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Rashba effect in type-II resonant tunneling diodes enhanced by in-plane magnetic fields
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In this paper, we adapt the transfer matrix method to calculate the current-voltage curves of type-II
GaAsSb/InGaAs resonant tunneling diodes on which a huge Rashba splitting of the current resonances has
been reported recently. It is shown that, in transverse magnetic fields, the k‖ distribution of tunneling electrons is
shifted to higher values. Through this process, a significant asymmetry is induced in the tunneling structure, which
finally leads to a strong enhancement of the Rashba effect. Further, we find that the Rashba effect is extremely
sensitive to the electric fields produced by the band discontinuities at the heterostructure interfaces and to the
spin-orbit coupling constants in the respective materials. Using a one-band model for the spin-orbit coupling
constant, the effects of temperature and local electric fields on the Rashba parameter are also investigated. From
our findings, we conclude that spin-splitting effects and large spin-orbit interactions should be quite dominant in
any narrow-gap type-II heterostructure, and not only in the GaAsSb/InGaAs material system.

DOI: 10.1103/PhysRevB.85.085303 PACS number(s): 71.70.Ej, 73.40.Gk, 73.20.−r, 75.76.+j

I. INTRODUCTION

The control of the spin degree of freedom is a key
point for developing functional devices in semiconductor
spintronics.1–3 The use of gate voltages or designed structures
instead of magnetic fields in order to lift spin degeneracy
would be preferred.4,5 For this specific task, spin-orbit (SO)
interaction effects are the most promising way to achieve total
spin manipulation in semiconductor heterostructures. In the
two-dimensional (2D) case, the spin-orbit coupling due to
structural inversion asymmetry known simply as the “Rashba
effect”6,7 is of advantage. The energy dispersion relation for
a 2D system with Rashba spin-orbit coupling is given by
E± = Ez + (h̄k‖)2/2m∗ ± αk‖, where each sign corresponds
to a spin state for a given wave vector k‖. The parameter α

is the material-dependent Rashba spin-orbit coupling constant
which includes all spin-orbit mechanisms in the system.

II. RASHBA EFFECT IN RESONANT TUNNELING

In our most recent work,8 we demonstrated experimentally
how a transverse magnetic field can be used to determine
the Rashba parameter α in InGaAs/GaAsSb double-barrier
resonant tunneling diodes (RTDs). In the perpendicular trans-
port case, the in-plane magnetic field is used to accelerate
the tunneling electrons parallel to the barrier planes via
Lorentz forces. Figure 1 shows a qualitative sketch of the RTD
conduction band with the current and magnetic field directions
indicated. The increase of the in-plane momentum k‖ enhances
the Rashba effect (E↑ −E↓= 2αk‖) in the quantum well
(QW), which results in the splitting of the characteristic RTD’s
current resonance into two.

The mechanism that causes the enhancement of the Rashba
effect in InGaAs/GaAsSb RTDs can be qualitatively under-
stood in Fig. 2. The filled parabolas represent the emitter
states and the two separated open parabolas represent the
Rashba levels in the quantum well. When B = 0 [Fig. 2(a)], the
electrons do not gain any in-plane momentum while tunneling
from the emitter into the quantum well. This can be represented
graphically by centering the emitter parabola at k‖ = 0. When
the tunneling condition is reached [position 2 in Fig. 2(a)],

the emitter parabola overlaps both Rashba parabolas in the
quantum well simultaneously and no splitting is seen [position
2 in lower curve of Fig. 2(b)]. When B > 0, the tunneling
electrons gain in-plane momentum and the emitter parabola
is centered at k‖ �= 0 [Fig. 2(a)]. This asymmetry in k‖ space
allows the emitter parabola to overlap each Rashba parabola
separately [positions 2 and 3 in Fig. 2(a) for B > 0], producing,
thus, the peak splitting observed in the upper curve of Fig. 2(b)
(B > 0). The energy separation between the split resonance
peaks caused by the shift in in-plane momentum given by the
magnetic field yields the Rashba parameter. The experimental
values for the Rashba parameter in these structures range from
0.38 to 0.75 eVÅ for well widths between 7 and 20 nm (see
Ref. 8).

