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Dynamical decoupling (DD) is an efficient tool for preserving quantum coherence in solid-state spin systems.
However, the imperfections of real pulses can ruin the performance of long DD sequences. We investigate the
accumulation and compensation of different pulse errors in DD using the electron spins of phosphorus donors in
silicon as a test system. We study periodic DD sequences based on spin rotations about two perpendicular axes,
and their concatenated and symmetrized versions. We show that pulse errors may quickly destroy some spin states,
but maintain other states with high fidelity over long times. Pulse sequences based on spin rotations about x and y

axes outperform those based on x and z axes due to the accumulation of pulse errors. Concatenation provides an
efficient way to suppress the impact of pulse errors, and can maintain high fidelity for all spin components: pulse
errors do not accumulate (to first order) as the concatenation level increases, despite the exponential increase in
the number of pulses. A symmetrized DD sequence cancels the first-order pulse errors. Our theoretical model
gives a clear qualitative picture of the error accumulation and produces results in quantitative agreement with the
experiments.
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I. INTRODUCTION

The state of a closed quantum system can be represented as
a coherent superposition of the basis states, where the phases
and the amplitudes of the superposition coefficients specify the
state. Coherent superpositions of two-level quantum systems
(qubits) can be cleverly employed for high-resolution nuclear
magnetic resonance (NMR) and electronic spin resonance
(ESR),1,2 highly sensitive magnetometers,3–6 quantum infor-
mation processing, and quantum computation.7,8 However,
any real quantum system interacts with its environment. The
interaction leads to the decay of the coherence between the
system’s basis states, and the decohered qubit loses its useful
properties. Different ways have been developed to mitigate
decoherence.9–12 Among others, the dynamical decoupling
(DD) approach looks extremely promising. DD is based on
the ideas that underlie the spin-echo effect.13,14 A specially
designed sequence of pulses is applied to the system and
modifies the system-environment coupling in such a way that
the impact of the environment is averaged out.15,16 A large
number of efficient DD sequences have been devised in the
context of high-resolution NMR.17 Experimental techniques
for producing the pulses are well developed, especially in
the areas of NMR and ESR. Furthermore, the threshold
requirements for application of DD are very modest. All
these advances make DD an appealing strategy in deco-
herence suppression, and DD is actively studied now, both
theoretically16,18–25 and experimentally.26–37

Among different DD schemes, in this paper we focus
on DD based on periodic structure, which has been broadly
studied and implemented. A basic DD scheme is the periodic
dynamical decoupling (PDD), in which pulses are repeat-
edly applied to the system with equal interpulse delay.15,16

To suppress the effect of system-environment interaction

more efficiently, symmetrized versions of periodic dynamical
decoupling,17,38 and the concatenated dynamical decoupling
(CDD) have been proposed.18,23,24,39 Performance of DD
schemes can be different depending on the noise spectrum of
the bath, and has been extensively studied for different qubit
systems.20,30,31,34–36,40

Aside from the bath dynamics, real qubits are subject also to
errors in the control pulses, which are often systematic, being
caused by the instrumental imperfections. Many research
efforts have been devoted to achieving single pulses with small
errors, or alleviating the effect of finite pulse duration, includ-
ing composite pulses, soft pulses, and Eulerian DD.38,41–45 Yet,
implementations of DD in quantum-information processing
(QIP) involve a large number of pulses applied over long
times, so that even small pulse imperfections could accumulate
and seriously affect the decoupling fidelity. A comprehensive
understanding of how the systematic pulse errors accumulate
in different DD sequences is highly desirable. The effect of
pulse errors induced by the finite pulse duration has been
studied in detail.30,39,46,47 The effect of systematic errors
in the rotation axis and angle on CDD has been studied
theoretically18 and experimentally,34,48 and has also been
discussed for dynamically corrected gates.46 Moreover, for
many traditional NMR and ESR experiments, the state to
preserve is known (e.g., prepared along a certain direction)
and the decoupling sequence can be chosen to best maintain
this state. The Carr-Purcell-Meiboom-Gill13 pulse sequence,
where π pulses are applied to the system along the x axis,
preserves the spin state along the x axis while the state
along the y axis is destroyed by the accumulation of pulse
errors. Quantum-information processing, however, requires
any unknown state of the qubit to be preserved, so DD must
preserve all components of the qubit state.
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In this paper, we analyze, both theoretically and exper-
imentally, the performance of several DD protocols in the
presence of pulse imperfections for different initial states. As
a testbed, we use a macroscopic ensemble of electron spins
of 31P donors in silicon, which constitute a promising system
for studying many fundamental aspects of QIP.49–51 Instead
of errors in a single pulse, we focus on the accumulation and
compensation of systematic pulse errors on a scale of the whole
DD sequence. We study the performance of two-axis PDD,
in which the π pulses are applied along two perpendicular
axes alternately, as well as its symmetrized and concatenated
versions. Decoupling fidelities for spin states along x, y, and
z axes are examined.

