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We present a theory of electronic properties and the spin-blockade phenomena in a gated linear triple quantum
dot. Quadruple points where four different charge configurations are on resonance, particularly involving (1,1,1)
configuration, are considered. In the symmetric case, the central dot is biased to higher energy and a single electron
tunnels through the device when the (1,1,1) configuration is resonant with (1,0,1), (2,0,1), (1,0,2) configurations.
The electronic properties of a triple quantum dot are described by a Hubbard model containing two orbitals
in the two unbiased dots and a single orbital in the biased dot. The transport through the triple-quantum-dot
molecule involves both singly and doubly occupied configurations and necessitates the description of the (1,1,1)
configuration beyond the Heisenberg model. Exact eigenstates of the triple-quantum-dot molecule with up to three
electrons are used to compute current assuming weak coupling to the leads and nonequilibrium occupation of
quantum molecule states obtained from the rate equation. The intramolecular relaxation processes due to acoustic
phonons and cotunneling with the leads are included, and are shown to play a crucial role in the spin-blockade
effect. We find a quantum-interference-based spin-blockade phenomenon at low source-drain bias and a distinct
spin blockade due to a trap state at higher bias. We also show that, for an asymmetric quadruple point with
(0,1,1), (1,1,1,), (0,2,1), (0,1,2) configurations on resonance, the spin blockade is analogous to the spin blockade
in a double quantum dot.
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I. INTRODUCTION

Gated quantum dots1–9 (QDs) with controlled electron
numbers are a testbed for probing fundamental many-body
physics as well as a promising platform for building spintronics
and quantum information processing (QIP) devices.10 Until
recently, most experimental and theoretical investigations of
quantum circuits based on electron spin focused on the single-
and double-quantum-dot (DQD) devices.3,10 Many essential
tasks for operating a qubit have been demonstrated in DQDs.
For instance, coherent manipulation and readout of one4 and
two11 spin states have already been experimentally achieved
using spin blockade.1,12–15 In DQDs, spin blockade is used
to detect spin using spin-to-charge conversion. For instance,
the (0,2) charge configuration can not be obtained from the
(1,1) configuration if the electron spin in the left dot is parallel
to the electron spin in the right dot. Detected charge on the
right dot depends on the relative spin orientations of the two
electrons. Thus, spin blockade detects spin states (triplet or
singlet) of the two electrons in transport spectroscopy or
charge sensing measurement.1,12,13 A physical signature of
spin blockade at the triple point, (0,1) → (1,1) → (0,2), is
the current rectification under different bias directions. In
positive (forward) bias direction, triplet states will not be
populated, and the system does not manifest negative differen-
tial conductance (NDC). In negative (reverse) bias direction,
current suppression is pronounced once the transitions to
the (1,1) triplet states become accessible in the transport
window.

A nontrivial extension of the quantum circuit based on
electron spin is the triple quantum dot (TQD) with one electron
each. This can be appreciated by the comparison of the quan-
tum optical properties of two-level versus three-level systems.

Charging and transport spectroscopy experiments7,9,16–18 on
the TQDs have already mapped out the stability diagram of the
devices down to a few electrons. Recent experiments8,19 have
also demonstrated coherent manipulations of electron spins in
TQDs. The electronic and transport properties of TQDs have
been investigated theoretically, including topological Hunds
rules,17 spin-selective Aharonov-Bohm oscillations,20,21 the
implementation of a coded qubit,22–24 voltage-controlled spin
manipulation,25,26 entangled GHZ state generation,27,28 ac
field control of spin blockade,29 cotunneling-induced leakage
current in blocking states,30 non-Fermi-liquid behavior31–33

in triangular TQDs, as well as coherent tunneling adiabatic
passage34,35 (CTAP) processes for a single electron in a
linear triple quantum dot (LTQD). Many of these theoretical
predictions as well as quantum information processing in a
TQD require an ability to spectroscopically detect spin by,
e.g., spin blockade.

In recent experiments, Granger et al.16,19 and Laird
et al.8 carried out transport spectroscopy and charge sens-
ing measurement on a LTQD molecule with one electron
in each dot. This configuration, denoted by (1,1,1), was
tuned to be resonant with the two-electron configuration
(1,0,1). It was assumed that transport proceeded through
{(2,0,1),(1,1,1),(1,0,2)} resonant configurations, which im-
plied that the central dot was biased to higher energy.
The presence of doubly occupied dots in the configurations
makes the Heisenberg model of localized spin configura-
tions inapplicable, and a microscopic model is required to
study the electronic and transport properties of this TQD
system.

Here, we extend our earlier theory of a TQD (Refs. 17,
23, 36, and 37) to biased linear molecule at quadruple
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points (QPs) and describe spin blockade as a spectroscopic
tool allowing the readout of electron spin. We analyze the
electronic and spin properties of a LTQD as a function
of energies of each dot within a single-band or multiband
Hubbard model. The knowledge of the wave functions of
a single-band Hubbard model allows for the qualitative
understanding of the low-bias transport through the device,
but including more than one orbital in the dot will be shown
to be crucial for spin blockade. Two different QPs involving
the (1,1,1) configuration are considered: (a) symmetrical
QP (SQP) with (1,0,1),(2,0,1),(1,1,1),(1,0,2) configura-
tions on resonance, and (b) asymmetrical QP (AQP) with
(0,1,1),(1,1,1),(0,2,1),(0,1,2) configurations on resonance.
For SQP, the transport goes through (1,0,1) → (2,0,1) →
(1,1,1) → (1,0,2) channels, while (0,1,1) → (1,1,1) →
(0,2,1) → (0,1,2) is the transport channel for the AQP. Current
is calculated in sequential tunneling approximation between
the TQD and the leads, using rate equations20,38 to calculate
the nonequilibrium steady-state occupation of TQD states with
a source-drain bias. We use Fermi’s golden rule to calculate the
transition rates between TQD states by adding or removing an
electron due to the coupling between the TQD molecule and
the leads, and also the transition rate between TQD states
with the same number of electrons due to the interaction with
acoustic phonons.39,40

The plan of the paper is as follows. In Secs. II and II A,
we describe the system, the Hamiltonian, and the electronic
properties of a TQD as a function of detuning � of the central
dot. In Sec. II B, our approach to the transport based on the
sequential tunneling between the leads and the TQD molecule
and rate equations are explained in detail. The transition rates
due to different mechanisms are also discussed. In Sec. III A,
we present results of current calculations for the SQP, and
discuss the mechanism of quantum spin blockade at low bias.
In Sec. III B, we present results of transport calculations for
conventional spin blockade at the SQP under high source-drain
bias and at the AQP, and discuss how the system at the AQP
can behave qualitatively as a double dot around a similar triple
point with (0,1),(1,1),(0,2) configurations. A brief conclusion
is given in Sec. IV.