In order to get a more quantitative understanding of the
observed results, we calculated the tunneling current using
the Esaki-Tsu model.9 All scattering effects were neglected
and the electron transport was assumed to be completely
ballistic. The transmission coefficient was calculated via
the transfer matrix formalism, where the influences of the
transverse magnetic field and of the Rashba effect on the
in-plane energies are taken into account in a semiclassical
picture. Nonparabolicity effects in the quantum well10 are
taken into account via a two-band Kane model11 m∗(E) =
m∗

0(1 + 2 E
Egap

), where m∗
0 is the bulk effective mass and E

is the energy above the conduction band. For the Rashba
parameter calculation we used the one-band model developed
by de Andrada e Silva, La Rocca, and Bassani.12 The tem-
perature dependence of the Rashba parameter is implemented
in the calculation via the temperature-dependent band gaps of
the involved materials.

III. CALCULATION OF THE TUNNELING CURRENT

For the calculations we used a typical sample with 9-nm-
thick barriers and a 13-nm-long quantum well. The magnetic
field is set in the plane of the barriers and the current
is considered to flow from left to right in the z direction
(see Fig. 1). As usual, we assume ballistic transport in the
active region of the RTD and e-e and e-phonon scattering
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FIG. 1. (Color online) Sketch of the biased RTD’s conduction
band with indication of the current flow and magnetic field directions.
E↑ and E↓ correspond to the spin states.

processes are neglected. The tunneling current density is
given by j = evn, where e is the elementary charge, v is the
tunneling velocity, and n is the transmitted electron density.
The transmitted current density can be written in terms of
the wave number k by using the relation v = h̄k

m∗ . In order
to calculate the transmitted electron density, we assume a
two-dimensional emitter electrode with one occupied subband
only. The sheet density of transmitted electrons [Eq. (1)] is the
integral in k space of the product of the density of states D(k‖)
and the transmission coefficient T of the tunneling structure
weighted by the Fermi distribution,

n2D =
∫ ∞

0
D(k‖)f (k‖)T (kz,k‖; V ; B||)dk‖. (1)

In order to calculate the current density, an electron concen-
tration per volume unit is needed. This can be determined
assuming n3D = (n2D)2/3.

We obtain the value of kF from the 2D carrier density in the
emitter, which we estimate by using a parallel-plate capacitor
model under external bias:

en2D = Q

A
= εε0V

d
, (2)

where A is the area of the device, V the applied bias, ε the
dielectric constant, and d the distance between the RTD and
the highly doped back contact region. For the bias-dependent
transmission coefficient, the band profile was first calculated
at zero bias by solving the Poisson equation numerically.13

For biased structures, a linear voltage drop between the
emitter and the collector contact was assumed. After this,
it is straightforward to determine the Fermi energy and the
corresponding Fermi vector in the emitter side:

E2D
F = πh̄2

em∗
εε0V

d
, kF =

√
2m∗E2D

F

h̄2 . (3)

Now, all that is needed for the calculation of the tunneling
current is the determination of the transmission coefficient T

including the influences of the magnetic field and the Rashba
effect.
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FIG. 2. (Color online) Rashba effect enhancement in double-
barrier RTDs. For B = 0 (a), the emitter parabola is centered at k = 0
and overlaps both Rashba states in the quantum well simultaneously
during resonance [step 2 of the lower curve in (b)]. For B > 0,
the emitter parabola is centered at k > 0 and thus it can overlap
each Rashba state separately. This results in two resonance peaks
represented by steps 2 and 3 of the upper curve in (b). The resonances
shown in (b) are actual experimental data for a RTD with a 13 nm
well.

