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We show that the free-carrier absorption in quantum cascade lasers (QCLs) is very small and radically
different from the classical Drude result due to the orthogonality between the direction of the carrier free motion
and the electric field of the laser emission. A quantum mechanical calculation of the free-carrier absorption
and intersubband oblique absorption induced by interface defects, Coulombic impurities, and optical phonon
absorption/emission is presented for QCLs with a double-quantum-well design. The interaction between the
electrons and the optical phonons dominates at room temperature.
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I. INTRODUCTION

Quantum cascade lasers (QCLs) are unipolar structures
where the lasing action takes place between the conduction
subbands of biased multi-quantum-well structures.1–3 So far,
the THz QCL operates only in a limited temperature range
and the search for improved structures is being pursued
worldwide.4–8 Among the possible reasons for the degradation
of performance are the depopulation of the upper levels
(nonradiative escape) and the reabsorption of the laser photons,
which is a widely studied topic.9–13 The reabsorption is
unavoidable because of the free carriers, in particular those
that occupy the upper subband of the lasing transition. The
free-carrier absorption (FCA) is well documented in bulk
material where a quantum mechanical calculation14 leads to
a free-carrier absorption coefficient that closely resembles
the semiclassical Drude result.15,16 The extrapolation of the
Drude model from bulk materials to the THz QCL leads
to a free-carrier absorption of the order of 102 cm−1, i.e.,
comparable or larger than actual QCL gains at 2 THz.17–19

Such large free-carrier absorption would jeopardize the future
use of QCLs. It was, however, shown20 in a midinfrared
QCL that the free-carrier absorption plays a small role in
the actual laser losses. A calculation21 of FCA induced by
interface roughness in single quantum wells does predict a
small absorption coefficient. Another similar calculation of
FCA in quasi-two-dimensional (quasi-2D) systems has been
realized in the presence of acoustical phonons.22

It is important to stress that there exists a conceptual
difficulty inherent to the wave propagation direction when dis-
cussing the free-carrier absorption in actual cascade structures.
The electric vector of the light emitted by the QCL is directed
along the growth direction, which we will take here parallel to
the z axis. The electron states are quasi-2D with bound states
along z and extended states along the x and y directions. As
a result of this configuration, the widely used Drude model to
handle free-carrier absorption is genuinely inapplicable to the
QCL (Fig. 1) since the carrier free motion occurs in a plane
perpendicular to the electric field, thereby making it impossible
to rely on a −e �E term in the Newton law (classical description)

or to the existence of intrasubband transitions driven by the
electric field (quantum mechanical approach). This remark
immediately implies that the often-used scaling of the FCA
coefficient α(ω) ∼ ω−p with p ∼ 2–3, valid in bulk materials,
is highly questionable when applied to a QCL structure.20

Along the same line, it may be foreseen that the FCA will
be substantially weaker than previously anticipated because
the carrier in-plane acceleration by the electric field will still
be possible, but only because of couplings to the neighboring
subbands. As recently shown in Ref. 23, the bulk free-carrier
absorption in superlattices evolves from these intersubband
transitions, and thus all relevant effects are included in a proper
treatment of intersubband processes, as presented below.

FCA is intrinsically connected to scattering and thus
a quantitative description of scattering processes is of the
utmost importance for a quantitative description. Within a
density-matrix approach, Willenberg et al.24 showed that the
optical transition actually takes place between two states,
with an energy difference equal to the photon energy h̄ω.
The difference between h̄ω and the subband spacing is
compensated for by a change in the kinetic energy in the
in-plane direction, as provided by a scattering process accom-
panying the transition between the bands. In this paper, these
scattering-assisted transitions are evaluated in detail in a model
QCL structure, which is similar to the double-quantum-well
design whose lasing action was demonstrated by Kumar et al.4

In particular, we focus on transitions where the scattering
process brings the electron back to its original subband.
Such intraband scattering-assisted absorption processes are
in full agreement with the typical description of FCA in
the bulk, and are expected to be of particular importance at
low frequencies, when other subbands cannot energetically be
reached. We shall prove that the free-carrier absorption in such
a double-quantum-well structure is very small (of the order of
0.1–1 cm−1). In addition, we shall show that the FCA has
a peak in the vicinity of the lowest-lying transition energy,
which promotes an electron from the upper state of the lasing
transition to the nearest subband, while it does not display the
ω−p bulk behavior characteristic of a Drude-like approach.
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FIG. 1. (Color online) Sketch of the difference between bulk and
quasi-2D situations when considering the combined actions of the
electric field of an electromagnetic wave and the scatterers on the
semiclassical motion of an electron.

