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We develop an analytical method for the processing of electron spin resonance (ESR) spectra. The goal is
to obtain the distributions of trapped carriers over both their degree of localization and their binding energy in
semiconductor crystals or films composed of regularly aligned organic molecules [Phys. Rev. Lett. 104, 056602
(2010)]. Our method has two steps. We first carry out a fine analysis of the shape of the ESR spectra due to the
trapped carriers; this reveals the distribution of the trap density of the states over the degree of localization. This
analysis is based on the reasonable assumption that the linewidth of the trapped carriers is predetermined by their
degree of localization because of the hyperfine mechanism. We then transform the distribution over the degree of
localization into a distribution over the binding energies. The transformation uses the relationships between the
binding energies and the localization parameters of the trapped carriers. The particular relation for the system
under study is obtained by the Holstein model for trapped polarons using a diagrammatic Monte Carlo analysis.
We illustrate the application of the method to pentacene organic thin-film transistors.
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I. INTRODUCTION

The electron spin resonance (ESR) technique offers a
unique microscopic probe of carriers in semiconductors with
unpaired spins. It measures transitions between the quantum
levels ms = ±1/2 in the presence of a magnetic field.1–4

The spectrum of the transition between two quantum levels
constitutes a δ function provided there is no external interfer-
ence with the quantum levels of the spin system. However,
the quantum states of carrier spins undergo a variety of
interactions with the environment. This interaction destroys
the δ-functional form of the spectrum and broadens it. The
broadening of the ESR signal is a result of two fundamentally
different contributions from the medium. The first is a decay of
the quantum levels caused by interaction with the excitations
of the environment. This mechanism leads to the Lorentzian
shape of the spectral line. The second contribution is a result
of the inhomogeneities of the medium. One example is the
interaction with nuclear spins that is known as hyperfine
interaction; here, the inhomogeneities are caused by the
probability distribution of the nuclear spin moments. In this
case, the spectroscopic signal is the sum of the contributions
from spin systems located in different surroundings. The
energy of signal in every surrounding is shifted by the local
magnetic field depending on the environment so that the
summed signal has an inhomogeneous shape.

As an example, the electronic spin of cationic pentacene
molecule isolated in a solution exhibits inhomogeneous
broadening of the ESR signal that arises because of hyperfine
coupling with 14 proton nuclear spins. The signal is constituted
of a series of individual lines due to the hyperfine splitting. The
envelope function of the signal is roughly reproduced by a
Gaussian.5–7 This feature is a consequence of the central limit
theorem (CLT). The local magnetic field for each electronic
spin is caused by interaction with 14 proton nuclear spins
and the random energy shifts of respective ESR signals are
inevitably spread in accordance with Gaussian distributions,

as a result of the independent nature of respective nuclear spin
orientations.

We note that the anisotropic values of g factors are
averaged out (or narrowed motionally) by the rotation motion
of the molecules in solution. In contrast, solid-state organic
molecular crystals exhibit ESR spectra composed of individual
lines that are broadened due to the faster decay rate. Then, there
might be the case that the individual lines have to become
unresolved and the resulting ESR spectrum has to be very
close to Gaussian envelope.

Recent major developments in the field of organic thin-film
transistors (TFTs) allow high-precision field-induced ESR
measurement (which is referred in the following simply as
ESR) for the carriers in semiconductor crystals or films
composed of regularly aligned organic molecules. In the
measurements, carries are doped without introducing any
randomness by using the field-induced technique. The ESR
signal in organic TFTs was first measured and analyzed in
the groundbreaking study by Marumoto and his coauthors.8,9

The ESR signal observed in pentacene TFT at room temper-
ature appeared to be narrower than that observed in solution.
The authors claimed that the narrower linewidth should be an
evidence of a spatial extension of wave function. According to
CLT, the linewidth of a signal coming from charge distribution
covering N molecules is narrower by the factor 1/

√
N . Then,

assuming that the signal is Gaussian it was concluded that the
wave function is spread over N ≈ 10 molecules.

However, we note that the analyses were performed on
the ESR spectrum with non-Gaussian line shape. Subsequent
studies have shown that the field-induced ESR signal and
linewidth is temperature dependent.10–12 Typical pentacene
TFTs and rubrene single-crystal transistors exhibit sharp ESR
signal whose single-Lorentzian linewidth presents motional
narrowing13 effects with increase of the temperature. In
case of the pentacene TFTs, the feature is well consistent
with the thermally activated multiple trap-and-release (MTR)
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transport with the activation energy of about 10 meV in the
high-temperature range. In contrast, the narrowing effect by
the increase of temperature is not observed below around
50 K. Actually it was demonstrated by the continuous wave
saturation experiments that all carriers in the pentacene TFTs
are localized at T < 50 K and all relaxation channels are frozen
at such low temperatures.14 However, the ESR spectrum is still
deviated from the simple Gaussian at low enough temperature.
Therefore the deviation of the ESR signal from Gaussian shape
is not a result of relaxation or motional narrowing but should
be associated with the nature of weakly localized carrier states
in the organic TFTs. It is of current important theoretical and
experimental challenges in materials physics to understand the
carrier transport of organic electronics devices, as they permit
productions of large-area and flexible electronic products.15,16

In the present paper, we analyze the situation when the
ESR signal of a semiconducting organic molecular system
is a smooth curve that deviates from the Gaussian linewidth
even at very low temperatures where the carriers are localized.
Here, we assume that the peculiar line shape is caused by
a further specific inhomogeneity of the pentacene TFTs, as
associated with the distribution of weakly localized carrier
states that are responsible for the device operation. Given
this assumption, we have developed a unique technique for
obtaining the trap density of states from a few to tens of meVs
in pentacene TFTs14 the algorithm of which is described in
detail in this paper. Note that the obtained energy resolution
for the trap density of states is much higher than that by other
methods based on transport or optical measurement.17–23 The
mathematical method suggested here is rather general and
can be applied to analyses of broad spectrum in a variety
of problems outside of those considered here.