IV. SPIN-DEPENDENT TRANSMISSION COEFFICIENTS

A. The influence of transverse magnetic fields

To consider the effects of a magnetic field, the trans-
mission coefficient T (kz) must be accordingly adapted. This
calculation can be done conveniently in a semiclassical way.
For instance, if the magnetic field is set in the x direction
(Bx), the ky and kz components of the electron’s momentum
are coupled while kx stays unaffected. The acting Lorentz
force transfers the electron’s momentum from the z to the y

direction. Quantitatively, ky increases by δky = eBx

h̄
δz where

δz = (z − z0) denotes the distance traveled in the magnetic
field. In other words, ky can be expressed as a function of the
electron’s position:

ky(z) = k0
y + eBx

h̄
(z − z0) , (4)

where k0
y is the initial wave vector component in

the y direction. The corresponding components of the kinetic
energy (Ez and Ey) change continuously while the total energy
E = Ez + Ey + Ex is conserved. Figure 3 shows qualitatively
the effect of a transverse magnetic field (Bx) on the trajectory
of an electron. If the initial value of ky is zero or negative, the
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FIG. 3. Classical trajectories of electrons in a magnetic field.
Curve 1 shows a trajectory without the influence of a magnetic field;
the other trajectories are influenced by a magnetic field parallel to
the x axis. kz and ky denote the initial values of the momentum
components. Trajectories 2 and 2b have the same initial momentum,
but in the case of 2b the magnetic field is larger.

electron always loses Ez and gains Ey (see trajectories 2 and
2b), whereas for a positive initial value of ky , as is clear from
trajectories 3 and 4, the electron first gains and then loses Ez.
Trajectory 4 shows the extreme case of kz = 0.

B. Spin-dependent transmission coefficient

The Rashba effect is included in the transmission coefficient
calculation after the addition of the spin-orbit coupling term
HSO = ±αk‖ to the in-plane energies in the QW. Minor
contributions due to the inversion asymmetry of the bulk host
material14,15 and Zeeman splitting8 are considered negligible
and not taken into account. For the calculation, the parameter
α is considered to be nonzero only in the quantum well. After
using the result from Eq. (4), the z-dependent in-plane energy
reads

E(k±
‖ (z)) = h̄2k2

‖(z)

2m∗(z)
± αk‖(z) with k‖(z) =

√
k2
x + k2

y(z).

(5)

Finally, the spin-dependent momentum k±
z is written in

terms of the electron’s position z:

k±
z =

√
2m∗(z)

h̄2 [E − U (z) ∓ α(z)k‖(z)] − k2
‖(z), (6)

where E is the total energy and U (z) is the conduction band
potential. Note that the addition of the Rashba term will imply
two distinct values for the transmission coefficient: one for
spin down (−) and the other for spin up (+).

With the result of Eq. (6), the spin-dependent transmission
coefficient can be calculated via the transfer matrix method16,17

(TMM), with a spin-dependent transfer matrix M±:(
AR

±
BR

±

)
= M±

(
AL

0

BL
0

)
, (7)

where AR
± and BR

± are the amplitudes of the spin-polarized
wave functions on the right side of the quantum well and AL

0
and BL

0 are the amplitudes of the nonpolarized wave functions

on the left side. The spin-dependent transfer matrix M± is the
product of all transfer matrices associated with each point of
the discretized potential structure:

M± =
∏ (

(aiP )± (biQ)±
(biQ∗)± (aiP∗)±

)
, (8)

where

ai = 1

2

{
1 + m∗(i+1)

m∗(i)

k±(i)
z

k
±(i+1)
z

}
,

bi = 1

2

{
1 − m∗(i+1)

m∗(i)

k±(i)
z

k
±(i+1)
z

}
,

P = exp
{
i
(
k±(i)
z − k±(i+1)

z

)
zi+1

}
,

and Q = exp
{
i
(
k±(i)
z + k±(i+1)

z

)
zi+1

}
.

The spin-dependent transmission coefficient T± is given by

T± = m∗L

m∗R

kR

kL

|AR
±|2

|AL
0 |2 . (9)

V. THE RASHBA PARAMETER AND TEMPERATURE
DEPENDENCE

For the calculation of the Rashba coefficient, we follow
the publications by de Andrada e Silva and co-workers,12,18

who showed that the Rashba parameter can be written as
the product of a material-dependent coefficient αSO with the
electric field throughout the quantum well, Eext, including the
fields at the interfaces that result from the band discontinuity
EI = dEv/dz:

α(z) = αSO
d(Ev + Vext)

dz
, (10)

where αSO = e
h̄2

2m∗
�

Eg

2Eg + �

(Eg + �)(3Eg + 2�)
. (11)

