sz one.
Since the incoming angle dependence φ of the transmission
probabilities are analyzed, we define T↑ = T↑↑ + T↓↑ as the
transmission ability of the +Sz electron (or ↑ spin), and vice
versa. (Alternatively, one can also analyze the outgoing angle
dependence and define T↑ as T↑↑ + T↑↓, not used here. Either
way, the total transmission

∑
σ,σ ′=↑,↓ Tσσ ′ = T↑ + T↓ = T is

ensured.)
The choice of quantization axis z is not necessary but

facilitates relating the present spin-dependent tunneling in
MLG with the issue of intrinsic spin-Hall effect previously
discussed in semiconductors. The spin-resolved transmission
curves shown in Fig. 5 exhibit opposite lateral preference of
the ↑ and ↓ electron spins, which is an intrinsic spin-Hall
mechanism due to the Rashba SOC. In a semiconductor
two-dimensional electron gas (i.e., a continuous system rather
than discrete as in the TBM), such an intrinsic spin-Hall
deflection of opposite Sz electrons can be easily explained
by the concept of a spin-orbit force based on the Heisenberg
equation of motion,44,45

Fso = m

ih̄

[
1

ih̄
[r,H],H

]
= 2mα2

R

h̄3 (p × ez)σ
z. (12)

Here H = p2/2m + (αR/h̄)(pyσ
x − pxσ

y) is the continuous
two-dimensional Hamiltonian with Rashba SOC, r and p
are the position and momentum operators, αR is the Rashba
coupling parameter (rather than the hopping one, tR), and σ z is
the sign of the Sz spin component. The T↑ and T↓ curves shown
in Fig. 5 therefore reveal a combined effect of forbidden normal
transmission due to conservation of real spin and the intrinsic
spin-Hall deflection that can be understood by Eq. (12).

A few remarks are due before we move on. To connect
BLG with MLG + R we put 3tR = γ1 = 0.39 eV, which is
apparently far from reality. In general the Rashba splitting
induced by electrical gating is roughly of or less than the order
of 100 μeV (see Sec. IV). Fermi energy lying within this
splitting, which is also our main interest, projects to a much
shorter Fermi wave vector kF , leading to a much longer d up to
a few or a few tens of microns in order for kF d � 1 to be valid.
This implies that the influence of the interface on the tunneling
in MLG + R is normally negligible, unless d is that long. In
addition, tunneling through a pnp junction will also require
a long barrier width D for electrons subject to such a short
kF ; otherwise, the barrier is merely a weak perturbation to the
electron due to its long Fermi wave length. Based on these

EF

−240 −30 60 150 360
0

1

2

V0 (μeV)

T

FIG. 6. (Color online) Transmission T at normal incidence (ky =
0) as a function of potential step height V0 for tunneling through a
pn junction in MLG + R. The leftmost solid band diagram above the
main panel corresponds to the incoming n side. The five ticks on the
V0 axis correspond to the above five dashed band diagrams for the
outgoing side.

remarks, we will focus in the next section only on pn junctions
in MLG + R with a reasonable Rashba hopping parameter.

C. pn junction in MLG + R

In the following we demonstrate in detail the role of Rashba
SOC in tunneling through a potential step in MLG + R. The
Rashba hopping parameter will be fixed to tR = 30 μeV and
the Fermi energy in most cases to EF = 2tR , which lies within
the spin-orbit splitting 3tR (see Fig. 1).

1. Normal incidence

We begin with the case of normal incidence, ky = 0.
In Sec. III B we have discussed the one-band transmission
selection rule (i.e., n ↔ p transmission is forbidden). The
transmission from the left side at Fermi energy 0 < EF < 3tR
to the right side with potential V0 is expected to be zero
whenever a single-band n → p transmission is attempted.
Indeed, as shown in Fig. 6, a zero transmission gap of T

as a function of V0 is found. The gap lies in the interval
of EF < V0 < EF + 3tR , corresponding to the single-band
n → p transmission. Note that contrary to the valley-valve
effect in zigzag nanoribbons,46–48 the gap shown here arises
solely due to a bulk property.