II. MODEL

Figure 1 presents a schematic diagram of a LTQD in contact
with the two semi-infinite leads and the energy levels of the
single QD orbitals. The metallic leads are modeled by one-
dimensional tight-binding chains. Each quantum dot, defined
by metallic gates on top of GaAlAs/GaAs heterojunction and
represented here by a circle contains a controlled number of
electrons, e.g., one electron each [(1,1,1) configuration] in
Fig. 1(a) and (1,0,1) configuration in Fig. 1(b). Electrons
can tunnel between dots 1 and 2, and between dots 2 and
3, but there is no direct tunnel coupling between the two
edge dots. Figure 1(c) shows the single-particle levels of the
individual dots in the LTQD without interdot tunneling. The
lowest-energy bars denote S orbitals (the ground orbitals) in
each dot. The energy of the central dot is raised by an applied
voltage �. This bias can be used, for example, in order to
localize the two electrons in dots 1 and 3 as shown in Fig. 1(b).

FIG. 1. (Color online) (a) Schematic picture of a LTQD with
one electron spin each connected to leads. The leads are modeled
with one-dimensional tight-binding chains. (b) The TQD in (1,0,1),
two-electron configuration. (c) Schematic picture of single-particle
energy spectrum of a TQD when the central dot is biased with �. The
gap �sp denotes the energy difference between the S and P orbitals
on a dot.

In this study, �, comparable to Coulomb repulsion U , is
used to bring the configurations such as (1,1,1) and (1,0,2)
on resonance as shown in Fig. 2. We find it is essential to
include the excited states, P orbitals, in dots 1 and 3 in order
to properly account for the transport properties at the SQP.
The energy separation �sp between S and P orbitals may
also be comparable to �. Thus, the electronic properties of
a LTQD are described by a multiband Hubbard model with
parameters derived from a microscopic linear combination
of harmonic orbitals-configuration interaction (LCHO-CI)
approach for given voltages on the gates.36 With ĉiσ (ĉ†iσ )
denoting annihilation (creation) operators for an electron with

FIG. 2. Two resonant three-electron configurations in a centrally
biased TQD: (a) one of the (1,1,1) singly occupied configurations and
(b) one of the (1,0,2) doubly occupied configurations.
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spin σ on orbital i, the five-level Hubbard Hamiltonian reads
as

ĤD =
5∑

i=1,σ

Ei(Vsd )n̂iσ +
5∑

i,j = 1,σ
j �= i

tij ĉ
†
iσ ĉjσ

+
5∑

i=1

Uin̂i↑n̂i↓ + 1

2

5∑
i,j=1

Vij ρ̂i ρ̂j , (1)

where Ei(Vsd ) is the source-drain bias dependent energy of
orbital i, and tij , Ui , and Vij are tunnel coupling, onsite and off-
site Coulomb repulsion between orbitals i and j respectively,
n̂iσ = ĉ

†
iσ ĉiσ , and ρ̂i = ∑

σ n̂iσ . We assign indices i = 1,2,3 to
S orbitals of dots 1 (left), 2 (central), and 3 (right), respectively.
The indices i = 4,5 denote excited P orbitals. We will consider
only single excited orbitals in both dot 1 (i = 4) and dot 3
(i = 5) for the TQD molecule at SQP. For the AQP case with
(0,1,1) base configuration, the excited orbitals are in dot 2
(i = 4) and dot 3 (i = 5). The excited orbital in the biased dot
does not play any significant role.

The TQD device is connected to left and right leads (r =
L,R) as shown in Fig. 1(a). Electrons in the leads fill up the
noninteracting states of semi-infinite tight-binding chains with
a bulk dispersion relation εr (k) = 2tr cos (ka) up to a Fermi
level μL(R), where tr is the tunnel coupling between the sites
on lead r , a is the distance between sites of tight-binding chain,
and k denotes the mode of the plane wave for single-particle
states in the chain. The interaction between the leads and the
device is modeled as

ĤrD =
∑
ir ,σ

∑
k

(
t̃ ri (k)d̂†

kσ ĉir σ + H.c.
)
, (2)

where t̃ ri (k) = t ri e
i2πkamr /

√
2π is the tunnel coupling between

the mode k of the r = L(R) lead and orbital ir localized in
the left dot (r = L) or the right dot (r = R) and mr in the
exponent of t̃ ri (k) is 1 for r = L and −1 for r = R. d̂†

kσ creates
an electron with momentum k and spin σ in the lead r . In this
study, tRi = 0 for orbitals not in the right edge dot and tLi = 0
for orbitals not in the left edge dot.

Interactions with phonons have already been shown to be
important to understand the incoherent transport properties of
double quantum dots at high bias in Ref. 40, for instance. We
include interaction of electrons in the LTQD with bulk longi-
tudinal acoustic (LA) phonons via deformation potential as the
mechanism of phonon-induced relaxation at low temperature.
The electron-phonon interaction Hamiltonian reads as

Ĥe-ph =
5∑

i,j=1,σ

∑
q

Mij (q)
(
b̂q + b̂

†
−q

)
ĉ
†
iσ ĉjσ , (3)

where q is the phonon momentum, i and j are TQD orbitals,
and b̂q (b̂†q) operator annihilates (creates) a phonon with
momentum q. Mij (q) = �(q)

∫
ψi(r)∗ exp(−iq · r)ψj (r) is

the electron-phonon scattering matrix element, ψi(r) is a

single-particle wave function, and �(q) =
√

D2h̄q

2ρcs
for defor-

mation potential D, GaAs mass density ρ, and speed of sound
cs in GaAs. The phonon scattering matrix element Mij (q)

depends on the single-particle wave function ψi(r), which is
obtained from the LCHO (Ref. 36) formalism.

A. Electronic properties of a LTQD

The electronic properties of a triangular TQD molecule
with all three dots on resonance for N = 1–6 electrons have
been described in detail in Ref. 17. We focus here on the
linear molecule where there is no tunneling between the end
quantum dots and on the effect of detuning � of the energy
of the central dot. While in numerical calculations we retain
all five levels, we retain only the three lowest-energy states
in this semianalytical discussion of the low-energy spectra.
For the Hubbard parameters, we set Ui = U , t12 = t23 = t ,
t13 = 0, V13 = V , and V12 = V23 = V

′
. For the onsite energies,

we restrict our attention to E1 = E3 = E and E2 = E + �.
Since E is just an overall shift in energy, we simply set E = 0
until we explicitly state otherwise. The Hubbard Hamiltonian
commutes with total Ŝ2 and Ŝy , so we consider spin-resolved
subspaces in the Hilbert space.

First, we focus on the single-particle molecular states of
the TQD. We consider the Sy = 1/2 subspace and use a
localized basis {|1〉,|2〉,|3〉}, where |i〉 = c

†
i↑|0〉. In this basis,

the Hubbard Hamiltonian [Eq. (1)] reads as

H1e =

⎡
⎢⎣

0 t 0

t � t

0 t 0

⎤
⎥⎦ . (4)

By inspection, we see that a state |D〉 = (|1〉 − |3〉)/√2, with
an energy ED = 0, is an eigenstate. In this state, an electron
does not occupy the central dot. This state can block the
transport in a setting where dots 1 and 3 are connected to
the source and dot 2 is connected to the drain, and hence is
called a dark state,35,41 in analogy to the coherent population
trapping in quantum optics. The existence of such a dark state
can be detected by transport spectroscopy.41 As the transport
window determined by the applied source-drain voltage Vsd

is large enough to allow the added electron to enter a dark
state, a negative differential conductance should be observed
in the experiment. Furthermore, Greentree et al.34,42 proposed
to implement CTAP to move an electron from dot 1 to dot 3
without passing through dot 2 and for quantum information
transfer for a double-dot charge qubit.