Note that, for the calculation of the Rashba coefficient, the
field in the valence band must be used.19 Since detailed
values for the spin-orbit gap � in GaAsSb do not exist in
the literature, we assumed the spin-orbit splitting in GaSb
(Ref. 18) (� = 0.75 eV), which will be a reasonably good
approximation since the formula is relatively insensitive to
the exact value of �. The Rashba parameter is especially
large at the heterointerfaces, where the potential Ev changes
significantly over one atomic layer, resulting in extremely large
electric fields. In this effective-mass picture, the electric field
produced is the ratio of the band offset in the valence band to
the effective width of the interface. Further, α can be positive
or negative depending on the electric field direction at the
interface. The interface width is assumed to be on the order of
the distance between two crystal planes, which is half of the
lattice constant in GaAsSb (0.586 nm).

The validity of this one-band approximation for the Rashba
spin-orbit coupling parameter [Eq. (11)] has been discussed in
Ref. 12, where the one-band αSO yields smaller spin splitting
energies than the full αSO calculation. Nevertheless, it will
become evident in the results of our calculations that this
simplified model is sufficient to produce good agreement
between the simulation and the experiment.
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Even though they are not apparent, the effects of fields
produced by the band discontinuities are still present in the
one-band approximation for the Rashba parameter [Eq. (11)].
It can be demonstrated if one applies the proper approxima-
tions after differentiating Eq. (5) of Ref. 12, which gives

dβ

dz
= P 2

2

[(
1

ε± − Vext(z) − Ev(z)

)2

−
(

1

ε± − Vext(z) − Ev(z) + �

)2]
d[Ev(z) + Vext(z)]

dz

, (12)

where the αSO coefficient can be identified. The αSO term
in Eq. (12) can be rewritten in terms of the effective-mass
expression given by Eq. (16) in Ref. 12:

αSO = h̄2

2m∗
Eg(Eg + �)

3Eg + 2�

[(
1

ε± − Vext(z) − Ev(z)

)2

−
(

1

ε± − Vext(z) − Ev(z) + �

)2]
. (13)

The expansion parameter δ used in Ref. 12 yields

δ(Eg + �) + Ec(z) = ε± − Vext(z). (14)

After inserting Eq. (14) into Eq. (13) and considering δ(Eg +
�) 	 Eg , one acquires the expression for αSO given by
Eq. (11).

The temperature dependence of the Rashba parameter is
included in the calculations via the band-gap energy. The
energy gap can be calculated as function of the temperature
via the Varshni formula20

Egap(T ) = Egap(0) − α̃T 2

β + T
. (15)

For InGaAs, α̃ = 4.19 × 10−4 and β = 271 (see Refs. 21 and
22) and we have α̃ = 13.5 × 10−4 and β = 135 (see Ref. 23)
for GaAsSb.

As we know of no experimental data on the temperature
dependence of the band offsets in this material in the literature,
we assumed that the ratio between the band discontinuity and
the band gap stays constant for all temperatures.

VI. RESULTS

A. Simulated currents

We now discuss the results of our simulations. Figure 4
shows the simulated I (V ) curves for a 13 nm RTD quantum
well under magnetic fields of B = 0, 1, 2, 3, and 4 T at
T = 4 K. The parameters used in the calculation are displayed
in Fig. 9(b). For better clarity, only the bias range around the
resonance is shown. As expected, at B = 0 T no peak splitting
is observed. The deviation from a symmetric Gaussian-type
resonance peak is due to the influence of nonparabolicity
effects. With increase of the magnetic field, the Rashba effect
starts to influence the in-plane energies in the quantum well
and the resonance is split into two peaks. The first peak is
associated with the spin-down electrons and the second with
the spin-up electrons. Note that the Rashba effect causes the
first peak to move backward on the bias axis for low magnetic
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FIG. 4. (Color online) Simulated I (V ) curves for magnetic fields
B = 0, 1, 2, 3, and 4 T. For a better presentation, a current offset is
added to the I (V ) curves at B �= 0 T. For the parameters used here,
please check Fig. 9(b).

fields. For high magnetic fields, though, both peaks are shifted
to higher biases as the change in the in-plane kinetic energy

term
h̄2k2

‖ (z;B)
2m∗ [see Eq. (5)] starts to play a more important role in

the tunneling energies. The overall peak positions and splitting
sizes are in excellent agreement with the experimental results
(see Ref. 8).