2. Angle- and spin-resolved transmission

We proceed with angle- and spin-resolved transmission
and consider first the trivial case with EF = 0.5 meV well
above the Rashba splitting 3tR = 90 μeV, as shown in Fig. 7.
In this case the maximum of T = T↑ + T↓ is 4 since two
spin subbands and two valleys are involved in transport.
The total transmission curve resembles the expected cos2 φ

behavior as discussed in Sec. III A 2, showing that the Rashba
effect plays only a minor role. The spin-resolved T↑ and
T↓ curves differ only slightly at |φ| = sin−1(kin

F /kout
F ) ≈ 56◦,

where kin
F and kout

F are the inner and outer radius of the
two concentric Fermi circles, respectively. Tunneling in BLG
with EF well above γ1 behaves similarly (i.e., the interlayer
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FIG. 7. (Color online) Angular dependence of total (T ) and spin-
resolved (T↑ and T↓) transmissions for EF = 0.5 meV well above the
Rashba splitting 3tR = 90 μeV.

coupling γ1 in BLG no longer plays an important role in
the process of chiral tunneling when the transport occurs at
EF � γ1), as we have numerically checked. In other words,
the chiral tunneling in BLG with EF � γ1 and in MLG + R
with EF � 3tR recovers the Klein tunneling behavior as
in MLG.

Of particular interest is the nontrivial case with |EF | < 3tR .
As a test, we first consider V0 = 0 as shown in Fig. 8(a). In the
absence of the potential step, the total transmission function
T reaches its maximum of 2 (one spin subband times valley
degeneracy of two) for any angle φ, as it should. The opposite
lateral deflection tendency of the ↑ and ↓ spins is again clearly
seen and can be explained based on Eq. (12) as discussed in
Sec. III B.

The most important case is that of Fermi energy EF ∈
(0,3tR) and potential height V0 ∈ (EF ,EF + 3tR). A specific
example with V0 = 100 μeV is shown in Fig. 8(b), which
exhibits the combined effect of the forbidden normal trans-
mission [T (φ = 0) = 0] and spin-Hall deflection. The number
of high transmission peaks is always two.49 Compared to
the previous trivial case (EF > 3tR; Fig. 7) where T↑ and
T↓ do not significantly differ, the separation of the opposite
↑ and ↓ spins is distinctly enhanced. Whether this could
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FIG. 8. (Color online) Angular dependence of total and spin-
resolved transmissions through a pn junction in MLG + R with (a)
zero potential and (b) finite potential. Parameters used are given
above.

be a new type of intrinsic spin-Hall mechanism in graphene
deserves a further investigation, and is left as a possible future
direction.

We summarize the discussion of angle- and spin-resolved
transmission by mapping T (φ,V0) in Fig. 9. Four different
transport regimes can be identified:

(1) V0 < 0, single n band to single/multiple n band(s)
transmission regime.

(2) 0 < V0 < EF , single n band to single n band transmis-
sion regime; distinct spin-resolved T↑ and T↓, and high total
T limited by a critical angle φc = sin−1(|EF − V0|/|EF |).

(3) EF < V0 < EF + 3tR , single n band to single p band
transmission regime; combined effects of forbidden normal
transmission and spin-Hall deflection.

(4) V0 > EF + 3tR , single n band to multiple p bands
transmission regime.

Note that a vertical scan in Fig. 9 at φ = 0 corresponds to
Fig. 6, and horizontal scans at V0 = 0 and V0 = 100 μeV to
Figs. 8(a) and 8(b), respectively. These four regimes will be
helpful in the following discussion of conductance.

3. Integrated conductance

Finally, we calculate the conductance of the pn junction
in MLG + R by integrating T (φ), or equivalently, T (ky), with
respect to the transverse Bloch momentum,

G = e2/h

2kF

∫ kF

−kF

T (ky)dky, (13)

where the prefactor ensures the maximal value of the
Landauer-Büttiker-type ballistic conductance to be e2/h times
the maximal number of modes.37 We compare the conductance
of the pn junction in MLG (tR = 0) and in MLG + R (tR =
30 μeV) as a function of the potential step height V0, as shown
in Fig. 10. Since the Fermi level is fixed to EF = 60 μeV for
both cases, the transport for tR = 0 will involve two spin and
two valley degeneracies, leading to the maximal G of 4e2/h,
while in the case of tR = 30 μeV only one spin subband is
projected, leading to the maximal G of 2e2/h. The maximal
G occurs always at V0 = 0 that corresponds to an ungated
clean bulk graphene. Zero conductance, on the other hand,
occurs at V0 = EF since no states at the outgoing region are
available at this charge neutrality point.