II. MODEL OF FCA

We consider a simplified cascade structure. It comprises
Np periods with thickness Lz. The electronic states from
each period are taken as independent from those of the
adjacent ones. Each period contains an asymmetric double-
quantum-well (DQW) structure made of two GaAs wells
(L1 = 23.2 and L2 = 9.8 nm, respectively) separated by an
intermediate Ga0.85Al0.15As barrier (Lb = 3.1 nm). We neglect
the bias electric field to the extent that it does not modify
strongly the energy levels and wave functions inside a given
period. The DQW supports six bound states for the z motion,
En, n = 1,2, . . . ,6. We suppose that the lasing action takes
place between E2 and E1 (h̄ω21 = 16.6 meV). The DQW
contains relatively few carriers with an areal concentration
equal to ne = 2.17 × 1010 cm−2. In the following, we will
refer to the eigenstates and eigenenergies of a perfect DQW as
〈 �ρ,z|n,�k〉 = χn(z) 1√

S
ei�k. �ρ and εnk = En + εk , where ( �ρ,z) =

�r , εk = h̄2k2

2m∗ , with �ρ as the in-plane position and �k as a 2D wave
vector.

We are interested in studying the transitions that an electron
belonging to the upper level of the laser transition can make
because of photon reabsorption. The coupling between the
electrons and the electromagnetic wave is provided by the
�A · �p term, where �A is the vector potential of the wave. Without

defects or phonons, an electromagnetic wave polarized along
z (i.e., propagating in the layer plane, as it is the case in a
QCL) cannot induce any |2�k〉 → |2 �k′〉 transition inside the
E2 subband because 〈2|pz|2〉 = 0 and, in addition, because
the transitions must be vertical in the k space due to the
translation invariance. Thus, we can call “doubly forbidden”
the intrasubband transitions in a perfect QCL. Defects or
phonons break the in-plane translation invariance but, still, the
intrasubband transitions with defect perturbed eigenstates of a
given subband remain forbidden because there is no average
velocity for a bound state. With our formulation, we show
that one needs to allow at least for one virtual intermediate
coupling in excited subbands to get a nonzero intrasubband
absorption. In the following, we take E3 to be this excited
subband, but it is clear that one has to sum over all possible
subbands to get a full account of the FCA in actual QCL
structures. The computation of the transition rate then becomes
very similar to the one of oblique (i.e., ��k 
= 0) interband
transitions in bulk materials.14,25 For comparison, we shall

also give results for the intersubband |2�k〉 → |3 �k′〉 transitions,
which, unlike the intrasubband case, do not suffer from a
vanishing 〈i|pz|f 〉 matrix element between the initial and final
subbands. Notice that in the following we will refer only to
the intra subband transitions as FCA because of the analogy
between this absorption process and the original FCA in bulk
systems.

For an electromagnetic wave with angular frequency ω,
the energy loss rate Pij (ω) in the presence of static disorder
associated with the transitions |i�k〉 → |j �k′〉 is given by

Pij (ω) = πe2E2
em

m∗2ω

∑
�k, �k′

(fi�k − fj �k′)|〈	i�k|pz|	j �k′ 〉|2

× δ(εj �k′ − εi�k − h̄ω), (1)

where 	i�k and 	j �k′ are the wave functions for the initial and
final states, respectively, taking into account the defects at the
first order, and fi�k and fj �k′ are the occupation functions of the
initial and final electronic states, respectively. In the following,
we shall take the occupation functions to be a Boltzmann
distribution characterized by an electronic temperature T .
Note that the first-order correction to the eigenenergies due
to defect potentials vanishes. By manipulating the matrix
element in Eq. (1), we see clearly that at the lowest order in the
defect potential, the transition rate results from the quantum
interference of two paths where either the defect potential acts