In Sec. II, we study the deviation of the inhomogeneous
low-temperature ESR signal from the Gaussian shape. We
show that the signal from the one pentacene molecule is
very similar to a Gaussian showing almost no individual
lines from hyperfine splittings. It appears that the ESR line
shapes of a signal from many independent traps of the same
kind must be a Gaussian (see Secs. II A–II B) whose width is
uniquely determined by a single localization parameter Neff,
namely, an effective number of sites where carrier is localized.
Therefore it is concluded that the non-Gaussian line shape
can be ascribed to the superposition of signals from different
kinds of traps, where each kind of trap is described by its own
localization parameters Neff. In Sec. II C, we derive an explicit
relationship between the shape of the experimental ESR
signal and the distribution of the traps over the localization
parameters Neff. This relationship is a Fredholm integral
equation of the first kind where the unknown function is a
distribution of traps. Section III presents an algorithm to solve
it based on the stochastic optimization method (SOM).24–27

We describe the SOM and present an analysis of its sensitivity
to the experimental noise in Secs. III A and III B, respectively.
Sections III C and III D present experimental details, handling
realistic noisy experimental data by SOM, and results for
traps distributions in pentacene TFTs. Section III E presents
methods that find the limits of the reliability of the distributions
obtained.

Section IV shows how the distribution of the traps over the
localization parameter Neff can be mapped as a distribution

over the binding energies EB . This transformation can be
formulated generally although a particular implementation
of the mapping requires the explicit EB-Neff relationship
between the binding energy EB and the localization parameter
Neff . This relationship for a given model can be obtained
using the exact numeric diagrammatic Monte Carlo method,28

the analytic momentum average method,29,30 the coherent
basis states method,31,32 or numerous other methods (see
Ref. 33 for a review). We consider in Sec. IV A the model
of two-dimensional Holstein polaron in the field of an on-site
attractive center. The distribution of the trapped states over the
binding energies EB in pentacene TFTs are shown in Sec. IV B.
Section V presents a discussion of our results and Sec. VI
provides conclusive remarks.

II. ESR SPECTRA OF TRAPPED CARRIERS IN ORGANIC
SEMICONDUCTORS: FUNDAMENTAL KNOWLEDGE

AND FURTHER GENERALIZATIONS

In this section, we introduce the well-known characteristic
features of the ESR spectra of a single molecule and a cluster
containing several molecules (see Sec. II A). We then present
an analysis of a noticeably different case where the carrier
is localized on a single impurity in a crystal (II B). Finally,
we consider the case of traps of different origin where we
can introduce a relationship between the line shape of an
experimental ESR signal and the distribution of the impurities
over different localization parameters (see Sec. II C).

A. ESR spectra for single molecule and a cluster containing
several molecules

In this section, we consider a molecular crystal in which a
single molecule contains so many nuclear spins that its ESR
spectrum has an inhomogeneous Gaussian shape. A typical
situation for a carrier trapped in a molecular crystal is that it
is localized in a trap and its distribution over the molecular
crystal sites i is characterized by a probability distribution
{pi}. The temperature is assumed to be sufficiently low that
we can neglect the “homogeneous” relaxation leading to the
Lorentzian shape of the ESR signal. It is also low enough to
avoid self-averaging of the inhomogeneities by the “motional
narrowing” mechanism.

In this case, the line shape of the ESR signal is determined
by the “inhomogeneous” broadening caused by the site-
dependent distribution of the hyperfine interactions. When the
typical width of the individual spectral lines of the split with
hyperfine interaction quantum levels is larger than the typical
energy distance between these levels,3,6 the line shape of the
ESR signal is Gaussian. This shape occurs when the carrier
is localized in either a single molecule or a cluster containing
several molecules.

The case of a carrier trapped in a crystal is noticeably
different from the case of a cluster with several molecules.
The probability distribution over N molecules i{pi,i = 1,N}
is uniform pi = 1/N in a cluster. In contrast, the probability
distribution in a crystal trap pi , which is the density of the
carrier in a given site i, is not uniform, and the only restriction
is the normalization condition

∑
i pi = 1. However, as shown

below, the ESR signal of a carrier in a trap always retains the
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Gaussian shape and the width is uniquely determined by the
carrier probability distribution {pi}.

The simplest ESR signal considered in our study is that for
a single molecule. The fine structure of the ESR absorption by
a single molecule in a condensed environment is frequently
blurred by the broadening of the hyperfine levels. The ESR
signal from a large number of independent molecules in
this case is Gaussian. The standard expression describing the
hyperfine structure of one molecule is6

R(B) =
n1I1∑

m1=−n1I1

. . .

nkIk∑
mk=−nkIk

P (m1, . . . ,mk)

× 1

π

�(
B − ∑k

i=1 Aimi

)2 + �2
. (1)

Here, k is the number of groups of equivalent nuclei, ni is the
number of equivalent nuclei in the ith group, Ii is the nuclear
spin in the ith group, � is the linewidth of each peak, P is the
intensity of each peak and B is the magnetic field. If protons
(I = 1/2) are the only paramagnetic nuclei, as is the case for
pentacene molecules, P is given as

P (m1, · · · ,mk) = �k
i=1

C
mi+niIi

2niIi

(2Ii + 1)−ni
, (2)

where C
mi+niIi

2niIi
are binomial coefficients.