Different transmission regimes can be distinguished based
on our previous discussion for Fig. 9. For V0 ∈ [0,60] μeV
(n → n transmission), the rise of V0 shrinks the Fermi circle at
the outgoing region and hence introduces a critical transverse
momentum, outside which the transmission is suppressed
due to the lack of outgoing states. The critical transverse
momentum reduces linearly with V0 for MLG due to the linear
dispersion. The conductance G, Eq. (13), therefore reduces
also linearly with V0. In the presence of the Rashba SOC,
the low-energy dispersion becomes quadratic, and so does the
reduction of G with V0 in MLG + R.

For V0 ∈ [60,150] μeV (n → p transmission), the conduc-
tance of MLG rises faster than that of MLG + R, possibly due
to the help of Klein tunneling. At V0 = 150 μeV, a sudden
jump (or a shoulder) occurs in the case of MLG + R since the
second spin subband at the outgoing region starts to participate
in transport. This jump does not occur in the MLG case
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FIG. 9. (Color online) Transmission through a pn junction in MLG + R as a function of incident angle φ and potential step height V0.
Four transmission regimes can be distinguished: (i) V0 < 0, (ii) 0 < V0 < EF , (iii) EF < V0 < EF + 3tR , and (iv) V0 > EF + 3tR , with
EF = 60 μeV and 3tR = 90 μeV.

since both spin subbands are always degenerate. An earlier
related work based on Dirac theory considered both intrinsic
and Rashba SOCs.18 The V0 dependence of G for the Rashba
dominated case in that work agrees well with the MLG + R
curve shown in Fig. 10, including the shoulder.

IV. EXPERIMENTAL ASPECTS

A. Rashba spin splitting in graphene

Whereas the Rashba spin splitting in MLG induced by an
applied electric field is in general in the order of no more
than 100 μeV, which is beyond the present resolution of
angle-resolved photoelectron spectroscopy (ARPES), direct
experimental observation of the Rashba spin splitting at K

and K ′ in agreement with the first-principles calculations9,10

is so far not reported. An earlier experiment on epitaxial
graphene layers on a Ni(111) surface reported a large Rashba
interaction50 up to 225 meV but was soon questioned since
the splitting might simply reveal a Zeeman-type splitting
due to the ferromagnetic nature of nickel.51 An intercalated
Au monolayer between the graphene layer and the Ni(111)
substrate reduced the splitting to about 13 meV and was
concluded as the Rashba effect on the π states supported
by spin-resolved ARPES.52 However, the low-energy band
structure of MLG + R at that time was not yet clear, and
a simplified picture was adopted in the explanation of the
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h
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0
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MLG+R (tR = 30 μeV)

FIG. 10. (Color online) Integrated conductance of the ballistic pn
junction in MLG with tR = 0 and MLG + R with tR = 30 μeV.

measured spin splitting. In addition, transport properties of
graphene based on metallic substrates can be difficult to isolate
since a large bulk current will interfere as background.53

Throughout the above calculations we have mostly focused
on a rather weak Rashba hopping parameter tR = 30 μeV,

yielding a splitting at the K and K ′ points 3tR = 90 μeV,
which is a realistic and rather conservative estimate for the
gate-voltage-induced Rashba SOC strength. A recent proposal
of impurity-induced SOC in graphene,54 however, indicated
that the coupling strength can be strongly enhanced by putting
heavy adatoms55 as well as by hydrogenation.54,56

B. Klein tunneling in MLG

Indirect and direct experimental evidences of Klein tun-
neling in MLG have been reported recently.57,58 For detailed
reviews, we refer to Refs. 2,3,20,21 and 59. A very recent
experiment on transport through a pn junction in MLG used
an embedded local gate, which yields high quality ballistic
transport and perfectly independent control of the local carrier
density, as well as the feature of Klein tunneling.60

Recall the tR = 0 curve of conductance for MLG shown
in Fig. 10. Overall, the conductance for n → n transmission
with V0 < 0 is always higher than that for n → p transmission
with V0 > EF . Even though Klein tunneling leads to perfect
transmission at normal incidence in the latter case, the decay
of T with incident angle eventually yields a lower conductance
after integration. This feature has been agreed in recent
experiments for pn and pnp junctions in MLG.40,57,58,60–64 The
difference of the conductance, or equivalently the resistance,
between the nn and np (or between pp and pn) in experiments
is even more obvious possibly due to the smooth interface
that leads to an exponentially decaying form of T ,24 as we
have reviewed and discussed in Sec. III A 2. In fact, for MLG
we have numerically checked G for pn junctions with a
smooth interface, which indeed can enhance the difference
of G between the nn and np regimes.