B. Spin polarization

In the RTD case, spin polarization is achieved in the
cases where anisotropy is present in the lateral momentum
of electron undergoing resonant tunneling.24–26 In our case,
this anisotropy is created by the in-plane magnetic field.

Each of our calculated I (V ) curves is the sum of the
corresponding spin-up (T+) and spin-down (T−) currents,
where the ± sign refers to the spin up and down along the
x direction. The contribution of each spin current and their
sum are shown in Fig. 5 for B = 2 T and T = 4 K. The spin
polarization degree of each current peak can be defined in a
similar way as in Refs. 12 and 25. Here, it is defined as the
ratio of the difference between spin-up and spin-down currents
to the total current at the corresponding peak voltage:

P± = |j± − j∓|
j± + j∓

. (16)

For the total I (V ) (dotted line) in Fig. 5, the first peak yields
≈70% spin-down polarization while the second peak delivers
≈80% spin-up polarization. The inset shows the calculated
spin polarization for each current peak as a function of the
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FIG. 5. (Color online) Calculated spin-up, spin-down, and total
currents for B = 2 T and T = 4.2 K. The dotted line corresponds to
the total current. The inset shows the current polarization as a function
of the magnetic field.

magnetic field. As the figure shows, the spin-up peak always
delivers a higher polarization degree. This happens because
the spin-down level is already very close to or even below the
conduction band edge in the emitter for the voltages demanded
by tunneling via the spin-up level. It becomes more evident
for large fields when the splitting energy is already comparable
to the injection level energy. For such fields, the polarization
degree of the second peak can reach virtually 100% while the
first peak can yield 80% spin-down polarized currents. Even
for small fields (B = 0.5 T), the calculations show that the
Rashba effect in the tunneling current can provide polarization
levels on the order of 70%.

C. Temperature dependence

The temperature influence on the Rashba splitting is
displayed in Fig. 6 for B = 2 T and T = 4, 30, 110, and 180 K.
The decreasing peak amplitude with increasing temperatures
is a consequence of the temperature-dependent occupation
statistics in the emitter electrode. Nevertheless, the most
important feature of these calculated I (V ) curves is the reduced
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FIG. 6. (Color online) Simulated I (V ) curves for temperatures of
T = 4, 30, 110, and 180 K.
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FIG. 7. (Color online) (a) Interface electric field (red) and αSO

(blue) and (b) Rashba parameter α as functions of the temperature.

distance between the split peaks as the temperature becomes
larger. This is in qualitative agreement with the experimental
results (see Fig. 2 in Ref. 8).

The reduced peak distance is a direct result of the influence
of the higher temperatures on the Rashba parameter [Eq. (10)].
As a consequence of the temperature increase, the band gap
for both materials becomes smaller [Eq. (15)], resulting in
a smaller band offset. In our type-II heterostructure, the
band offsets in the valence and conduction bands are almost
identical. In addition, the energy gaps of InGaAs and GaAsSb
are approximately the same. We thus assumed, for simplicity,
that the temperature influences the valence and conduction
band offsets equally.

The temperature increase influences the Rashba parameter
in two ways: (1) by decreasing the band offset and (2) by
increasing the αSO term. The smaller band offset yields lower
electric fields at the heterostructure interfaces. On the other
hand, the αSO term [Eq. (11)] is enlarged by the decrease in
band-gap size. In spite of this, the larger αSO is secondary and
does not dominate the behavior of the Rashba parameter, and
the splitting becomes smaller.

Figure 7(a) shows the interface field and αSO as functions
of the temperature. While the interface electric field decreases
by around 29% between T = 4 and 300 K, αSO increases by
only 1%. This is direct evidence that the main influence of the
temperature on the interface Rashba parameter comes from
the lower interface fields produced by the smaller band offsets.
Figure 7(b) displays the product of the interface electric field
with αSO (the Rashba parameter) for the bias at resonance
(V = 0.70 V). The Rashba parameter follows the interface
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FIG. 8. (Color online) Simulated peak splitting with increasing
interface with. LC stands for lattice constant. The external electric
fields (dVext/dz) are taken into consideration in all cases.

electric field tendency and drops from 3.6 eV Åat T = 4 K to
2.9 eV Åat T = 300 K.