For the particular case of the pentacene molecule, we set
� = 0.02 mT and use the coupling constants {Ai ; i = 1, . . . ,4}
and numbers of equivalent nuclei {ni ; i = 1, . . . ,4} reported
in Ref. 5. The ESR signal obtained from Eqs. (1) and (2) can
be represented [see Fig. 1(a)] as a curve fluctuating around the
Gaussian envelope

G0(B) =
√

1

2πσ 2
0

exp

[
− (B − B0)2

2σ 2
0

]
(3)

with standard deviation σ0 = 0.554 mT.
The standard situation, known from the physics of gases

and solutions, is the case where the carrier is localized in a

FIG. 1. (Color online) Simulated ESR spectrum (black solid
lines) of 1, 2, and 1.54 pentacene molecules based on experimental
hyperfine splitting of one pentacene molecule with fits by Gauss
distribution (red dashed lines).

cluster containing N molecules and its density is spread over
N molecules. In this case, the signal retains its Gaussian shape
with the width of the distribution reduced by the factor N1/2.
The hyperfine structure of the N molecules can be simulated
by Eqs. (1) and (2) by replacing ni → Nni and Ai → Ai/N .
Figure 1(b) shows an example of the spectrum for N = 2 with
standard deviation σ = σ0/

√
2. It is clear that the oscillations

around the Gaussian envelope are quickly suppressed as N

increases.
The shape and the 1/

√
N narrowing factor of the ESR

signal for a carrier distributed over a cluster with N molecules
follows from the CLT. The shifts of the signal, yi = (Bi − B0)
for the ith molecule, is an independent random variable with
Gaussian distribution R(y) = G0(y) with standard deviation
σ0. By the CLT, the distribution R(ȳ) of the random variable
ȳ = N−1 ∑N

i=1 yi is also Gaussian with σN = σ0/
√

N .

B. ESR spectra for a trap in a crystal

The situation for a carrier localized in a trap in a crystal is
different from the above situation with N molecules. The latter
case assumes uniform charge distribution, and thus the CLT
applies. In contrast, the distribution over molecules i in a trap
{pi} is nonuniform with the probabilities pi subjected to the
normalization condition

∑
i pi ≡ 1. Hence we cannot assume

a Gaussian line shape for the ESR signal; the line shape must
be studied separately.

Regardless of the line shape, the probability distribution
{pi} unambiguously determines the linewidth of the ESR
signal. The linewidth is characterized by the standard deviation
σ which is the root square of the second moment of the
linewidth. If we consider the standard deviation of a signal
in a trap σ and compare it with that from a single molecule
σ0 we can introduce the effective number of molecules
Neff({pi}) to describe the linewidth of the ESR signal from
a carrier in a trap. The distribution of the ESR shift B

is the same for each molecule i with mean 〈B〉 = B0 and
variance σ 2

0 = 〈(B − B0)2〉. Since the hyperfine configurations
of molecules are independent of each other the variables
yi = (Bi − B0) are independent for different molecules i.
Hence the standard deviation σ ({pi}) of the sum of random
variables ȳ = ∑

i pi(Bi − B0) is related to the single-molecule
standard deviation σ0 by the expression

σ ({pi})
σ0

=
√∑

i

p2
i . (4)

It is natural to define the effective number of molecules
Neff({pi}), corresponding to the charge distribution {pi}, to
be

σ ({pi}) = σ0/
√

Neff({pi}). (5)

Then, the effective number of molecules Neff({pi}) is unam-
biguously determined by the charge distribution in a trap {pi},

Neff({pi}) =
[∑

i

p2
i

]−1

. (6)

To study the shape of the ESR signal for a trap with
charge density {pi} we generated by a standard method24
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FIG. 2. (Color online) (a) Generated Gauss distribution with
σ = 3, (b) distribution of a uniformly weighted pi = 1/9 sum of nine
normally distributed random variables, and (c) distribution of expo-
nentially weighted pi = exp(−δi) (δ = 0.8) sum of nine normally
distributed random variables. The squares show the distribution of
the generated random variables and the solid lines are the fits by
Gaussian functions. The envelope Gaussian function is normalized to
unity in all panels.

random variables {yi} following a Gaussian distribution with
dispersion σ0 = 3 [see Fig. 2(a)]. Then, we studied the
distribution of the random variable ȳ = ∑

i piyi . By the CLT,
the uniform distribution pi = 1/N leads to a Gaussian shape
of the signal with the dispersion narrowed by the factor

√
N

[see Fig. 2(b)]. After performing simulations with a large set
of different distributions pi , we conclude that the distribution
of the random variable ȳ = ∑

i piyi is always Gaussian [see
Fig. 2(c)] with Neff({pi}) defined by Eq. (6).

Hence we conclude that the shape of the ESR signal for
carriers localized in a set of identical independent traps is
uniquely determined by the distribution density {pi}. It is
always Gaussian with the standard deviation σ defined by
Eqs. (5) and (6).

C. ESR spectra for several kinds of traps

Since the ESR signal for independent identical traps is
always Gaussian, we assume that a non-Gaussian shape origi-
nates from the superposition of the signals from different kinds
of traps. Indeed, each different kind of trap is characterized by
a different probability distribution of the trapped carriers.

To describe the experimental spectrum Eexp(B) by the
superposition of the ESR spectra G(B,ξ ) for each trap
type ξ , we must choose a parameter ξ that unambiguously
characterizes the spectrumG(B,ξ ). It follows from the analysis
in Sec. II A that the ESR spectrum from identical traps is

Gaussian and can be characterized by a single parameter Neff .
This parameter reflects the spatial distribution {pi} of a charge
in a trap (6) and determines the narrowing of the Gaussian
G(B,ξ = Neff) width σ ({pi}) = σ0/

√
Neff({pi}) with respect

to the ESR width σ0 of a carrier localized on a single molecule.
Therefore the ESR signal for the same trap type, characterized
by the same spatial extension ξ = Neff , can be expressed as

G(B,Neff) =
√

Neff

2πσ 2
0

exp

[
− (B − B0)2

2
(
σ 2

0 /Neff
)]

. (7)

Introducing the distribution function D(Neff) of the traps in
pentacene over Neff , we can express the experimental signal
Eexp(B) in terms of the superposition

Eexp(B) =
∫ ∞

1
G(B,Neff)D(Neff)dNeff, (8)

which is a convolution of the distribution function D(Neff) of
the traps and the Gaussian signal for a trap type characterized
by the localization parameter Neff .