There are two states orthogonal to the dark state |D〉: the
bright state |B〉 = (|1〉 + |3〉)/√2 and the central state |C〉 =
|2〉. The 2 × 2 Hamiltonian matrix spanned by the bright and
central states can be analytically diagonalized, and the two
eigenstates are expressed as a linear combination of the bright
and central state: |M1〉 = cos(φ)|B〉 + sin(φ)|C〉 and |M2〉 =
− sin(φ)|B〉 + cos(φ)|C〉, where tan(2φ) = −√

2t/�. We
note that tuning φ allows us to recover Jacobi eigenstates
discussed in Refs. 17, 24, and 37. Tuning t mostly controls the
amount of mixing between the bright and central states in the
two eigenstates |M1〉 and |M2〉, whereas tuning � can control
the energy spacing between the two eigenstates. The energies
associated with the three eigenstates |D〉,|M1〉, and |M2〉 are
ED = 0, EM1 = (� − �t )/2, and EM2 = (� + �t )/2 where
�t = √

�2 + 8t2. We note that |M1〉 is always the ground
state.
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Next, we address the two-electron case. The simpler case
to analyze is the triplet Sy = 1 subspace, which contains two
spins up in the LTQD. There are three basis vectors {|T1〉, |T2〉,
|T3〉}, where |T1〉 = ĉ

†
2↑ĉ

†
1↑|0〉, |T2〉 = ĉ

†
3↑ĉ

†
1↑|0〉, and |T3〉 =

ĉ
†
3↑ĉ

†
2↑|0〉, respectively. The Hubbard Hamiltonian in this basis

reads as

H2T =
⎡
⎣� + V

′
t 0

t V t

0 t � + V
′

⎤
⎦ . (5)

The triplet Hamiltonian [Eq. (5)] and the single-particle
Hamiltonian [Eq. (4)] have the identical matrix structure.
Therefore, there is a dark triplet eigenstate |TD〉 = (|T1〉 −
|T3〉)/

√
2 and the bright |TB〉 = (|T1〉 + |T3〉)/

√
2 and central

state |TC〉 = |T2〉. Rotating the Hamiltonian equation (5) into
the basis of bright, central, and dark states, a 2 × 2 Hamiltonian
matrix coupling the bright and central states is derived. The two
eigenstates of the triplet subspace are |MT

1 〉 = sin(φ)|TB〉 +
cos(φ)|TC〉 and |MT

2 〉 = − cos(φ)|TB〉 + sin(φ)|TC〉, where
tan(2φ) = √

2t/�v and �v = � + V
′ − V . The correspond-

ing eigenenergies of the three states are

ETD
= � + V

′
, (6a)

EMT
1

= � + V
′ − 1

2 (�v +
√

(�v)2 + 8t2), (6b)

EMT
2

= � + V
′ − 1

2 (�v −
√

(�v)2 + 8t2). (6c)

The ground state |MT
1 〉 is predominantly characterized

by |TC〉 = |↑1↑3〉 with spins up in dots 1 and 3 because
the corresponding coefficient sin(2φ) ≈ 1 − t2

2�2
v

when t/�

is small. Nevertheless, |MT
1 〉 still has nonzero presence in

both |T1〉 = |↑1↑2〉 and |T3〉 = |↑2↑3〉 configurations. In later
sections, we will explain how the low-bias spin-blockade
formation is related to the small yet finite components of |T1〉
and |T3〉 in |MT

1 〉 wave function. We designate three ground
states in each of the spin-resolved triplet subspaces with
(S = 1,Sy = 1,0,−1) as |T +〉, |T 0〉, and |T −〉, respectively.
|T +〉= |MT

1 〉 as was shown above, |T 0〉 is obtained by flipping
one spin and performing symmetrization of the wave function,
and |T −〉 is obtained by flipping both spins from |T +〉. These
states will play the major roles in the transport through LTQD
at the low source-drain bias. Furthermore, we find it also useful
to represent |T +〉 as

|T +〉 = γ

(
|T2〉 + γ1

γ
|T1〉 + γ2

γ
|T3〉

)
, (7)

where the coefficients |γ1(2)| � 1.
Next, we analyze the Sy = 0 singlet state for two electrons.

We define the following basis: {|S1〉,|S2〉,|S3〉,|S4〉,|S5〉,|S6〉}.
The singly occupied configurations are |S1〉 =

1√
2
(ĉ†1↓ĉ

†
2↑ + ĉ

†
2↓ĉ

†
1↑)|0〉, |S2〉 = 1√

2
(ĉ†1↓ĉ

†
3↑ + ĉ

†
3↓ĉ

†
1↑)|0〉,

and |S3〉 = 1√
2
(ĉ†2↓ĉ

†
3↑ + ĉ

†
3↓ĉ

†
2↑)|0〉. The doubly occupied

configurations are |S4〉 = ĉ
†
1↓ĉ

†
1↑|0〉, |S5〉 = ĉ

†
2↓ĉ

†
2↑|0〉, and

|S6〉 = ĉ
†
3↓ĉ

†
3↑|0〉. The Hubbard Hamiltonian in this basis

reads as

H2S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� + V
′

t 0
√

2t
√

2t 0

t V t 0 0 0

0 t � + V
′

0
√

2t
√

2t√
2t 0 0 U 0 0√
2t 0

√
2t 0 2� + U 0

0 0
√

2t 0 0 U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

The 3 × 3 upper left block, spanned by {|S1〉,|S2〉,|S3〉}, is
identical to the triplet Hamiltonian equation (5). For |�| small
compared to onsite Coulomb repulsion U , the energy spectrum
of the singlet subspace can be divided into the bands of singly
occupied and doubly occupied configurations, with a gap of
the order of U . Under such a condition, the energies and
wave functions of the first three lowest singlet states are very
similar to those of the triplet states, and the mixing between
singly and doubly occupied configurations leads to a t-J
model.26 However, if |�| is comparable to U , then the singlet
subspace has a ground state predominantly characterized by
|S2〉 configuration, which is well separated from the four
excited states characterized by |S1〉,|S3〉,|S4〉,|S6〉. The doubly
occupied |S4〉 and the singly occupied |S1〉 configurations,
which are connected by tunneling between dots 1 and 2,
get very close in energy. When these states are degenerate,
two eigenstates can be obtained by |U±

14〉 = 1√
2
(|S1〉 ± |S4〉).

Similarly, we get |U±
36〉 = 1√

2
(|S3〉 ± |S6〉) from |S3〉 and |S6〉.

By second-order perturbation theory, the well-isolated ground
state with dominant contribution from |S2〉 has energy

EMS
1

= V − 4t2

(
1

� + V ′ + U − V + 2
√

t

+ 1

� + V ′ + U − V − 2
√

t

)
. (9)

We note that the singlet-triplet splitting is EMT
1

− EMS
1

> 0 for
all range of �v and t , and we have the singlet as the ground
state.