We find that, in PDD, certain types of pulse errors
accumulated during the first half period of the sequence are
balanced out during the second half, hence have little affect on
the decoupling fidelity. Sequences with pulse axes along x and
y alternately (XY PDD) are mainly affected by the in-plane
component of the errors in pulse axes, while sequences with
pulses along x and z axes (XZ PDD) are sensitive to multiple
types of pulse error. Such analysis could serve as a guide for
choosing suitable decoupling sequences according to specific
experimental situation.

We also find that some spin states are quickly destroyed
in the decoupling process, while other components are
maintained with high fidelities over long times. Such a
preservation of a particular spin component does not imply
good performance of the decoupling sequence, but oppositely,
results from the accumulation of the pulse errors over long
times.52 For example, XY PDD preserves the spin component
along the z axis, while XZ PDD preserves the y component.
XY -based DD sequences are found to outperform the XZ-
based sequences. We analyze the dependence of DD sequences
on the accumulation of pulse errors, and explain all these
effects both qualitatively, with a simplified analytical model
and quantitatively, using numerical simulations.

We also find that the concatenated DD protocols (CDD)
with two-axis control exhibit excellent immunity to pulse er-
rors and preserve all spin components. The robustness of CDD
against systematic pulse errors has been shown theoretically
earlier.18 Our results provide experimental confirmation of this
feature of CDD: in the evolution operator, the pulse errors do
not accumulate to first order, in spite of the exponential growth
of the number of pulses.

The rest of the paper is organized as follows. In Sec. II,
we introduce the system and the DD sequences to be
studied. We present the theoretical model and describe the
experiments. In Sec. III, we present the results of analytical
studies and numerical simulations, and compare them with the
experimental data. Conclusions are given in Sec. IV.

II. SYSTEM AND THE DD PROTOCOLS

A. Phosphorus-doped silicon system

Electron spins of P donors in silicon show long relaxation
times53,54 and coherence times,55 and therefore constitute
promising candidates for QIP applications49,50,56,57 and for
studying the basic problems of DD.26,50 Advanced ESR
techniques can be used to manipulate the spin states of

the P donors.55,58 In our experiments, isotopically purified
bulk silicon samples were used,59 with 29Si concentration
∼800 ppm, and the doping density of phosphorus ∼5 × 1014

cm−3. Experiments were performed at a static (quantizing)
field of 3500 G, and a temperature of 8 K. The longitudinal
relaxation time of the electron spin of P is T1 = 25 ms
limited by the two-phonon Orbach process.55,60 The transverse
relaxation time determined by spin-echo experiments is T2 =
4.6 ms, limited by instantaneous diffusion.55,61,62 The “true”
T2 of isolated donors extrapolates to about 60 ms, e.g., after
suppressing the instantaneous diffusion.55

Dynamical decoupling works well when the interpulse
delay between the pulses is short compared to the typical time
scale of the noise of the bath. In our experiments, the interpulse
delay time is τ = 11 μs. We now examine the time scales of
possible interactions with the P electron spins.

At donor density ∼5 × 1014 cm−3, the typical mutual flip-
flop time of the P electron spins due to the dipolar interaction is
of the order of 100 ms, which is much longer than the interpulse
delay in the DD and the total duration of the experiment. We
therefore can regard the P electron spins as independent of
each other.

The hyperfine coupling between the donor’s electron spin
and the donor’s 31P nuclear spin is rather large (∼100 MHz),63

and only one hyperfine line is excited in our experiments
(i.e., we are working only within the subspace with a fixed
z projection of the 31P nuclear spin). Thus, the presence of
the 31P nuclear spin only slightly renormalizes the resonance
frequency of the donor’s electron spin, and can be neglected.