Most techniques for ESR measurements detect the deriva-
tive Eexp(B) over the magnetic field B and hence the ex-
perimental signal Xexp(B) = dEexp(B)/dB is related to the
distribution function of the traps D(Neff) via

Xexp(B) =
∫ ∞

1

dG(B,Neff)

dB
D(Neff)dNeff . (9)

Hence to obtain the distribution D(Neff), we must solve one
of the integral equations (8) and (9). The experimental signals
Xexp(B) [Eexp(B)] and the kernel dG(B,Neff)/dB [G(B,Neff)]
are known functions and the distribution D(Neff) is to be
determined.

III. FROM ESR SPECTRUM TO TRAP DISTRIBUTION:
CONVERSION OF EXPERIMENTAL LINE SHAPE
INTO DISTRIBUTION OF TRAPS OVER DEGREE

OF LOCALIZATION

Equations (8) and (9), where Eexp(B) [Xexp(B)] and
G(B,Neff) [dG(B,Neff)/dB] are known and D(Neff) is to be
determined, is a Fredholm equation of the first kind. Naively,
to find the solution D̃(Neff), we must maximize the inverse
deviation

Q =
{∫ Bmax

Bmin

|Xexp(B) − X̃ (B)|
}−1

. (10)

Here, Bmin (Bmax) is the lower (upper) bound of a magnetic
field where the signal is larger than the experimental noise.
Xexp(B) are experimental data and X̃ (B) is obtained from the
distribution D̃(Neff):

X̃ (B) =
∫ ∞

0

dG(B,Neff)

dB
D̃(Neff)dNeff, (11)

which is considered to be a solution of the integral equation.
However, such naive approach leads to huge unrealistic
oscillations of the solution D̃(Neff). Instead, we need to apply
one of the advanced techniques developed for such equations.

Section III A gives a general description of the stochastic
optimization method (SOM)24–27 for the solution of Eqs. (8)
and (9). Section III B applies the method to the analysis of
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the ESR data and demonstrates the influence of experimental
noise on the reliability of the results. Section III C presents
an experimental technique to obtain ESR spectra suitable
for the fine analysis of the data. Section III D introduces an
algorithm that implements the SOM and presents results for
the trap distribution in pentacene TFTs. Finally, Sec. III E
demonstrates the limits of the reliability of the distribution
obtained by solving Eqs. (8) and (9).

A. Method to solve the inverse problem

It is notoriously difficult to solve the Eqs. (8) and (9)
because these equations belong to the class of “ill posed”
problems. Naively, the true solution of Eq. (9) D̃(Neff), being
convoluted with the kernel, produces the function X̃ (B),
which coincides with the given function Xexp(B). However,
the general feature of the practical implementations of Eq. (9)
is that the knowledge about the functionXexp(B) is “noisy” and
incomplete. Specifically, Xexp(B) is known for a particular set
of points {Bi,i = 1,M} with some error bars resulting from
the experimental noise. In this case, to find a “solution,” we
can introduce the residual function

�(i) = X̃ (Bi) − Xexp(Bi), i = 1,M, (12)

and optimize a measure of the deviation of the solution X̃ (B)
from the given data Xexp(B). For example, we could maximize
the inverse deviation (10)

Q =
[

M∑
i=1

|�(i)|
]−1

. (13)

Naturally, �(i) is never equal to zero at all points i = 1,M

when realistic noisy data {Xexp(Bi),i = 1,M} are considered.
Hence even the best measure Qmax is not equal to infinity.
Therefore the only feasible strategy for Eq. (9) is to find a
solution, that is the best in some sense.

The above features are the characteristics of the class
of ill posed problems for which we can not get an exact
solution and can only find the best choice of D̃(Neff) for the
given data set {Xexp(Bi),i = 1,M}. The naive approach, where
we simply maximize measure (13), leads to unreasonable
solutions. Typically, they have huge fluctuations that exceed
the true values of D(Neff) by several orders of magnitude. To
get a reasonable description of D(Neff), we must suppress this
“saw-tooth” instability.

There are two different strategies. The first is the regular-
ization method, e.g., the popular maximal entropy method34

as one of many such methods.35,36 This approach maximizes
a measure that is similar to Eq. (13) but modified in such a
way that the solution is smooth enough to suppress “saw-tooth
noise.” The main drawback is that the solution is corrupted by
the smoothing regularization procedure. The second strategy
uses modern stochastic approaches to obtain many statistically
independent solutions (see Refs. 24 and 27 and the references
therein) whose linear combination smoothes the saw-tooth
noise without corrupting individual solutions. Since this
approach has been shown27 to be better for the solution of
Eq. (9), we applied the SOM24–26 as a particular example of
the stochastic technique.27

The function D(Neff) is a distribution function and, hence,
it is non-negative D(Neff) � 0 and normalized∫ b

a

D(Neff)dNeff = I (14)

to a certain number I . The noise present in experimental
data {Xexp(Bi),i = 1,M} makes the problem of normalization
nontrivial. Some approaches to handle the normalization
problem are suggested in the next chapters.

B. Tests of SOM and the role of noise in experimental data

The SOM has been successfully applied to many integral
equations. The kernels of the equations are different from
those in Eqs. (8) and (9). The exponential kernel K(y,x) =
exp(−yx) was examined in Refs. 24,37–55, and various
kernels ranging from the Fermi distribution to the Matsubara
frequency representation are considered in Refs. 56–59. We
test the applicability of the SOM to the kernels of Eqs. (8) and
(9). We also show how the statistical noise of the experimental
data can obscure the information that can otherwise be
obtained by solving these equations.