Next, we consider the three electron states. In the fully
spin polarized subspace, Sy = +3/2, there is only one state
|S = 3/2,Sy = +3/2〉 = ĉ

†
3↑ĉ

†
2↑ĉ

†
1↑|0〉, with energy given by

E3/2 = 3E + � + 2V
′ + V . This state is characterized by

having a spin-up electron in each dot. For Sy = +1/2
subspace, it is composed of nine singly and doubly oc-
cupied configurations. To simplify the qualitative analysis,
we focus on a truncated basis composed of the follow-
ing three singly occupied configurations: |a〉 = ĉ

†
3↑ĉ

†
2↑ĉ

†
1↓|0〉,

|b〉 = ĉ
†
3↑ĉ

†
2↓ĉ

†
1↑|0〉,|c〉 = ĉ

†
3↓ĉ

†
2↑ĉ

†
1↑|0〉, and two doubly oc-

cupied configurations |d〉 = ĉ
†
3↑ĉ

†
1↑ĉ

†
1↓|0〉, |e〉 = ĉ

†
3↑ĉ

†
3↓ĉ

†
1↑|0〉.

Figure 2 shows resonance between configuration |b〉 and
|e〉 when |�| = O(U ). The three-dimensional subspace with
singly occupied configurations with Sy = 1/2 can be further
decomposed by the total spin S, since S is also a good
quantum number. For the subspace with S = 1/2, we use
the Jacobi basis states L0 and L1 (Refs. 22 and 23): |L0〉 =

1√
2
(|a〉 − |c〉), |L1〉 = 1√

6
(|a〉 − 2|b〉 + |c〉). For |L0〉, the spin
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state in dots 1 and 3 is a singlet. For |L1〉, the spin state
in dots 1 and 3 can be written as a linear combination of
triplets with Sy = 0 and Sy = 1. The remaining Jacobi state
|L2〉 = 1√

3
(|a〉 + |b〉 + |c〉) is a total spin-3/2 state and is

decoupled from all other states. In a similar fashion, we form
Jacobi coordinates for the two doubly occupied configurations
|X〉 = 1√

2
(|d〉 + |e〉) and |Y 〉 = 1√

2
(|d〉 − |e〉). In the subspace

of S = 1/2 and Sy = 1/2, with basis {|L0〉,|X〉,|L1〉,|Y 〉}, the
three-electron Hamiltonian

H3 el

=

⎡
⎢⎢⎢⎣

� + 2V
′ + V −t 0 0

−t U + 2V 0 0

0 0 � + 2V
′ + V

√
3t

0 0
√

3t U + 2V

⎤
⎥⎥⎥⎦

(10)

separates into the pair of Hamiltonians describing Jacobi
basis states |L0〉 and |L1〉 entangled with the doubly occupied
configurations. Each submatrix can be diagonalized and the
eigenstates read as |L+

0 〉 = cos(φ)|L0〉 + sin(φ)|X〉, |L−
0 〉 =

sin(φ)|L0〉 − cos(φ)|X〉, |L+
1 〉 = cos(θ )|L1〉 + sin(θ )|Y 〉,

and |L−
1 〉 = sin(θ )|L1〉 − cos(θ )|Y 〉, where tan(2φ) = t/ξ ,

tan(2θ ) = √
3t/ξ , and ξ = (� + 2V ′ − U − V )/2. Here, we

observe that each of the two Jacobi states, characterizing the
(1,1,1) configuration, hybridizes with both doubly occupied
configurations |X〉 and |Y 〉 to form the eigenstates of a
central-dot biased system. All four eigenstates |L±

0 〉 and |L±
1 〉

are current conducting because electrons can be removed
from the orbitals in the edge dots to make a transition from the
three-electron state to a two-electron (1,0,1) configuration.

In Fig. 3(a), we show the evolution of the five lowest-energy
levels of the three-electron complex in the Sy = 1/2 subspace
as a function of bias � in the central dot. At � = 0, the
spectrum is divided into two bands. The lower band consists
of |L1〉, |L0〉, and |L2〉 states, which are all characterized
by singly occupied configurations. The upper band consists
of states with dominant configurations |d〉 and |e〉. As �

increases, the energy difference between the singly occupied
configurations and specific doubly occupied configurations |d〉
and |e〉 diminishes. However, the ground state is always the
|L+

1 〉 state in the figure. The blue curve represents the spin-3/2
state, which does not interact with all other levels due to the
conservation of total spin of the Hamiltonian. In the plot,
the levels are artificially shifted for better visualization. In
the inset of Fig. 3(a), the proper energy levels around the
anticrossing point are shown in detail. Figure 3(b) shows the
configuration content of the ground state as a function of bias
�. At � = 0, the ground state is dominated by singly occupied
configuration |L1〉, but at higher bias � ≈ U , the doubly
occupied configuration |Y 〉 reaches around 50% content of
the ground state.

B. Current through a linear triple quantum dot

The theory of sequential tunneling through a triangular
TQD molecule has been described in detail in Ref. 20. Here,
we extend the approach to include both electron-phonon
interaction and cotunneling and apply this theory to describe

FIG. 3. (Color online) (a) The three-electron molecule energy
spectrum with total Sy = 1/2 as a function of bias �, obtained from
the single-band Hubbard model. As � increases, the five energy levels
anticross. The blue curve, corresponding to total spin-3/2 state, does
not interact with the other states. The energy levels are artificially
shifted by a constant values for better visibility. The inset shows the
energy levels near the anticrossing point. (b) Shows the projection of
the ground state onto |L1〉 (the red curve) and |Y 〉 (the black curve)
states. The wave function of the ground state is obtained from exact
diagonalization of the single-band Hubbard model. The blue dashed
lines provide the same information but obtained from the analytical
approximation for |L+

1 〉 = cos(θ ) |L1〉 + sin(θ ) |Y 〉 discussed in the
text.

current and spin blockade in a LTQD. Following Refs. 20, 38,
43, and 44, the current between lead r and a TQD device in
the vicinity of a QP involving N = 2 and N + 1 = 3 electrons
can be written as a difference between the current from the
lead to the TQD and a current from the TQD back to the
lead r:

IrD = −e
∑
ir ,σ

∑
αN ,βN+1

W seq
r (αN → βN+1)PαN

+ e
∑
ir ,σ

∑
αN ,βN+1

W seq
r (βN+1 → αN )PβN+1 , (11)

where |αN 〉 is an N -electron many-body eigenstate of the
isolated TQD with energy EαN

and associated steady-state
probability PαN

, obtained by solving the rate equation as
explained below. The sequential tunneling rate W

seq
r (αN →

βN+1) provides the rate of transition for the TQD from
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an N -electron αN state to an (N + 1)-electron state due to
first-order perturbation from the lead r . Details of sequential
tunneling rates will be provided later.

The probabilities PαN
’s are the diagonal matrix elements

of the reduced density matrix ρ. The time evolution of these
diagonal matrix elements is described by the Pauli master
equation

ṖαN
=

3∑
N ′=2

∑
βN ′

PβN ′ W (βN ′ → αN ) − PαN
W (αN → βN ′ ),

(12)

where transition rates WαN →βN ′ are calculated using Fermi’s
golden rule. We consider sequential tunneling rate W

seq
r in first

order in coupling to the lead r , intra-TQD phonon-induced
relaxation rate Wph, and second-order cotunneling rate W cot

r .
The master equation is solved to obtain steady-state solution
for the probabilities PαN

by setting the time derivatives to be
zero.