FIG. 2. (Color online) Energy dispersion of the E1, E2, and E3

subbands. Right panel: quantum mechanical paths followed by an
electron to undertake an intrasubband oblique absorption mediated
by static scatterers. Left panel: quantum mechanical paths followed by
an electron to undertake an intersubband oblique absorption mediated
by static scatterers. Dotted lines refer to electron-photon interaction;
solid lines refer to electron-defect interaction. Black dots are initial
and final states, gray dots are virtual intermediate states.
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first and the coupling to light follows, or vice versa (see Fig. 2).
Notice that the first-order expansion of the perturbed wave
functions displays energy denominators, which, as shown
below, leads to divergences in the absorption coefficient. In a
more complete theory where the defects would be considered
to all orders in perturbation, these divergences would be
suppressed and replaced by finite maxima. Qualitatively,
replacing ω by ω − i/τ in the transition amplitudes will have
the same effect as resumming all the perturbation series. This
implies that the formulas derived below are reliable when
|ω − ω0| � 1/τ , where ω0 is the resonant frequency and τ

is a typical relaxation time.
To the extent that the laser mode is uniform over the Np

periods of the cascade structure, the absorption coefficient is
related to the energy-loss rate by

α(ω) = NpP (ω)

IV
, (2)

where I = ε0cnE2
em/2 is the intensity of the incident radiation,

V = NpLzS (ε0 is the vacuum dielectric constant, Eem is the
electric field, c is the light velocity, and n is the refraction
index). α(ω) is therefore independent of Np.

In the following, we discuss free-carrier absorption me-
diated by various scattering mechanisms. We shall retain
two kinds of static defects: Coulombic scatterers and in-
terface defects that have been shown to give rise to a
level lifetime of a few picoseconds.26 For completeness, we
also investigate the effect of the Fröhlich coupling between
electrons and longitudinal optical (LO) phonons on the
FCA.

A. Interface disorder

The interface defects26–29 are taken as one-monolayer-deep
protrusions of either the GaAs well into the Ga0.85Al0.15As
barrier (attractive defects), or vice versa (repulsive defects).
They have a Gaussian shape in the layer plane.29 For a nominal
barrier/well interface located at z = z0, we have

Vdef(�r) = Vbg(z)
∑
�ρj ,j

exp

[
− ( �ρ − �ρj )2

2σ 2

]
, (3)

where g(z) = +Y (z − z0)Y (hdef − z + z0) for repulsive de-
fects and g(z) = −Y (−z + z0)Y (hdef + z − z0) for attractive
defects with the Heaviside function Y (z). hdef is the defect
height that we take here to be equal to one monolayer
(2.83 Å in GaAs), and Vb is the potential barrier height.
Besides the characteristic in-plane size σ , the defects are
characterized by their areal concentration ndef = Ndef/S,
or, equivalently, by the fractional coverage of the surface,
f r = πσ 2ndef .

For the Gaussian interface defects, and after averaging over
the position of the defects in the layer plane, one obtains, after
some calculations,

αdef
ij (ω)= πe2neV

2
b σ 4

ε0cnm∗Lzh̄
(1 − e−βh̄ω)

|〈2|pz|3〉|2
h̄ω

Rij (ω)I def
ij (ω),

(4)

where β = (kBT )−1, Rij is a “resonant factor,” respectively,
for intrasubband (i = j ) and intersubband (i 
= j ) transitions
given by

R22(ω) =
(

1

h̄ω − E3 + E2
+ 1

h̄ω + E3 − E2

)2

,

(5)

R23(ω) =
(

1

h̄ω − E3 + E2

)2

,

and

I def
ij (ω) = F def

ij e
−2m∗ (h̄ω−Ej +Ei )σ2

h̄2 2π

∫ ∞

0
dxe−x(1+C)

× I0[C
√

x2 + βx(h̄ω − Ej + Ei)]

×Y [x + β(h̄ω − Ej + Ei)], (6)

where I0 is the Bessel function of order zero with an imaginary
argument, C = 4m∗σ 2/(βh̄2), and where

F def
22 =

∑
z0

(
natt

∣∣∣∣
∫ z0

z0−hdef

χ3χ2dz

∣∣∣∣
2

+ nrep

∣∣∣∣
∫ z0+hdef

z0

χ3χ2dz

∣∣∣∣
2)

, (7)

F def
23 =

∑
z0

(
natt

∣∣∣∣
∫ z0

z0−hdef

(
χ2

3 − χ2
2

)
dz

∣∣∣∣
2

+ nrep

∣∣∣∣
∫ z0+hdef

z0

(
χ2

3 − χ2
2

)
dz

∣∣∣∣
2)

,

are two factors that account for the values of the wave functions
associated with the states involved in the virtual coupling,
close to the disordered interfaces. Here, natt and nrep are the
concentrations of attractive and repulsive interface defects,
respectively. Both expressions for intra- and intersubband
transitions are proportional to the areal density of electrons,
and also to the number of scatterers. None of them behaves
like a Drude term ω−p. In contrast, both of them diverge when
the photon energy approaches the energy of the intersubband
transition, E3 − E2.