D. Interface-width dependence

As we have shown in Sec. VI C, the main influence on the
splitting of the resonance peak comes from the strong electric
fields at the interfaces due to the band discontinuities. The
interface field is the band offset in the valence band divided by
the effective interface width. The interface width is on the order
of the distance between the crystal planes, which we consider
to be one-half of the lattice constant in GaAsSb (0.586 nm).
Further, the electric fields generated by the heterointerfaces
in the quantum well are enormous but restricted only to the
interface region.

In order to test how sensitive the Rashba splitting is to
the interface fields, we calculated the peak splitting assuming
larger interface widths. The external fields produced by the
applied voltages are also taken into consideration in all
calculations. Figure 8 shows what happens to the peak splitting
for B = 2 T and T = 4 K if the interface width is increased.
The lowest split resonance is calculated with an interface width
of one-half the lattice constant (LC). Note that the resonance
splitting becomes considerably smaller when the interface
width is considered to be equal to the lattice constant. In the
extreme case where the interface width is 1.5 times the LC,
the resonance splitting vanishes completely.

E. Effective Rashba parameter

As we have shown above, the electric fields at the interface
are the main reason for the peak splitting observed in the
resonances. The combination of such electric fields and the
αSO coefficients results in especially large Rashba parameters
right at the interfaces. Note that the Rashba parameter at the
interfaces (Fig. 7) is at least one order of magnitude larger
than the usual values reported in the literature for similar
materials.27,28 In addition, the external electric fields generated
by the applied bias are on the order of 50 kV/cm. This
value times αSO delivers α ≈ 0.02 eV Å, which is one order

of magnitude lower than the values found experimentally
for these RTDs [see Ref. 8]. Further, as shown in Fig. 8
the Rashba parameter introduced by the external field alone
is not able to produce the observed peak splittings in the
simulations for the typical k‖ values used in our calculations
(k‖ ≈ 2 × 108 m−1).

To remove this apparent discrepancy between the Rashba
coefficients obtained from our model and the experimental
data, one can define an effective Rashba parameter αeff for this
structure as

E↑ = αeffk
↑
‖ , E↓ = αeffk

↓
‖ ,

αeff = E↑ − E↓

k
↑
‖ − k

↓
‖

, αeff = �E

�k‖
, (17)

where �E is the resonance peak splitting energy and k
↑(↓)
‖ is

the in-plane momentum with largest transmission at the current
peak voltage for the respective spin peak.

After using the proper voltage-to-energy conversion
(100 mV ≈ 10 meV) and taking the values of k‖ at which the
transmission is maximum around the peak current voltages
(�k‖ ≈ 2 × 108 m−1 for B = 2 T), we get α = 0.5 eV Å,
which is in excellent agreement with the experimental values
calculated in a similar way in Ref. 8.

F. Material comparison: InGaAs/GaAsSb vs GaAs/AlGaAs

In order to investigate why the Rashba splitting is so
well resolved in the type-II structure of our calculations, we
also ran our simulation for a different material system for
a direct comparison. Figure 9 shows the Rashba splitting in
GaAsSb/InGaAs compared with the splitting in GaAs/AlGaAs
RTDs for the same conditions. In order to make the comparison
easier and to show the differences more clearly, we have added
an offset to the GaAs/AlGaAs resonance voltage. The valence
band offset in this type-I heterostructure was calculated using
the widely accepted 60:40 rule. The distance between the split
peaks is 129 mV for the GaAsSb/InGaAs RTDs and only
16 mV for GaAs/AlGaAs RTDs, which corresponds to energy
splittings of 12.9 and 1.6 meV, respectively.