To verify that the SOM is applicable to Eqs. (8) and
(9) with the kernel defined by Eq. (7), we introduced a
normalized to unity function D(Neff) (see the dotted line in
Figs. 3 and 4) and generated a set of “experimental” data
{Xexp(Bi),i = 1,200} using relations (8) and (9). Then, we
attempted to find D̃(Neff) by solving Eqs. (8) and (9). For

FIG. 3. (Color online) Test of SOM procedure to restore distri-
bution of spatial extent of traps D(Neff ) from “experimental” ESR
data Xexp(B) (9) under different levels of noise. “Experimental”
ESR data with noise are given in panels (a1)–(d1) and the actual
(restored) spectrum D(x) is indicated by a dashed (solid) line in the
corresponding panels (a)–(d). The noise level is (a,a1) f = 0.0, (b,b1)
f = 0.01 [sn = 10−3], (c,c1) f = 0.03 (sn = 3 × 10−3), and (d1,d)
f = 0.1 (sn = 10−2). The restored spectrum is obtained by solving
Eq. (9) using SOM. Insets show details of corresponding spectra.

085211-5



MISHCHENKO, MATSUI, AND HASEGAWA PHYSICAL REVIEW B 85, 085211 (2012)

FIG. 4. (Color online) See figure caption in Fig. 3.

ideal data without noise in the set {Xexp(Bi),i = 1,200}, we
were able to restore D(Neff) successfully [see Fig. 3(a) and
4(a)]. We did not find a significant difference between the
results obtained by solving Eqs. (8) and (9).

In spite of the extensive usage of SOM,24,37–59 there
is no precise understanding of how the error bars of the
data {Xexp(Bi),i = 1,M} obscure the solution D̃(Neff). The
difficulty is the dependence of the result D̃(Neff) on the level
of statistical noise, the shape of D(Neff), the kernel, and even
the number of points M in the data set {Xexp(Bi),i = 1,M}.
Therefore below we present some examples showing how the
noise of the experimental data obscures the solution of Eq. (9).
These ad hoc examples indicate the general trends but must not
be treated as a quantitative analysis of the influence of noise
on the reliability of the SOM results. These data should not be
used for the analysis of other cases. In Sec. III E, we present a
procedure to check the reliability of particular solutions.

To introduce noise, we used a sequence of random
numbers R(i) uniformly distributed in the range [−1,1]
and generated data sets {Xexp(Bi) + (f/2)R(i),i = 1,200},
referred in the following as “experimental” ESR data with
different amplitudes of the noise f . The signal-to-noise
ratio is defined as a ratio of the amplitude f and maximal
absolute value MAX{| Xexp(Bi) |} of the given signal Xexp(Bi)
as sn = f/MAX{| Xexp(Bi) |. The results presented in
Figs. 3 and 4 illustrate the general trends. An increase in the
signal-to-noise ratio sn corrupts the solution for large values of
Neff first: the shape of the high-energy peak is not reproduced
but its position is still correct. At higher values of sn, the shape
of the low-energy peak is not reproduced. A comparison of
Figs. 3 and 4 shows that the spectrum with a sharp feature at
small Neff (see Fig. 3) is more robust to experimental noise
than that with a broad feature at small Neff (see Fig. 4). Note
that although the shapes of the high- and low-energy peaks

are not reproduced, their positions are still approximately
correct even for large values of the signal-to-noise ratio sn.

C. Experimental data for analysis

To conduct reliable spectral analysis as discussed above,
we need high-precision ESR spectra for the carriers in organic
TFTs. We acquired the spectra by the following procedures.
We used a commercially available X-band (9 GHz) ESR
apparatus (JES-FA200, JEOL) equipped with a high-Q cylin-
drical cavity (Q factor 4000–6000 for the TE011 mode). We
fabricated bottom-gate, top-contact pentacene TFTs with high
mobility that are suitable for high-precision measurements.
The device is composed of a 100-μm-thick poly(ethylene
naphthalate) (PEN) film as a nonmagnetic substrate, a 1-μm-
thick Parylene C film as a gate dielectric layer (4.5 nF/cm2),
and a 50-nm-thick pentacene film as the semiconducting
layer. The gate, source, and drain electrodes are composed
of vacuum-deposited gold films with a thickness of 30 nm;
this is much thinner than the skin depth of gold (about 790
nm).

Since the field-induced carrier is accumulated only at the
semiconductor/insulator interface, the ESR signal is propor-
tional to the total channel area of the TFTs. We used a device
with a width of 2.5 mm and a length of 20 mm, the dimension
of which is limited by the inner diameter of the ESR tube
and the cavity size. We used a stack of ten sheets of TFTs for
the high-precision ESR measurement to obtain field-induced
carriers ten times as large as those in a single sheet. The total
carrier number at VG = −200 V is estimated to be 2.8 × 1013.

The semiconducting pentacene layer is composed of a
uniaxially oriented polycrystalline film where all the compo-
nent pentacene molecules align with the molecular long axes
roughly perpendicular to the film plane. In the measurement,
a static magnetic field was set perpendicular to the film
plane to eliminate the anisotropic effect of the g tensor. A
continuous-flow cryostat was used for the low-temperature
measurements. In the FESR measurements at low temperature,
we first applied the gate voltages at room temperature (with the
source and drain shorted) and then cooled the device to the set
temperature, to avoid a delay in the charge accumulation. The
temperature was stabilized carefully so that the fluctuation
at 20 K was about 0.01 K, which minimized the effect of
temperature-dependent spin susceptibility.