B. Impurities

The impurities are taken into account as Coulombic scat-
terers homogenously distributed on planes located at positions
zn.30 By using the same formalism as in Eqs. (1) and (2), one
can derive for impurity absorption the following expression:

α
imp
ij (ω) = e6nenimp

16πε3
0ε(0)2cnm∗Lzh̄

(1 − e−βh̄ω)

× |〈2|pz|3〉|2
h̄ω

Rij (ω)I imp
ij (ω), (8)

where Rij is the resonant factor given in Eq. (5), and where

I
imp
ij (ω) =

∑
zn

∫ ∞

0
dxe−xY [x + β(h̄ω − Ej + Ei)]

×
∫ 2π

0
dθ

F
imp
ij [Qij (x,θ,ω); zn]

Q2
ij (x,θ,ω)

, (9)
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with

F
imp
22 =

∫
dzχ2(z)χ3(z)e−Q22|z−zn|,

(10)
F

imp
23 =

∫
dz

[
χ2

3 (z) − χ2
2 (z)

]
e−Q23|z−zn|.

Note that these two functions depend on the localiza-
tion/delocalization of the wave functions on the structure. In
Eqs. (9) and (10), there is

Q2
ij (x,θ,ω) = 2m∗

h̄2β
[2x + β(h̄ω − Ej + Ei)

− 2 cos θ

√
x2 + βx(h̄ω − Ej + Ei)]. (11)

The absorption coefficient due to impurities is, in many
respects, similar to the one derived in the presence of interface
disorder: the dependence on the electron concentration ne and
on the areal impurity density nimp is linear, and the frequency
dependency is not Drude-like and leads to a divergence when
the photon energy h̄ω = E3 − E2. In the above formulation,
we have used an unscreened Coulomb potential. This ap-
proximation represents an upper bound for impurity-induced
FCA and intersubband oblique transitions. It is expected
to work better at an elevated temperature. In fact, the 2D
Debye screening length q−1

D = nee
2/[kBT ε0ε(0)] ≈ 79 nm at

T = 300 K, where ε(0) = 12.4 is the static dielectric constant
for GaAs. The oblique virtual transitions are characterized
by matrix elements 〈2�k|VCoul|3 �k′〉 or 〈3�k|VCoul|2 �k′〉. The
screening of the Coulombic potential can be neglected if
the wave-vector change ��k = |�k′ − �k|  qD , since at large
wave-vector transfer, the screened and unscreened potentials
nearly coincide. But we know, for example, that in the
case of intrasubband transitions, k′ =

√
k2 + 2m∗ω/h̄. Hence,

screening can be neglected if
√

k2 + 2m∗ω/h̄ − k  qD . We
note that

√
2m∗ω/h̄ ≈ 108 cm−1, which is typically nine

times larger than qD . Hence, for the more populated states,
|��k|  qD and screening effects can be neglected.

C. LO phonon absorption and emission

It is well known that the interaction between electrons
and LO phonons dominates the high-temperature electronic
mobility of III-V and II-VI semiconductors. It is then likely that
it should also affect FCA in QCL structures. The energy-loss
rate Pij (ω) due to the absorption of a LO phonon, associated
with the |i�k〉 → |j �k′〉 transitions, is given by

P LOabs
ij (ω)

= πe2E2
em

m∗2ω

∑
�k �k′ �q

[
fi�k(1 − fj �k′ )|〈	i�k,Nq

|pz|	j �k′,Nq−1〉|2

−fj �k′ (1 − fi�k)|〈	j �k′,Nq−1|pz|	i�k,Nq
〉|2]

× δ(εj �k′ − εi�k − h̄ω − h̄ωLO). (12)

Here, the first term refers to the photon absorption bringing an
electron from the perturbed mixed electron-LO phonon state
	i�k,Nq

(containing Nq phonons of energy h̄ωq ≈ h̄ωLO) to the
state 	j �k′,Nq−1 with the absorption of a LO phonon; the second
term refers to the reverse process: a photon emission bringing

back an electron from 	j �k′,Nq−1 to 	i�k,Nq
with the emission of a

LO phonon. The perturbing potential is the Fröhlich coupling,
and �q is the 3D phonon wave vector. The energy-loss rate
Pij (ω) due to the emission of a LO phonon, associated with
the transitions |i�k〉 → |j �k′〉, is given by a similar expression,

P LOemi
ij (ω)

= πe2E2
em

m∗2ω

∑
�k �k′ �q

[
fi�k(1 − fj �k′)|〈	i�k,Nq

|pz|	j �k′,Nq+1〉|2

−fj �k′(1 − fi�k)|〈	j �k′,Nq+1|pz|	i�k,Nq
〉|2]

× δ(εj �k′ − εi�k − h̄ω + h̄ωLO). (13)

The sketches in Fig. 3 illustrate these processes.