Another interesting feature so far experimentally reported
only in Refs. 58 and 60 is the Fabry-Perot oscillation of the
conductance for pnp junctions due to the interference between
the two interfaces of the central barrier. This feature requires
the system to be ballistic and can be naturally revealed by our
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tight-binding transport calculation, which we will elaborate
elsewhere in the future.

V. CONCLUSION AND OUTLOOK

In conclusion, we have employed tight-binding calculations
to show that transport properties of MLG + R behave as BLG
due to their identical form of the low-energy dispersion, choos-
ing the chiral tunneling in pn and pnp junctions as a concrete
example. Within single-band transmission, normal incidence
transmission through a pn junction in BLG with |EF | < γ1

is forbidden as a consequence of pseudospin conservation,22

while in MLG + R with |EF | < 3tR this forbidden transmis-
sion also occurs but as a consequence of real-spin conservation.
In mapping the angle- and spin-resolved transmission for
the MLG + R case, a combined effect of forbidden normal
transmission and intrinsic spin-Hall deflection is revealed
[Fig. 8(b)]. Compared to the potential-free spin-Hall deflection
case as shown in Fig. 8(a), where T↑ = T↓ = 1 at φ = 0, the
effect of the pn junction seems to force the up and down spins
to separate since T↑ = T↓ = 0 at φ = 0. The feature revealed
in Fig. 8(b) may therefore suggest a new type of intrinsic
spin-Hall mechanism in MLG.

Within multiband transmission, however, the Rashba SOC
in MLG no longer plays an important role when |EF | � 3tR
(Fig. 7). Likewise, the interlayer hopping γ1 in BLG becomes

unimportant when |EF | � γ1 . Transport in both MLG + R
with |EF | � 3tR and BLG with |EF | � γ1 recovers to that
in MLG, despite the usually very different energy scales
of 3tR and γ1. In view of the distinct transmission patterns
in MLG + R with |EF | < 3tR [Fig. 8(b)] and |EF | � 3tR
(Fig. 7), as an interesting conjecture for the BLG case one
expects very different scattering regimes for |EF | < γ1 and
|EF | � γ1. The former is well discussed in the literature
and exhibits strong scattering [Fig. 3(d)] while the latter is
less discussed and the scattering is expected to be strongly
suppressed.

MLG and BLG are known to behave quite differently in
general, in the sense of single-band transmission. Whereas
turning MLG directly into BLG is in principle not possible,
steering MLG to MLG + R can be achieved simply by gating,
and therefore the effect of Rashba SOC provides a possibility
to continuously change the MLG-like transport properties to
BLG-like properties. We expect further transport properties to
behave similarly in BLG and in MLG + R, such as the quantum
Hall effect,65 as was also noted by Rashba.14
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62B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S.

Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
63G. Liu, J. Velasco, Jr., W. Bao, and C. N. Lau, Appl. Phys. Lett. 92,

203103 (2008).
64N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat,

K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero,
Science 334, 648 (2011).

65K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

085406-9

http://dx.doi.org/10.1088/0268-1242/24/6/064006
http://dx.doi.org/10.1088/0268-1242/24/6/064006
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1016/j.ssc.2008.09.013
http://dx.doi.org/10.1016/j.ssc.2008.09.013
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1103/PhysRevB.73.075303
http://dx.doi.org/10.1103/PhysRevB.71.241305
http://dx.doi.org/10.1103/PhysRevB.72.075335
http://dx.doi.org/10.1103/PhysRevB.72.075335
http://dx.doi.org/10.1142/S0217979202014917
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1103/PhysRevB.77.233402
http://dx.doi.org/10.1103/PhysRevB.77.233402
http://dx.doi.org/10.1103/PhysRevLett.100.107602
http://dx.doi.org/10.1103/PhysRevLett.100.107602
http://dx.doi.org/10.1103/PhysRevLett.102.057602
http://dx.doi.org/10.1103/PhysRevLett.101.157601
http://dx.doi.org/10.1103/PhysRevLett.101.157601
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1103/PhysRevX.1.021001
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140458
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140458
http://dx.doi.org/10.1088/0957-4484/22/41/415203
http://dx.doi.org/10.1103/PhysRevLett.98.236803
http://dx.doi.org/10.1103/PhysRevLett.99.166804
http://dx.doi.org/10.1063/1.2928234
http://dx.doi.org/10.1063/1.2928234
http://dx.doi.org/10.1126/science.1211384
http://dx.doi.org/10.1038/nature04233