With the coupling to a lead r in Eq. (2), the first-order
sequential tunneling rates read as

W seq
r (αN → βN+1) = 2π

h̄

∑
k

∣∣∣∣∣〈βN+1|
∑

i

t̃ ri (k)ĉ†iσ |αN 〉
∣∣∣∣∣
2

× δ(ωαβ − εrk)fr (ωαβ), (13a)

W seq
r (βN+1 → αN ) = 2π

h̄

∑
k

∣∣∣∣∣〈αN |
∑

i

t̃ ri (k)ĉiσ |βN+1〉
∣∣∣∣∣
2

× δ(ωαβ − εrk)(1 − fr (ωαβ)), (13b)

where fr (ε) = 1/{exp[(ε − μr )/kBT ] + 1} is the Fermi func-
tion of the lead r , ωαβ = EβN+1 − EαN

, and εrk is the energy of
a state associated with wave vector k of lead r . We remark that
the summation over index i in the sequential tunneling rate
refers to summing the tunneling contributions from the S and
P orbitals in a quantum dot. By expanding the norms of the
complex-valued matrix elements in the above equations and

introducing an integration variable ω, the sequential tunneling
rates can be also expressed as follows:

W seq
r (αN → βN+1)

= 2π

h̄

∑
i,j

∫
dωA

αβ

ij (ω)Br
ij (ω)fr (ωαβ), (14a)

W seq
r (βN+1 → αN )

= 2π

h̄

∑
i,j

∫
dωA

αβ

ij (ω)Br
ij (ω)[1 − fr (ωαβ)], (14b)

with generalized spectral functions45 of the TQD,
A

αβ

ij = ∑
σ 〈αN |ĉiσ |βN+1〉〈βN+1|ĉ†jσ |αN 〉δ(ω − ωαβ), and

generalized spectral function of the lead r , Br
ij (ω) =∑

k t̃ ri (k)[t̃ rj (k)]∗δ(ω − εrk). By substituting the sequential
tunneling rates in Eq. (11) with Eq. (14), one can relate the
current through a TQD with the spectral functions of the TQD
and the leads.

We now provide relaxation rates due to electron-phonon in-
teraction and cotunneling. For large source-drain bias voltage
|eVsd |  |tij |, the change in the onsite energy of dots due to
the source-drain bias will take the system off the resonance,
away from the QP. In this regime, the current is dominated by
inelastic tunneling between orbitals of neighboring quantum
dots due to electron-phonon interaction. The phonon emission-
induced relaxation rate40 reads as

Wph(αN → βN ) = 2π

h̄

∑
q

∣∣∣∣∣∣
∑
i,j,σ

Mij (q)〈βN |ĉiσ ĉ
†
jσ |αN 〉

∣∣∣∣∣∣
2

× δ
(
EαN

− EβN
− h̄ωq

)
g(h̄ωq,T ),

(15)

where h̄ωq = h̄cs |q| is phonon energy and g(h̄ωq) is the
thermal occupation number for phonon mode q at temperature
T . Spin blockade occurs when the spin-3/2 polarized states
|α3〉 become a trap state, with W

seq
r (α3 → β2) = 0. However,

the spin blockade can be lifted if we allow cotunneling. We
consider the inelastic cotunneling transition rate,43,46 which
involves an exchange of electrons between a lead r and the
TQD in a spin-3/2 state:

W cot
r (α3 → β3) = 2π

h̄

∑
σ,σ ′,k,k′

fr

(
εσ ′
k′
r
/h̄

)[
1 − fr

(
εσ
kr
/h̄

)]
δ
(
Eβ3 − Eα3 + εσ

kr
− εσ ′

k′
r

)
∣∣∣∣∣∣∣
∑
γ2,i,i ′

t ri (kr )t ri ′(k
′
r ′)

(
C

i ′r σ
′

α3γ2

)∗
C

irσ
β3γ2

Eα3 − Eγ2 − εσ
kr

∣∣∣∣∣∣∣

2

, (16)

where Ciσ
α3,γ2

= 〈α3|ĉ†iσ |γ2〉, |γ2〉 is a triplet state, and εσ
kr

is the
energy for an electron with wave vector k and spin σ of the lead
r . In Eq. (16), we have considered only inelastic contribution
of the cotunneling rate, as the resonant cotunneling rate47 is
exponentially suppressed at the low-temperature limit.

III. TRANSPORT AND SPIN BLOCKADE

In this section, we compute and discuss the transport
properties and spin blockade in a LTQD at both SQP and
AQP. We set onsite Coulomb repulsion between S orbitals to be
U11 = U22 = U33 = U = 3.0 meV, and we use U as the unit of

energy scale. For S and P orbitals in the same dot, we set U14 =
U35 = U ′ = 0.94U , and U44 = U55 = U ′′ = 0.96U for P

orbitals in the same dot. We set ti,j = t = −6.0 × 10−3 U

for tunneling between S orbitals in neighboring dots. We set
tij = t ′ = −6.2 × 10−3 U for tunneling between the S and
P orbitals on neighboring dots. We set Vij = V ′ = 0.2 U

between neighboring dots and Vij = V = 0.1 U between dots
1 and 3. The energy difference between S and P energy levels
�sp in the same dot is taken to be 0.8U and 0.25U in different
cases considered below.

The tunnel coupling for the tight-binding chain in the
leads is taken as tL = tR = −2.0U . The large tunnel coupling
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FIG. 4. (Color online) The energy spectrum of a multiband
Hubbard model as a function of source-drain bias. In the figure, the
blue curve represents the four two-electron states. They are very close
in energy and look degenerate in the energy resolution present here.
The green curve is the quadruply degenerate spin-3/2 states. The red
curves are each doubly degenerate spin-1/2 states. Inset: A summary
of the states involved in the main figure at a particular value of Vsd .

for the leads allows a wide energy band, which increases
the amount of available states for transport. As for the
dot-lead tunnel coupling t ri , we set tL1 = −1.0 × 10−3U and
tL4 = −1.1 × 10−3U . Only the S and P orbital in dot 1 is
connected to the left lead. Symmetrically, we set tR3 = tL1 and
tR5 = tL4 . The rest of the tunnel coupling parameters are zero
in our model. For interaction between electrons in the TQD
and bulk LA phonons, we use the following GaAs parameters:
�(q) = √

D2h̄ωq/2ρc2
s , where D = 2.9 U , ρ = 5300 kg/m3,

cs = 3700 m/s, and ωq = csq.
We measure current in unit of I0 = e|tL1 |2/h̄|tL|. We assume

total potential difference eVsd across the two leads and a linear
decrease of this potential across the device. The chemical
potentials on the two leads are given by μL = eVsd/2 and
μR = −eVsd/2. The onsite energies are given by E1,(4)(Vsd ) =
E0

1,(4) + eVsd/6, Ei2 = E0
i2

, and E3,(5)(Vsd ) = E0
3,(5) − eVsd/6,

respectively, and electron temperature in all calculations is set
to kBT = 2.0 × 10−3 U .