FIG. 3. (Color online) Schematic representation of the electronic
intrasubband transition via an intermediate virtual state (represented
by a dotted line). Wavy arrows represent transitions due to photon
absorption or emission, and straight arrows represent transitions
due to phonon absorption or emission. (a) Left panel: photon
absorption assisted by one LO phonon absorption; right panel: photon
emission assisted by one LO phonon emission. (b) Left panel: photon
absorption assisted by one LO phonon emission; right panel: photon
emission assisted by one LO phonon absorption.
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The absorption coefficient for LO phonon absorption is
given by

αLOabs
ij (ω) = e4neωLO

16πε2
0εpcnm∗Lz

NLO
|〈2|pz|3〉|2

h̄ω
Rij (ω)

×
[

(1 − e−βh̄ωe(βL−β)h̄ωLO )

× ILOabs
ij,K (ω) + neh̄

2π

2m∗kBT
(e−βh̄ωe(βL−β)h̄ωLO

− e−β(h̄ω+h̄ωLO))ILOabs
ij,� (ω)

]
, (14)

where NLO is the Bose occupation function for the phonons
and βL = (kBTL)−1, with TL as the lattice temperature. The
resonant factor Rij is given in Eq. (5), and the functions
ILOabs
ij,Q (ω) with Q = K or � are given by

ILOabs
ij,Q (ω) =

∫ ∞

0
dxe−xY [x + β(h̄ω + h̄ωLO − Ej + Ei)]

×
∫ 2π

0
dθ

F LO
ij [Qij (x,θ,ω)]

Qij (x,θ,ω)
, (15)

with the functions

F LO
22 =

∫
dz

∫
dz′χ3(z)χ3(z′)χ2(z)χ2(z′)e−Q22|z−z′ |,

F LO
23 =

∫
dz

∫
dz′[χ2

3 (z)χ2
3 (z′) + χ2

2 (z)χ2
2 (z′)

− 2χ2
3 (z)χ2

2 (z′)
]
e−Q23|z−z′ |, (16)

depending on one of the following expressions, respectively,
for Qij = Kij or �ij :

K2
ij (x,θ,ω) = 2m∗

h̄2β
[2x + β(h̄ω + h̄ωLO − Ej + Ei)

− 2 cos θ

√
x2 + βx(h̄ω + h̄ωLO − Ej + Ei)],

�2
ij (x,θ,ω) = m∗

h̄2β
[2x + 2β(h̄ω + h̄ωLO − Ej + Ei)

− 2 cos θ

√
x2 + 2βx(h̄ω + h̄ωLO − Ej + Ei)].

(17)

Notice that here, as for the other perturbing potentials, we
find again the Fij functions that account for the localiza-
tion/delocalization of the wave functions on the structure.

The absorption coefficient in the presence of LO phonon
emission is given by

αLOemi
ij (ω) = e4neωLO

16πε2
0εpcnm∗Lz

(NLO + 1)
|〈2|pz|3〉|2

h̄ω

×Rij (ω)

[
(1 − e−βh̄ωe(β−βL)h̄ωLO )

×ILOemi
ij,K (ω) + neh̄

2π

2m∗kBT
(e−βh̄ωe(β−βL)h̄ωLO

− e−β(h̄ω−h̄ωLO))ILOemi
ij,� (ω)

]
, (18)

where the resonant factor Rij is given in Eq. (5), and where
the functions ILOemi

ij,Q (ω) with Q = K or � are given by

ILOemi
ij,Q (ω) =

∫ ∞

0
dxe−xY [x + β(h̄ω − h̄ωLO − Ej + Ei)]

×
∫ 2π

0
dθ

F LO
ij [Qij (x,θ,ω)]

Qij (x,θ,ω)
, (19)

with the same functions Fij as the ones given for phonon
absorption [Eq. (16)], but here depending on one of the
following expressions, respectively, for Qij = Kij or �ij :

K2
ij (x,θ,ω)= 2m∗

h̄2β
[2x + β(h̄ω − h̄ωLO − Ej + Ei)

− 2 cos θ

√
x2 + βx(h̄ω − h̄ωLO − Ej + Ei)],

�2
ij (x,θ,ω)= m∗

h̄2β
[2x + 2β(h̄ω − h̄ωLO − Ej + Ei)

− 2 cos θ

√
x2 + 2βx(h̄ω − h̄ωLO − Ej + Ei)].