D. Practical implementation of method: Distribution
of traps in pentacene TFT

Equation (9) is preferable for the practical implication
of the SOM. The problem with realistic noisy data from
ESR experiments is that there is some uncertainty in the
normalization and background of the experimental data. In
the ideal case, implying the normalization of the distribution
D(Neff) to unity and the conditions

∫ ∞
−∞ G(B,Neff)dNeff = 1

and
∫ ∞
−∞ dNeff

∫ B

−∞ dz[dG(z,Neff)/dz] = 1, we must normal-
ize the experimental data as∫ ∞

−∞
dBEexp(B) = 1 (15)
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FIG. 5. (Color online) (a) Dependence of the fit quality Qmax and
position of low-energy peak δ(N − Neff ) on normalization I of the
spectral function.

and ∫ ∞

−∞
dB

∫ B

−∞
dzXexp(z) = 1 , (16)

respectively. However, the normalization of the experimental
data is not exact because experimental noise can lead to
uncertainty of a few percentage points. On the other hand,
the solution of Eq. (9) is sensitive to possible normalization
errors.

There is also a problem with the background. If the
experimental data are obtained in the form Eexp(B) [see, e.g.,
Fig. 2 and Eq. (8)], there is no unique procedure to determine
the constant background level that must be subtracted from
the data to get a pure signal for the ESR transition. This
uncertainty also increases the uncertainty relating to the
normalization of the data. However, the problem of the
unknown background disappears when Eq. (9) is used as
the integral equation because limB→±∞ Xexp(B) = 0 for any
constant background. Therefore, to analyze the ESR data for
pentacene TFTs, we used Eq. (9) where the only uncertainty
is that of normalization.

To handle the normalization uncertainty, we can change
the normalization in either Eqs. (14) or (16). The two choices
are equivalent because of the linearity of Eq. (9). In practice,
we normalized the experimental signal as shown in (16) and
varied the normalization I of the distribution density D̃(Neff)
(14). We handled the normalization uncertainty for the result
shown in Fig. 6 as follows. The spectrum at gate voltage
−200 V was considered (the result for this gate voltage is
shown in Fig. 6 by solid line). The integral equation (9) was
solved for different normalizations I and the solution with the
normalization having the best deviation measure Qmax was
chosen.

Figure 5 shows the best inverse deviation Qmax (10, 13)
and the position of the sharp peak in D(Neff) versus the
normalization I . It can be seen that the position of the
sharp peak is sensitive to the value of the normalization
I and this may be a source of the volatility in the fine
analysis of the ESR data. However, it can be shown that the
suggested approach to the the normalization I , which leads

FIG. 6. (Color online) Distribution of trap states in pentacene
TFT vs spatial extent Neff of charge distribution in traps obtained
from ESR spectrum of pentacene TFT at 20 K with gate voltage
−200 (solid line), −120 (dashed line), and −40 V (dotted line).

to the best deviation measure Qmax, is robust and produces
stable results. We have demonstrated this via analysis of the
ESR data at different gate voltages (see Fig. 6). We found
that the best normalizations are different at different gate
voltages: I (V = −200) = 1.01, I (V = −120) = 1.038, and
I (V = −40) = 1.03, respectively. However, the position of
the sharp peak at low values of Neff does not depend on the
voltage V if at each voltage V , we use the normalization
I (V ) that corresponds to the best deviation measures Qmax.
Physically, the sharp peak at low values of Neff corresponds
to deep impurity levels that depend only slightly on the gate
voltage. Therefore its independence on the gate voltage in the
fine analysis of the ESR spectra indicates the high stability of
the procedure based on the suggested approach.

E. Reliability of trap distribution result

Since solving Eq. (9) is an ill posed problem, it is useful to
understand how much information we can get from the analysis
and to check how many details of the resulting distribution
of impurities are reliable. The reliability can be analyzed by
plotting the residual function (12).

The spectrum D̃(Neff) (see Fig. 6) obtained by solving
Eq. (9) has three peaks. Figure. 7(a) shows the fit of the
ESR signal using the distribution D̃(Neff) in Fig. 6. It
also shows the separate contributions of the A, B, and C
components of the distribution. To clarify which features of
the distribution D̃(Neff) are reliable for the given level of
noise in the experimental data, we studied the residuals (12)
Xexp(B) − X̃ (B) [see Figs. 7(b)–7(e)]. We can see that the
quality of the fit by the SOM [see Fig. 7(b)] is much better
than that obtained by, e.g., the Lorentzian [see Fig. 7(c)] and
two δ functions [see Fig. 7(d)]. The fit from three δ functions
gives a residual function [see Fig. 7(e)] as good as that obtained
from D̃(Neff) in Fig. 6. Therefore we conclude that, within the
limits of the noise of the experimental data, the existence of at
least three kinds of traps is a reliable result.

We note that the distribution over the parameter Neff

in Fig. 6 is free from any assumption about the shape of
the distribution. Indeed, because of the noise of the current
experimental data, the only reliable conclusion is the statement
about the existence of at least three types of traps. However, a
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FIG. 7. (Color online) (a) Experimental signal (squares), fit by
spectrum in Fig. 6 at the gate voltage −200 V (solid lines) and
contributions from (see Fig. 6) A, B, and C components (dashed
lines). Residuals (12) Xexp(B) − X̃ (B) from (b) unbiased distribution
(see Fig. 6), (c) best fit by one Lorentzian, (d) best fit by two δ

functions 0.68δ(N − 4.5) and 0.32δ(N − 20), and (e) best fit by three
δ functions 0.31δ(N − 1.4), 0.51δ(N − 7.5), and 0.18δ(N − 25.0).

data analysis with less noise could, in principle, reveal more
fine structure in the distribution function D(Neff).