Even though the electric field magnitudes at the interfaces
between the well and the barriers are approximately the same
for both systems, the Rashba splitting is almost absent in the
GaAs/AlGaAs RTDs. The reason for this is the combination
of the large band gap in GaAs/AlGaAs (Egap ≈ 1.4 eV)
with the low spin-orbit gap (� ≈ 0.40 eV), which leads
to an αSO value ten times smaller than what is found in
the GaAsSb/InGaAs RTDs. This is in good agreement with
the difference in the splitting energy calculated above for
the two material systems which is also a factor of 10. In
fact, generally, type-II heterojunctions can have the same
(or even larger) interface fields as type-I heterojunctions
(see Ref. 29 and references therein) with the additional
advantage of presenting much smaller band gaps. This gives
type-II heterostructures an enormous advantage over type-I
heterostructures in producing large and detectable spin-orbit
coupling effects in the perpendicular transport case.

Finally, another contribution to the enhancement of the
Rashba effect in GaAsSb/InGaAs RTDs is the smaller effective
mass of the electrons in aluminum-free materials.30 The lighter
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FIG. 9. (Color online) (a) Calculated I (V ) curves with Rashba
splitting (B = 2 T) for GaAsSb/InGaAs and GaAs/AlGaAs RTDs.
Red curve, GaAsSb/InGaAs; blue curve (with a bias offset),
GaAs/AlGaAs. (b) Type-II band profile of the GaAsSb/InGaAs
heterostructure. (c) Type-I band profile of the GaAs/AlGaAs het-
erostructure. The aluminum concentration is 40%. The figure displays
the main parameters used in the calculations.

electrons shift the resonances to higher voltages and hence
to higher kz momentum. This leads to larger values for the
in-plane momentum since the Lorentz forces are directly
proportional to the energies in the z direction.

VII. SUMMARY

In summary, we investigated via the TMM spin-orbit
coupling effects in perpendicular transport under the influence
of transverse magnetic fields and the Rashba effect. Our cal-
culations showed that the Rashba effect in a GaAsSb/InGaAs
RTD can be enhanced by an in-plane magnetic field and their
results are in excellent agreement with those of previously
reported experiments.8 The predicted levels of spin-polarized

currents are extremely large even for fields below B = 1 T
although no resonance splitting can be seen for such low
magnetic fields. The temperature dependence of the Rashba
parameter introduced in the model via the band gap reproduced
very well the decrease of peak splitting observed in the
experiment. Clearly, the calculations show that the Rashba
parameter can still be large even at room temperature and
that the Rashba effect can be observed for temperatures above
180 K. These results depend on the resistance of the RTD’s
peak-to-valley ratio to a temperature increase.

The main finding of our calculations is the extreme depen-
dence of the Rashba effect on the electric fields generated at the
interfaces by the band discontinuity. The combination of large
Rashba parameters and the in-plane acceleration produced
by the magnetic fields results in a strongly spin-controlled
scattering mechanism at the quantum well interfaces. This
influences the transmission coefficient for the whole structure
and produces one current resonance peak for each spin state.
In this case, the net Rashba parameter is an average of all
scattering processes that contribute to the current. We defined
an effective Rashba parameter based on the energy separation
between the resonance peaks and the in-plane momentum k‖
of electrons with maximum transmission at the current peak.
The value we found (α = 0.5 eV Å) is in excellent agreement
with our experiments.

From this model, one can predict how interfaces for
optimized spin splitting should look. First, the molecular-beam
epitaxial (MBE) growth should be well controlled and produce
sharp interfaces. Second, by a change in the InGaAs or GaAsSb
composition, the valence band offsets can be tuned. A larger
band offset should increase the Rashba effect. However, one
should do it by decreasing the energy gap of InGaAs to keep
the αSO parameter large. Testing if this is realistic will be a
challenge in the field of MBE growth. We must emphasize
that αSO is on the order of 40 Å2 in InGaAs/GaAsSb RTDs,
which is an order of magnitude larger than αSO in GaAs. This
is certainly one of the reasons that the Rashba effect is so
pronounced in this material system even at high temperatures,
since large band offsets are not hard to produce. Some other
materials such as InAs and InSb can present an αSO coefficient
up to ten times larger than that in InGaAs.12 The combination
of even larger αSO materials with large band offsets for an
RTD could obviously increase the Rashba effect and make it
observable probably even at room temperature.
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