(20)

Note that the second terms in Eqs. (14) and (18) give, as
expected from the low carrier concentration and the Boltzmann
distribution, a negligible contribution compared to the first
term because the second term has a quadratic dependence on
the Boltzmann occupation function, while the first one has only
a linear dependence. In structures containing more carriers, one
should use Fermi-Dirac distributions for thermalized carriers,
and the Pauli blocking would play a more important role.
Another interesting point concerns the sign of the absorption
coefficient and thus the possibility of obtaining gain. The
absorption coefficient becomes negative only if the reverse
process in Eqs. (12) or (13) becomes dominant. As a matter of
fact, αLOabs

ij (ω) � 0 only if the argument of the exponential in
the first term of Eq. (14) is positive; this leads to T � TL(1 +
ω/ωLO), which is a condition that can be verified if T 
= TL.
On the contrary, αLOemi

ij (ω) � 0 only if T � TL(1 − ω/ωLO),
which can never happen because T � TL.

III. RESULTS AND DISCUSSION

In the following, we numerically evaluate the various
contributions to the intrasubband and intersubband absorption
coefficients that have been derived above by applying the
Fermi golden rule to disorder/phonon perturbed wave func-
tions. In order to get a set of results, rather than numbers
applicable to a single sample, we have undertaken calculations
for a set of DQW structures where we increase simultaneously
the width of the two wells by adding a multiple of one
monolayer, while keeping constant the central barrier width
(23.2nm + phdef/3.1 nm /9.8 nm +phdef , p = 0,1,2, . . .).
This procedure allows decreasing E2 − E1, while the distance
E3 − E2 is kept roughly constant (at 6.6 meV), and the matrix
element 〈2|pz|3〉 is reduced by a factor of ∼2. However, note
that the |〈3|pz|2〉|2/h̄ω factor remains roughly constant for all
structures. The carrier effective mass has been taken equal to
m∗ = 0.067m0.
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FIG. 4. (Color online) (a) Absorption coefficient αdef(ω) vs h̄ω

for intra-E2 subband oblique transitions due to interface defects when
h̄ω = E2 − E1 is varied (see text) and several electronic temperatures
T . (b) Absorption coefficient αdef(ω) vs h̄ω for intersubband E2 →
E3 oblique transitions due to interface defects when h̄ω = E2 − E1

is varied (see text) and several electronic temperatures T .

Figure 4 show the h̄ω = E2 − E1 dependence of the
absorption coefficient in the presence of defects, αdef(ω).
Results are given for several electronic temperatures. The
fractional coverage by interface defects was kept at f r = 30%
and the defect size at σ = 10.8 nm. In Fig. 4(a), we show plots
of the absorption coefficient for the |2�k〉 → |2 �k′〉 transitions,
and in Fig. 4(b), the one for the |2�k〉 → |3 �k′〉 for comparison.
We see, first, that the FCA is very small (about 10−2 cm−1,
far away from resonance energy), which is in agreement
with Ref. 21, but in stark contrast to the extrapolation of
Drude results valid for bulk materials. This small value is
due to three main causes: (a) the small electron concentration
present in the THz QCL, (b) the doubly forbidden nature of
intrasubband transitions, and (c) the fact that the interface
defects are relatively mild scatterers. It is worth stressing that
the scattering-induced intersubband absorption [Fig. 4(b)] is
about one order of magnitude larger than the free-carrier-like
intrasubband absorption [Fig. 4(a)]. The main reason for such

FIG. 5. (Color online) Absorption coefficient αimp(ω) vs h̄ω for
intrasubband (black curves) and intersubband (red curves) transitions
due to ionized impurities: (a) doping of the thinnest well, nimp =
2.17 × 1010 cm−2; (b) residual doping of the whole structure, nimp =
3 × 1015 cm−3.

a trend is the smaller wave-vector transfer in the former
case than in the latter, as evidenced in the arguments of
the exponential in the I def

ij (ω) function and the I0 function
in Eq. (7).