IV. TRANSFORMATION FROM SPATIAL DISTRIBUTION
TO ENERGY DISTRIBUTION

In this section we discuss finding the distribution of
the traps Z(EB) over the binding energies EB given the
distribution D(Neff) over the localization parameter Neff . This
transformation is trivial when there is a priori knowledge of
the functional dependence

Neff = Neff(EB). (17)

Indeed, there is a balance relation

Z
(

E
(i+1)
B + E

(i)
B

2

) [
E

(i+1)
B − E

(i)
B

]
= D

[
Neff

(
E

(i+1)
B

) + Neff
(
E

(i)
B

)
2

]
× [

Neff
(
E

(i+1)
B

) − Neff
(
E

(i)
B

)]
between D and Z for two nearby points E

(i+1)
B and E

(i)
B . Then,

in the limit E
(i+1)
B → E

(i)
B we get

Z(EB) = D(Neff)
dNeff(EB)

dEB

. (18)

The above generic relation (17) can be obtained as a parametric
function provided we can choose an appropriate model
and calculate Neff = Neff({P}) and EB = EB({P}) in some
domain {P} of the parameters P .

The general strategy for the transformation D → Z does
not depend on the model. However, the specific form of
relation (17) depends on the model chosen to describe the
localization of a carrier in a trap. To study carrier trapping in
pentacene TFTs, we consider a model of a two-dimensional
(2D) Holstein polaron in a field of an attractive center. This
model is considered in Sec. IV A, and the results of the
transformation for pentacene TFTs are given in Sec. IV B.

A. Model for traps: 2D Holstein polaron in the field of an
on-site attractive center

It is already well known that the behavior of a carrier in
pentacene TFTs can be described by a particle in a system
with attractive impurities.10 It is also known that the carrier
is subject to the electron-phonon interaction.60 To model the
behavior of a carrier in pentacene TFTs, we chose the simplest
Hamiltonian describing a 2D Holstein polaron in a field of
on-site attractive center:

H = −t
∑
〈i,j〉

c
†
i cj + ωph

∑
i

b
†
i bi

− γ
∑

i

(b†i + bi)c
†
i ci − Uc

†
0c0. (19)

Here, c†i (b†i ) is the creation operator for the carrier (phonon)
in the ith molecule. U is the attractive impurity potential for the
carrier c

†
0 at site 0 and ωph is the frequency of the dispersionless

phonon. The amplitude t describes the electron transfer ∝t

between nearest-neighbor sites and the local Holstein coupling
to the phonons is ∝γ . The dimensionless electron-phonon
coupling constant λ is defined to be λ = γ 2/(4tωph). It is
clear that for the chosen model the parameter set to determine
relation (17) is P = {U,λ} including the potential of the
attracting trap U and the strength of the electron-phonon
coupling λ.

To calculate the values of EB = EB(U,λ) and Neff =
Neff(U,λ), we used the direct space diagrammatic Monte
Carlo (DSDMC) technique.28 Similar data can be obtained
by the inhomogeneous momentum average approximation
method29,30 and the coherent basis states method.31,32 The
data for EB = EB(U,λ) and Neff = Neff(U,λ) are presented
in Figs. 8(a) and 8(b). The values of Neff were determined by
relation (6) from the charge distribution in the trap, which was
calculated by the DSDMC technique (see Fig. 9).

To determine unambiguously the functional dependence
Neff = Neff(EB) from the calculated relations EB = EB(U,λ)
and Neff = Neff(U,λ) [see Figs. 8(a) and 8(b)], we must decide
which of the two parameters λ and U is fixed and which is
responsible for the variation of the physical parameters of the
traps: the binding energy EB and the localization parameter
Neff . A proper choice of the parameter responsible for the vari-
ation in the physical properties of the traps determines relation
(17) fully and unambiguously. Since the thin film in pentacene
TFTs consists solely of pentacene molecules it is natural to
assume that the value of λ is one and the same for the entire
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FIG. 8. (Color online) Dependence of (a) binding energy EB in
units of bandwidth WB = 8t and (b) effective number of molecules
Neff on absolute value of potential of attractive impurity | U | in units
of WB . (c) Dependence of effective localization number Neff on bind-
ing energy EB in units of bandwidth WB . Curves are presented for λ =
0 (squares), λ = 0.15 (circles), λ = 0.5 (triangles pointing up), and
λ = 1 (triangles pointing down). Lines are to guide the eye. Inset in
(c) shows schematically a model represented by Hamiltonian (19).

film and the spread of the physical parameters of the traps is
caused by trapping potentials of different origins. The trapping
potentials of different origins, in turn, can be characterized by
different strengths of the attractive potentials U .

FIG. 9. (Color online) Charge distributions around attractive
impurity with potential U at λ = 0.15 along [100] and [111]
directions: U/WB = −0.206 (EB/Wb = 0.0032, Neff = 44.3) (cir-
cles), U/WB = −0.25 (EB/Wb = 0.0113, Neff = 11.2) (rhom-
bus), U/WB = −0.281 (EB/Wb = 0.0213, Neff = 6.05) (squares),
U/WB = −0.375 (EB/Wb = 0.0703, Neff = 2.38) (triangles point-
ing up), and U/WB = −0.59 (EB/Wb = 0.2397, Neff = 1.35) (tri-
angles pointing down).

FIG. 10. (Color online) Distribution of trap states in pentacene
TFTs as a function of trap energy EB for gate voltage −200 V.

B. Energy distribution of traps in pentacene TFTs

To analyze the ESR spectrum of pentacene TFT, we used the
electron-phonon coupling constant λ = 0.15, estimated from
optical absorption experiments,60 and the hopping amplitude
t = 0.1 eV, obtained from band structure calculations.61,62

Figure 10 shows the distribution Z(EB) of the trapped
carriers over the binding energies in TFT at the gate voltage
−200 V. We fixed λ = 0.15, considered the dependence of EB

[bold line in Fig. 8(a)] and Neff [bold line in Fig. 8(b)] on
the attractive potential U , and obtained Neff(EB) [bold line in
Fig. 8(c)]. Then, we used transformation (18).