A. Quantum-interference-based spin blockade

We first consider transport through the SQP: {(1,0,1),
(2,0,1), (1,1,1), (1,0,2)}, and we assume that the quantum dot
potentials are tuned in such a way that the P orbitals (i = 4,5)
in edge dots may participate in the electronic transport. We
set E1 = E3 = −U − V and E2 = −2V ′ in order to bring
the four charge configurations into resonance. For the present
case, we set a high single-particle level spacing �SP = 0.8U

in the edge dots. A large energy spacing between the S and P

orbitals allows one to focus on a few lowest states for transport
at bias |eVsd | � U . For instance, Fig. 4 shows the energy
diagrams of the relevant two- and three-electron states near
the SQP as a function of Vsd . In the presence of small Vsd , the

energy spectrum does not alter much and the wave functions
remain similar to the wave functions at zero Vsd . The inset
in Fig. 4 categorizes the states associated with the energies in
the main figure. There are four active two-electron states: one
singlet |S〉, and triply degenerate triplet states |T ±,0〉. These
four states are characterized predominantly by the (1,0,1)
charge configurations as discussed in Sec. II A. For N = 3
subspace, there are four spin-1/2 states below the spin-3/2
states. The four spin-1/2 states are |L+

1 〉 and |L+
0 〉 and their

counterpart in the Sy = −1/2 subspace. In the absence of
magnetic field, these states remain degenerate. Next up in the
three-electron subspace are the quadruply degenerate spin-3/2
states |S = 3/2,Sy = ±1/2, ± 3/2〉. The last four levels are
|L−

1 〉 and |L−
0 〉 states and their counterpart in Sy = −1/2

subspace. We emphasize that these three-electron states are
admixtures of (2,0,1), (1,1,1), and (1,0,2) configurations
with comparable weights except the spin-polarized states as
discussed in Sec. II A. Based on the analysis of wave functions,
obtained from the exact diagonalization of a single-band
Hubbard Hamiltonian, the only dark channels38 in the LTQD
are the spin-3/2 states. As the spin-3/2 wave functions |S =
3/2,Sy = ±1/2, ± 3/2〉 do not overlap significantly with the
two-electron triplet states |T ±,0〉, when an electron is added or
removed from the edge dots, the conventional spin blockade
is not expected in this regime.

Figure 5(a) shows the current I (Vsd ) of a LTQD and
Fig. 5(b) shows the steady-state occupation probability of
the four spin-3/2 states as functions of Vsd . This was done
by setting the cotunneling rate Wr

cot = 0. The I -Vsd curve is
symmetrical with respect to the bias direction as it should
be at SQP. The most prominent feature is that the vanishing
of the current and therefore significant negative differential
conductance associated with high occupation probability of
the spin-3/2 states. As shown in Fig. 5(a), the current is
completely suppressed at a very limited bias regime; this
is very different from the I -V curve in the spin-blockade
regime in a DQD. These numerical results are obtained from
a five-level Hubbard model, and the negative differential
conductance is not reproduced when we use just the three-level
Hubbard model for the transport calculation. This implies that
this negative differential conductance is related to the existence
of the high-energy P orbitals.

In order to explain this negative differential conductance,
we need to study Sy = 3/2 subspace with all five orbitals.
There are 10 possible configurations for three spin-up electrons
in five orbitals. Using the Hubbard model with these five
orbitals, the configuration with the lowest energy is |↑1 ,↑2 ,

↑3〉 = ĉ
†
1↑ĉ

†
2↑ĉ

†
3↑|0〉, and the next two configurations are

|↑1 , ↑3 , ↑5〉 = ĉ
†
1↑ĉ

†
3↑ĉ

†
5↑|0〉 and |↑1 , ↑3 , ↑4〉 = ĉ

†
1↑ĉ

†
3↑ĉ

†
4↑|0〉.

Configuration |↑1 ,↑2 ,↑3〉 is separated from |↑1 ,↑3 ,↑5〉 and
|↑1 ,↑3 ,↑4〉 by an energy gap of ∼U + �sp − �. The other
seven configurations are even further away in energy. The
Hamiltonian of this low-energy configuration subspace in the
basis of {|↑1 ,↑3 ,↑5〉, |↑1 ,↑2 ,↑3〉, |↑1 ,↑3 ,↑4〉} is

H3/2 =

⎡
⎢⎣

E1 + 2E3 + �sp + U ′ + 2V −t ′ 0

−t ′ E1 + E2 + E3 + 2V ′ + V −t ′

0 −t ′ 2E1 + E3 + �sp + U ′ + 2V

⎤
⎥⎦ , (17)

085309-7



CHANG-YU HSIEH, YUN-PIL SHIM, AND PAWEL HAWRYLAK PHYSICAL REVIEW B 85, 085309 (2012)

FIG. 5. (Color online) (a) The current I (Vsd ) as function of the applied source-drain bias Vsd of a LTQD at the SQP in the low source-drain
bias regime. Note zero current at Vsd ≈ ±0.08. (b) The steady-state occupation probability of the spin-3/2 states as a function of Vsd . Panels
(a) and (b) together indicate that the spin-3/2 states are related to the bidirectional, quantum-interference-based dark channel in a LTQD.
(c) Projection of the triplet state |T +〉 onto the configuration ĉ

†
1↑ĉ

†
2↑|0〉, and the projection of the spin-3/2 state |3/2〉 onto the configuration

ĉ
†
1↑ĉ

†
3↑ĉ

†
5↑|0〉. (d) Ratio of matrix elements | η1

γ1
| (see text for the definition) in the unit of the ratio | tR3

tR5
|. Spin blockade is formed when the red curve

intercepts y = 1 line in the figure. Panels (c) and (d) are presented to illustrate the formation of the spin blockade in the positive bias direction.

where E1 and E3 are almost identical when Vsd is small. This Hamiltonian matrix looks similar to the two-electron triplet
Hamiltonian [Eq. (5)], except that the tunneling matrix elements acquire a negative sign for the three electron system. This
negative sign is simply due to the anticommutation relation between fermionic operators. Exact diagonalization of the above
Hamiltonian gives a ground state

|3/2〉 = η

(
|↑1 ,↑2 ,↑3〉 + η1

η
|↑1 ,↑3 ,↑5〉 + η2

η
|↑1 ,↑3 ,↑4〉

)
, (18)

where coefficients η1(2) are of the same order of magnitude
as the coefficients γ1(2) for |T +〉 in Eq. (7). This can
be understood by analyzing the Hamiltonians. The energy
difference between the configurations |T1〉 and |T3〉 is given
by |� + V ′ − V |, and the energy difference between the
configurations |↑1 ,↑3 ,↑5〉 and |↑1 ,↑2 ,↑3〉 is given by |� −
�sp − U ′ − V + 2V ′|. Considering that � and �sp are both of
the order of U , the two energy gaps are actually comparable.
In general, hybridization of configurations | i〉 and |j 〉 in a
wave function can be estimated by 〈i|H |j〉

Ei−Ej
. In our case, the

S-P tunnel coupling t ′ is of the same order of magnitude
as the S-S tunnel coupling t . This explains why η1(2) are
comparable to γ1(2) in magnitude. Furthermore, η1(2) have
opposite signs with respect to γ1(2) because the off-diagonal
matrix elements in Eqs. (17) and (5) have opposite signs.
Figure 5(c) presents the norm of γ1 and η1 from the exact
diagonalization of the five-level Hubbard model as a function
of Vsd .