We show in Fig. 5(a) the absorption coefficients for
|2�k〉 → |2 �k′〉 and |2�k〉 → |3 �k′〉 transitions induced by ionized
impurities. These impurities lay in the thinnest quantum
well (QW) and, for numerical purposes, we distributed them
on n = 20 equidistant planes. Each plane has an impurity
density of (2.17/n) × 1010 cm−2. In Fig. 5(b), we show
the absorption coefficient for impurity-induced FCA and
oblique intersubband absorption in the presence of resid-
ual ionized impurities with a typical volume concentration
for GaAs of 3 × 1015 cm−3. The absorption coefficient is
several orders of magnitude larger in Fig. 5(a) than in
Fig. 5(b) because in the first case all the impurities are
concentrated in a well where the electronic wave function is
significant.
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FIG. 6. (Color online) (a) Absorption coefficient αLOabs(ω) vs h̄ω

for intrasubband transitions due to LO phonon absorption when h̄ω =
E2 − E1 is varied (see text). (b) Absorption coefficient αLOabs(ω) vs
h̄ω for intersubband oblique transitions due to LO phonon absorption
when h̄ω = E2 − E1 is varied (see text). T (TL) is the electronic
(lattice) temperature.

The curves shown in Figs. 5(a) and 5(b) display the same
trends as found when the transitions are induced by the inter-
face defects. The magnitude of the absorption in the presence
of interface defects is quite comparable to the one obtained
with residual doping. We note that both FCA and oblique
intersubband absorption decrease with increasing temperature.
Although T appears in several places in Eqs. (4)–(11), the main
factor that contributes to the decreased absorption at elevated T

is (1 − e−βh̄ω). Physically, this term represents the increasing
part played by the stimulated emission that decreases the net
absorption coefficient of a Boltzmann thermalized population
with fixed carrier concentration. Notice that from a similar
argument, if we were to draw the FCA versus ω for a fixed
geometry of the QCL, the curves would not be symmetric
around the E3 − E2 resonance.

We show in Figs. 6(a) and 6(b) the free-carrier absorption
|2�k〉 → |2 �k′〉 and the oblique intersubband absorption |2�k〉 →
|3 �k′〉 due to LO phonon absorption versus h̄ω = E2 − E1. The

FIG. 7. (Color online) (a) Absorption coefficient αLOemi(ω) vs h̄ω

for intrasubband transitions due to LO phonon emission when h̄ω =
E2 − E1 is varied (see text). (b) Absorption coefficient αLOemi(ω) vs
h̄ω for intersubband oblique transitions due to LO phonon emission
when h̄ω = E2 − E1 is varied (see text). T (TL) is the electronic
(lattice) temperature.

absorption coefficients αLOabs(ω) are proportional to the LO
phonon occupation at the lattice temperature TL. Hence, at
low TL, the LO phonon absorption is inefficient, as expected,
but starts to be stronger than the interface disorder and
residual doping around 100 K, and approaches 0.1–1 cm−1

far away from the resonance energy at T = 150 K. The
curves show also that the difference between the electronic
temperature and the lattice temperature has an effect on the
magnitude of the absorption coefficient. This is clearly visible
in Fig. 6(a) where the absorption coefficient at TL = 100 and
T = 150 K is negative (while the ones calculated with T = TL

are always positive), and its absolute value decreases steadily
with frequency because the occupation factor is dominating
the behavior of this curve (while this is not the case when
T = TL).

We present the results of the calculations of the FCA
associated with the LO phonon emission in Figs. 7(a) and 7(b).
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We see that the absorption coefficient has the same temperature
and h̄ω = E2 − E1 dependences for phonon emission and for
phonon absorption. Besides, the order of magnitude of these
two absorption coefficients is comparable and higher than that
of the absorption coefficient due to the presence of interface
disorder or residual doping.