We found that the two discrete trap levels (A and B) peak at
140 ± 50 and 22 ± 3 meV, respectively. The broad feature (C)
at the gate voltage −200 V is distributed between 5 and 15 meV,
as presented in Fig. 10. The low-energy profile prompts the
anticipation of tail states extending from just below the band
edge, as has been discussed for amorphous semiconductors,
while the states are partially occupied up to the Fermi level at
around EB = 5 meV. These results are roughly consistent with
the small activation energy of about 15 meV for the motional
narrowing observed in Ref. 14, and also with the potential
fluctuations by atomic-force-microscope potentiometry.63 We
note that the distribution Z(EB) gives a relatively correct
position of the trap levels, although the absolute value of the
binding energy is rather model-dependent.

V. DISCUSSION

Weakly localized in-gap states are expected to play crucial
roles in the intrinsic charge transport along semiconduc-
tor/gate dielectric interfaces in organic transistors. In practice,
temperature-independent mobility is often observed in devices
with high mobility and highly-ordered molecular interfaces,
which indicates that the Fermi energy is just below the band
edge.64

To date, various experimental techniques have been used
to investigate the interfacial trap density, such as deep-level
transient spectroscopy (DLTS),65 photocurrent yield;66 gate-
bias stress,67 and thermally-stimulated current68 experiments.
However, the measurements are based on the charge transport,
and it is strongly affected by the “extrinsic” potential barriers
at grain boundaries and/or channel/electrode interfaces. In
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striking contrast, our method has a crucial advantage in its
ability to disclose the spatial and energy distribution of shallow
traps down to a few meV, based on a unique microscopic probe
using electronic spins. In addition, the g tensor can be used
to identify the molecular species around the trap sites. For the
three types (A, B, and C) of trap states obtained, the g tensor
should be common, considering the highly symmetric nature of
the ESR spectra. This indicates that the trap states are extended
over inherent pentacene molecules of regular orientation.8,10

Of these, the deep discrete trap level (A) might be attributed
to structural defects such as grain boundaries.69

The shallow discrete level (B) and the broad feature (C)
might be ascribed to small defects such as molecular sliding
along the long axes of the molecules,70 disorder induced by
random dipoles in the amorphous gate dielectrics,71,72 thermal
off-diagonal electronic disorder,73,74 and the fluctuations of
the band edge.75 Notice that the regular orientations of the
molecules are retained in the trap states as stated above.
Although these assignments are rather speculative, we believe
that further microscopic investigations based on this study will
provide a comprehensive view of the weakly localized in-gap
states in organic transistors.

The lack of sensitivity of the strongly localized states with
small Neff to the gate voltage, which is obvious from the
physical point of view, is an indication of the stability and
reliability of the fine analysis of the ESR spectra. For shallow
states with large Neff and small EB , an increase in the gate
voltage adds low-energy states that participate in creation of
ESR signal (see Fig. 11). This shift of the border where states
are visible to the ESR probe indicates that these states are
filled as the gate voltage increases. Hence this behavior can be
interpreted as a movement of the Fermi level that tends to zero
energy as the bias voltage increases.

It is important to mention that the sharp peak of D(Neff)
at Neff = 1.54 does not contradict the assumptions used to
derive the integral equations (8) and (9). The very essence of
these equations implies that the contribution from each state
with a given Neff is a Gaussian ESR signal. On the other hand,
the signal at small Neff is a more complicated function with
fine features [see, e.g., Fig. 1(a) for Neff = 1]. The results for
distribution D(Neff) at small Neff can be unreliable. However,
as can be seen in Fig. 1(c), the ESR signal for reasonable
parameters is close to Gaussian even at Neff = 1.54. Therefore

FIG. 11. (Color online) Comparison of distributions of trap states
in pentacene TFTs as a function of trap energy EB for gate voltage
−200 (solid line), −120 (dashed line), and −40 V (dotted line).

the results for the distribution of the traps D(Neff) are valid
even for small values of the localization parameter Neff .

VI. CONCLUSIONS

We have presented an unbiased analytical method for the
processing of high-precision electron spin resonance (ESR)
spectra, which allows us to obtain the distribution of trapped
carriers over the degree of localization and the binding energy.
The first step is a fine analysis of the shape of the ESR
spectra by the SOM, which allows us to split the spectrum into
multiple Gaussian components each of which corresponds to a
different spatial extension of the trapped carriers. The second
step is the transformation of the distribution over the degree of
localization into a distribution over the binding energies via a
system-dependent relation between the binding energies and
the localization parameters of the trapped carriers. We have
presented and discussed the fundamental bases of the spectral
analysis, detailed algorithms for practical applications, and
discussed the robustness of the analysis to experimental noise.
Although the method can be applied to many systems, we
consider that it is most appropriate for ESR spectra of organic
TFTs for the following reasons. First, the channel materials are
composed of regularly aligned organic molecules that involve
multiple degrees of freedom for nuclear spin moments. This
feature clearly justifies our basic assumption that a single type
of trap gives the Gaussian line shape of the ESR spectrum.
Secondly, it is possible to measure the high-precision ESR
spectrum because of the fairly small spin-orbit interactions
of organic materials. The field-effect device structure also
enables the control of the carrier density without introducing
any randomness in the channel semiconductors.

Such a direct probe is quite unique in investigating the
microscopic carrier dynamics in the organic TFTs that have
attracted considerable recent attention in the field of organic
electronics. We have shown that the trap states in pentacene
TFTs can be classified into three major groups: deep trap states
with a spatial extension of about 1.5 molecules (A), relatively
shallow trap states that extend over about five molecules (B),
and shallower trap states that extend over 6 to 20 molecules (C).
These states respectively correspond to deep and shallow trap
states with binding energies of 140 (A) and 22 meV (B), with
the broad feature ranging from 5 to 15 meV (C). These shallow
in-gap states are crucial for understanding and improving the
device performance of organic TFTs.
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