Next, we look at the rate equation for the state |3/2〉 when
the system is subject to a positive source-drain bias, i.e.,
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charging electron from left dot and removing electron from
right dot:

dP3/2

dt
= −W

seq
R (3/2 → T +)P3/2 + W

seq
L (T + → 3/2)PT + .

(19)

Note that the only allowed two-electron state is |T +〉 because
the total spin can not change by more than 1/2 when adding
an electron. The phonon relaxation does not play a role here

because |3/2〉 and |T +〉 are the lowest-energy states in their
own spin-resolved subspaces, respectively. For simplicity, we
have ignored the cotunneling contribution in this analysis,
and numerical results in Fig. 5 are also obtained without
the cotunneling terms. Cotunneling effects will be discussed
below. In order for |3/2〉 to be a trap state, the incoming
rate W

seq
L (T + → 3/2) should dominate over the outgoing rate

W
seq
R (3/2 → T +):

W
seq
R (3/2 → T +) = 2π

h̄

∑
k

∣∣〈T +|t̃R3 (k)ĉ3↑|3/2〉 + 〈T +|t̃R5 (k)ĉ5↑|3/2〉∣∣2
δ(E3/2 − ET + − εkR)(1 − fR),

= 2π

h̄

∑
k

∣∣∣∣(|γ1|tR3 − |η1|tR5
) e−ika

√
2π

∣∣∣∣
2

δ(E3/2 − ET + − εkR)(1 − fR), (20)

where t̃Ri (k) = tRi e−ika/
√

2π and fR is the Fermi function for
the right lead. The coefficients γ1 and η1 are defined in Eqs. (7)
and (18), respectively. The expression (|γ1|tR3 − |η1|tR5 ) gives
the interference between the two possible paths of removing
an electron (via the S and P orbitals) from the right dot. The
minus sign in the expression stems from the fact that η1 and
γ1 have opposite signs, and the origin of this sign difference
was already explained immediately following Eq. (17). We
see that the condition for the quenching of W

seq
R (3/2 → T +)

is |γ1/η1| = |tR5 /tR3 |. Figure 5(d) presents the ratio |γ1/η1| as a
function of Vsd . At points of strongest current suppression, we
observe that the ratio indeed matches the ratio of |tR5 /tR3 |. In
short, the negative differential conductance sets in whenever
the two possible paths (removing an electron from the S

or P orbital) of electronic transport become comparable
in amplitude and interfere destructively. This destructive
interference is possible only for the transport channels through
spin-3/2 states. In terms of spin configurations, the transport
channel |3/2〉 → |T +〉 involves the two paths (↑1 , ↑2 , ↑3) →
(↑1 , ↑2) and (↑1 , ↑3 , ↑5) → (↑1 , ↑3), which can destruc-
tively interfere. For all other transport channels, electronic
transport occurs with much higher probability amplitude via
the S orbital in the edge dots at the low source-drain bias.

Figures 6(a) and 6(b) show the current through the
LTQD and the steady-state probability distribution for the
spin-3/2 states in the parameter space of (E1 = E3,E2)
at a small bias eVsd = 0.01 U , respectively. In this
calculation, the cotunneling effect is included. Although
the quantum-interference-based spin blockade is formed
under a very specific condition, Fig. 6(b) shows that the
interference-based spin blockade can still be observed in the
parameter space of onsite energies. The cotunneling effects
can be analyzed when we add terms

∑
r=L,R

∑
β3

W cot
r (β3 →

3/2)P β3 − ∑
r=L,R

∑
β3

W cot
r (3/2 → β3)P 3/2, where |β3〉 is

a three-electron state with S = 1/2, in Eq. (19). In Eq. (20), we
analyze the condition for the transition rate from |3/2〉 to |T +〉
to vanish. With cotunneling included in the model, we should
analyze the condition for the transition rate from |3/2〉 to each
|β3〉 state to vanish. In principle, each transport channel has its

unique condition for the quenching, and the interference-based
quantum spin blockade will be lifted. However, the additional
rates due to cotunneling are much smaller in amplitude as they
scale with |tL1 |4 for the second-order processes. The system
still gets blockaded in the spin-3/2 state when the sequential
tunneling driven transition [W seq

R (3/2 → T +)] vanishes
because the incoming rate W

seq
L (T + → 3/2), a first-order pro-

cess, scales with |tL1 |2 and is around five orders of magnitude
larger than the rates driven by the cotunneling processes.

Finally, we remark that similar orbital interference-based
blockade has recently been reported by Donarini et al.48

for a triangular TQD with one orbital each in the single-
electron regime. In the triangular arrangements, the rotational
symmetry yields many-body spectrum with degeneracies.
Thus, the tunneling electron can travel through two energeti-
cally degenerate transport channels to achieve the destructive
interference necessary for the blocking state. In this study
with a linear TQD, the energetically equivalent paths needed
for quantum interference come from the removal or addition
of electron via either the S or P orbital in the edge dots as
already discussed.

B. Symmetrical and asymmetrical spin blockade

Next, we look at the SQP again with a different single-
particle level spacing �sp = 0.25U . In this case, we will
consider a wider range of source-drain bias with eVsd > U .
Figure 7(a) shows the current I (Vsd ) of the TQD near the SQP.
We again have a symmetric I (Vsd ) with respect to the bias
directions and, therefore, the observed negative differential
conductance is also bidirectional. We will focus on the positive
bias direction for the following discussion. We note that there
are two regions where the current is strongly suppressed in the
positive bias direction in Fig. 7(a). One point is at the low bias
regime eVsd � U , and the other point is at the high bias regime
such that onsite triplet occupation is allowed in the transport
window. From Fig. 7(b), we see that the system is trapped in
(1,1,1) spin-3/2 states whenever the current is significantly
suppressed in Fig. 7(a). The strong current suppression at
the low bias is due to the quantum-interference-based spin
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FIG. 6. (Color online) (a) Current of the LTQD in the parameter
space of (E1 = E3,E2). The transport region manifests a rounded
boundary, which indicates the states involves in the electronic
transport are highly hybridized states. The transport region is
separated into two parts by a thin line of strong current suppression.
This is the region of dark channels. (b) The steady-state occupation
probability for spin-3/2 states. High amount of spin-3/2 states are
found exactly where the currents vanish in panel (a).