The ω dependences of the intra- and intersubband absorp-
tions induced by the defects and by the phonons are not
immediately clear. The main feature common to all of our
results is the strong increase of α(ω) when h̄ω approaches
the intersubband transition energy E3 − E2 = 6.6 meV. In our
formulation, this behavior comes from the “resonance factor”
[Eq. (5)], which diverges when h̄ω = 6.6 meV, and which
appears because we limit the perturbation expansion to the
first order (see the discussion in Sec. II). The other feature
common to the various absorption coefficients is that the
ones corresponding to FCA increase slightly or level off with
increasing ω, while the ones corresponding to intersubband
oblique transitions decrease steadily with increasing ω. In
order to give an explanation for these different ω dependences,
we recall that the large (small) ω values correspond to thin
(thick) wells. As a result, the eigenstates are more delocalized
at large ω than at small ω.31 Looking at the expressions for
the absorption coefficients, we notice that the FCA and the
intersubband processes differ at large ω (far from resonance)
only by the functions Iij . Such functions contain integrals
over z that in the formulation for interface defects and
impurities, involves either χ2

3 (z) − χ2
2 (z) or χ3(z)χ2(z). These

two functions behave differently versus ω. We expect that
by increasing ω (and thus increasing the delocalization of
the wave functions), the factor decreases for most values
of z because the squares of the wave functions compensate
each other. On the other hand, the variation with ω of the
factor χ2χ3 is more difficult to predict because it strongly
depends on the z position. By calculating its value for different
z, we find that on average it does not vary much with
ω. We notice that the ω dependences of these two factors
are the same as the one obtained for the intrasubband and
intersubband absorption coefficient. Thus, we can conclude
that the calculated ω dependence of the absorption coefficient
is determined by the localization/delocalization of the wave
functions, which varies with the structure employed and,
consequently, with the lasing photon energy h̄ω. A similar
discussion could be made for the absorption coefficient due to
the electron-LO phonon interaction because the formulation
depends again on similar relations between the wave functions
[Eq. (16)].

A. Concluding remark

Before concluding, we discuss briefly the differences
between our model and the approach of Unuma et al.28 for the
calculation of the intersubband absorption. The computation
of defect-induced intrasubband and intersubband transitions
(here, |2�k〉 → |2 �k′〉 and |2�k〉 → |3 �k′〉) produces line shapes
that are different from the tail of the quasi-Lorentzian line
shape derived, e.g., by Unuma et al. for intersubband absorp-
tion. This is because the two calculations are performed in quite
different limits of validity. In Unuma et al., one starts from
allowed intersubband transitions (i.e., vertical in k). Without

broadening, the absorption coefficient α23(ω) is a δ function
of the argument (h̄ω − E3 + E2). Scattering broadens this δ

function into a Lorentzian. Let us remark that the integrated
absorption coefficient

∫
α(ω)dω is essentially independent of

the defect concentration (simply because integrating a normal-
ized Lorentzian gives a quantity that does not depend on the
broadening parameter of the Lorentzian). Hence, in the type of
calculations of Unuma et al., one finds

∫
α(ω)dω ≈ (ndef)0. In

our calculations, such a (ndef)0 term is missing and at the lowest
order we find instead an integrated absorption coefficient that
is linear in ndef . This is because we focus our attention on
the oblique in k absorptions that are forbidden in the absence
of defects. As discussed above (Sec. II), our calculation of
the FCA is reliable when the photon energy differs from the
resonant one by a typical energy broadening. Note that this
markedly off-resonant condition appears to be what happens
for the FCA in actual QCLs: usually the lasing photons are
not resonant with another intersubband transition. Besides, the
|2�k〉 → |2 �k′〉 intrasubband absorption is something that cannot
exist in the Unuma et al. derivation since it would involve a zero
oscillator strength [cf. Eq. (2) in Ref. 28]. Hence, to get such a
nonvanishing contribution, it is mandatory to include a virtual
coupling to E3, i.e., to consider perturbation of the current
operator. It is also interesting to point out that the approach
of Unuma et al. at large detuning predicts an absorption that
varies like �(h̄ω − E3 + E2)−2. If we look at our expressions
for absorption, we find different behaviors: not only do we
have this term, but several other multiplicative factors that
are photon energy dependent. But in the large detuning limit
and mild scatterers, our modeling should become “exact.” A
more detailed comparison between the model of Unuma et al.
and our perturbative approach is beyond the scope of this
paper.

IV. CONCLUSIONS

In conclusion, we have presented a theoretical analysis of
the free-carrier absorption in the THz QCL. We have shown
that a quantum mechanical calculation of the intrasubband
transitions leads to very small absorption coefficients for
the THz laser photon at the current operation temperature.
Oblique (in k space) intersubband transitions, if energetically
possible, are more efficient agents for reabsorbing the laser
photons. We found that interface defects and ionized impu-
rities (residual doping) are both relatively inefficient for the
parameters we used and which are adapted to the present
THz QCLs. Electron-LO phonons dominate the FCA at room
temperature.
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