blockade we described in the previous section. As source-drain
bias is further increased, the wave function inside the LTQD
also changes. Gradually one path of electronic transport
becomes preferred and quantum interference vanishes. At the
high bias, the second current suppression is identified to be
the more familiar spin-blockade phenomenon in the double
quantum dot, and it is characterized by an extended region of
current suppression over a wider range of source-drain bias.
At high bias, hybridization of levels becomes insignificant,
and it is instructive to look at each eigenstate as a particular
localized configuration. Figure 8 presents a schematics of how
this high-bias spin blockade is formed and lifted in the LTQD
at high bias. The spin blockade is formed when the onsite
triplet becomes accessible in the left dot but not in the right
dot in the transport window when a positive bias is applied.
Due to the phonon-induced relaxation, the onsite triplet in the
left dot will relax by allowing electron-phonon scattering to

FIG. 7. (Color online) (a) Current of the LTQD at the SQP as
a function of eVsd . In both bias directions, we observe negative
differential conductances at two different bias regimes. (b) The
steady-state occupation probability for spin-3/2 states. The two
panels together show that the LTQD is trapped in spin-3/2 state
whenever the current is strongly suppressed.

redistribute the electron from the P orbital in the edge dot onto
the S orbital in the central dot. When the onsite triplet state
in the right dot is still too high in energy for occupation, the
system gets stuck in this (1,1,1) spin-3/2 configuration. This
spin blockade is lifted when the bias is further increased so the
onsite triplet becomes accessible in the right dot too. Then, the
phonon-induced relaxation will again help transfer the electron
from the central dot onto the right dot. We remark that the spin
blockade does not happen in this model if the phonon-induced
relaxation mechanism is removed. From this picture, we can
derive the spin-blockade regime from the parameters we used.
The energies of the relevant configurations are

E(↑1↑3) = E1 + E3 + V = −2.1U,

E(↑1↑3↑4) = 2E1 + �sp + E3 + U ′ + 2V + eVsd

6

= −1.91U + eVsd

6
,

E(↑1↑2↑3) = E1 + E2 + E3 + 2V + V ′ = −2.1U,

E(↑1↑3↑5) = E1 + 2E3 + �sp + U ′ + 2V − eVsd

6

= −1.91U − eVsd

6
.
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FIG. 8. (Color online) Schematic representation of lifting of
spin blockade. (a) (2,0,1) configuration obtained from the (1,0,1)
configuration when an additional electron tunnels onto the P orbital
of dot 1. (b) Due to phonon-induced relaxation in the model, the
added spin moves from the P orbital in dot 1 to the S orbital in
dot 2. However, it does not proceed further to the dot 3 because this
costs energy. (c) At larger source-drain bias in the positive direction,
the energy levels in dot 3 are lowered with respect to those of dot 2.
Thus, the phonon-induced relaxation assists the electron to move onto
dot 3.

For an electron to move from the left lead to the TQD,
E(↑1↑3) + εe = E(↑1↑3↑4) for an electron energy εe � μL =
eVsd/2. Thus, we get eVsd � 0.57U . E(↑1↑2↑3) is always
lower than E(↑1↑3↑4) for forward bias, so the relaxation from
|↑1↑3↑4〉 to |↑1↑2↑3〉 is allowed. For the spin blockade to
occur, the transition from |↑1↑2↑3〉 to |↑1↑3↑4〉 should not be
possible by phonon emission. So, E(↑1↑2↑3) < E(↑1↑3↑5),
which leads to eVsd < 1.14U . Therefore, the spin blockade
regime is 0.57U � eVsd < 1.14U , which agrees very well
with the numerical result in Fig. 7(a).

Next we consider the current of the LTQD at the AQP: (011),
(012), (021), and (111). We again use a five-level Hubbard
Hamiltonian for transport calculation. We assume that the
quantum-dot potentials are now tuned such that the S orbital
in the left dot, and the S and P orbitals in the central dot and
the right dot become relevant for the electronic transport. In
the weak tunnel coupling limit, the four charge configurations
should be on resonance, and we set E1 = −V − V ′ and
E2 = E3 = −U − V . Figure 9(a) shows the I (Vsd ) of the
TQD near the AQP. As expected, the current of the TQD
near the AQP is very different under the two bias directions.
Figure 9(b) confirms the spin blockade where the current is
severely suppressed in the positive bias direction in Fig. 9(a).
This phenomenon is in close analogy to the case of a DQD,
and can be easily explained. In the positive bias, the electron
is injected from the left dot. The transition from the (0,1,1)
triplet to a (1,1,1) spin-3/2 state does not require the formation

FIG. 9. (Color online) (a) The current of the LTQD at AQP as a
function of Vsd . The current response is asymmetrical with respect
to the bias direction. Similar to a DQD, current suppression is only
observed in one direction of the bias. (b) The steady-state occupation
probability for spin-3/2 states. The current suppression is associated
with the spin-3/2 states.

of onsite triplet. In the negative bias direction, the electron is
injected from the right and transition from the (0,1,1) triplet
state to a spin-3/2 state requires the formation of an onsite
triplet in the right dot. Therefore, before the bias threshold
μ∗

R = E(0,1,2∗) − E(0,1,1), no spin blockade is expected
to be formed. (0,1,2∗) represents charge configuration in
which one of the electrons occupies the P orbital in dot 3.
When the applied bias exceeds the threshold, the condition
E(0,1,2∗) � E(0,2∗,1) � E(1,1,1) is also satisfied. Thus,
either due to resonant tunneling or inelastic process, this
additional electron can always be removed from the right
lead. Therefore, there is no spin blockade in the negative bias
direction. We remark that the spin blockade at AQP can be
formed without the assistance of any relaxation mechanism.
So, the spin blockade of a TQD at AQP is almost identical to
the spin blockade in a DQD. Figure 10 presents the transport
triangle in the parameter space (E1,E2 = E3) at a positive
bias. In this figure, the light trail at the tip of the triangle is
proportional to the onsite singlet-triplet gap in the central dot.
This transport triangle, although generated under the specific
condition E2 = E3, provides similar information that one can
extract from the transport triangle for the DQD.
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FIG. 10. (Color online) The current of the LTQD at AQP in the
parameter space (E1,E2 = E3).

IV. CONCLUSION

We presented a theory of electronic properties and transport
through a LTQD around QPs. We showed that the spin
blockade could serve as a spectroscopic tool for the detection
of different spin states. Two different QPs containing the
(1,1,1) configuration were discussed. A multiband Hubbard

model with five levels was used to describe the electronic
properties and investigate the spin-blockade phenomenon
in the LTQD. For both QPs, strong current suppression
and negative differential conductance were predicted. At the
SQP, suppression in conductance was obtained under two
different source-drain bias regimes. When the bias is small,
the electronic transport involving spin-3/2 states takes place
either via the S or P orbitals in the edge dot with comparable
amplitude and results in a destructive interference. In the
high-bias regime where electron tunnels onto the P orbital
in the edge dot, spin blockade is facilitated by spin-conserving
relaxation mechanisms, such as interaction with LA phonons
studied here, and formation of the trap state. At the SQP, the
spin-blockade phenomenon is bidirectional, in contrast with
the spin blockade in a DQD. We also discussed spin blockade
at the AQP. The spin-blockade formation and lifting in this case
is in close analogy to the DQD case. The formation of the spin
blockade does not involve any onsite triplets, only the lifting of
the spin blockade requires the access to the onsite triplet states
in the transport window. Similar to the DQD, the spin-blockade
phenomenon at AQP only occurs in one bias direction.
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