Spectral diffusion induced by the nuclear spins is a major
source of decoherence for the Si:P system and other dopants
in semiconductors.64–67 In the Si:P system, the P donors
are coupled to their surrounding 29Si nuclear spins mainly
via contact hyperfine interaction. The anisotropic corrections
caused by the admixture of the p states and the dipolar
contribution to the hyperfine coupling, are small.68 The
dynamics of the 29Si nuclear spin bath, either due to the
flip-flops induced by the intrabath dipolar interaction or due to
the electron-mediated virtual spin flips, could decohere the P
spins.64–67,69 However, in our experiment, the concentration of
29Si is low (∼800 ppm) and the quantizing field B0 = 3500 G,
which we take as directed along the z axis, is huge compared
to the hyperfine coupling energy scale. Both types of flip-flops
of the nuclear spins are thus greatly suppressed on the time
scale of τ and on the time scale of the total experiment. The
characteristic spectral diffusion time has been measured to
be about 20 ms at 800 ppm of 29Si,70 which is larger than
the interpulse delay by four orders of magnitude. Therefore,
the 29Si nuclear spins can be treated as static, contributing
only an extra static field acting upon the P spins along the z

axis. Moreover, since the separation between the donor centers
is very large, the 29Si nuclei, which are sufficiently strongly
coupled to one center, interact very weakly with other donor
centers, and each P electron spin can be considered as coupled
to its own nuclear spin bath.

The quantizing magnetic field of the magnet also fluctuates.
The fluctuations have a broad spectrum, but the noise power
quickly decays as 1/f 2 to become negligible at frequencies
higher than 1 kHz. The noise correlation time is therefore
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much larger than τ and we can treat the quantizing field as
static but inhomogeneous over the sample.

Therefore, the system under study is an ensemble of
independent electron spins. Each spin feels a different static
quantizing field and an extra static field contributed by
the hyperfine interaction with the 29Si nuclear spins. The
Hamiltonian describing a single phosphorus electron spin S

is then

H = ωeS
z + γeBnS

z, (1)

where ωe is the Zeeman frequency of the electron spin in the
static quantizing field, γe is the gyromagnetic ratio for the P
electron, and Bn is the overall effective field acting on S due to
interaction with the bath. Here and in the following, we adopt
the system of units with h̄ = 1. Taking into account the spatial
inhomogeneity of the static quantizing field, we represent ωe =
ωe0 + δωe, where ωe0 is the average over the sample, i.e.,
the frequency corresponding to the center of the ESR line.
By performing the standard rotating-frame transformation,13,73

ωe0 is eliminated and the Hamiltonian (1) is transformed into

H = γeBSz, (2)

where B = δωe/γe + Bn is the total field acting upon S in the
rotating frame. Accordingly, all analysis below is performed
in the rotating frame. The distribution function of this field is
determined in part by the initial density matrix of the bath
and in part by the inhomogeneity of ωe over the sample.
The statistical properties of the field B determine the ESR
lineshape. Our measurements of the free induction decay show
that the ESR line has a Gaussian shape, hence,

P (B) = 1√
2πb2

exp[−B2/(2b2)] (3)

with variance b = 50 mG, which includes both the rms
coupling between the spins of the P donors and the bath
and the inhomogeneity of the external quantizing field. This
experimental fact will be the starting point of the further
analysis.

To sum up, on the time scale of the interpulse delay of
DD (tens of microseconds), the electron spins effectively
live in a static inhomogeneous background magnetic field.
The dephasing time T ∗

2 ∼ 1.6 μs of the P spins due to
such inhomogeneity is much smaller than T2. Sequences of
microwave-frequency pulses are applied to decouple the P
electron spins from the overall background magnetic field
noise, and refocus the dephasing. The electron spin state is
expected to be preserved by DD against the dephasing on a
time scale of the order of T2, where instantaneous diffusion
becomes important.

B. Experimental setup

Our experiments were performed on a Bruker Elexsys
580 spectrometer with specially modified software to allow
for generating large numbers (over 1000 in some experi-
ments) of microwave pulses, and a 20-watt continuous-wave
solid-state microwave power amplifier (Amplifier Research),
which maintained microwave phase stability over the long
pulse sequences. Experiments were performed at an X-band
microwave frequency of 9.8 GHz and a static (quantizing)

magnetic field of 3500 G at temperature 8 K. The typical
duration of a π pulse was 0.18 μs. In most of the experiments,
the delay between refocusing pulses was set to τ = 11 μs,
short compared to the characteristic times of all sources of
noise known in our system (see the detailed discussion in
Sec. II A).

For the donors in our Si sample, the measured echo signal
decays showed an excessive “phase noise” developing at
longer times (for example, at τ > 1 ms in a Hahn echo
experiment) arising from the fluctuating magnetic field B0

of the magnet.50 The power spectrum of the field noise
(G2 Hz−1) varies approximately as 1/f 2 with an amplitude
∼0.5 mG Hz−1/2 at 10 Hz. In the experiments, we used a large
Si sample with enough donors to enable the acquisition of an
echo without signal averaging. Thus, the field noise could be
eliminated with magnitude detection, e.g., squaring and adding
the in-phase and quadrature components of the echo signal.50

This magnitude detection approach was used for an accurate
extraction of the T2 relaxation times from the measured decays.

The large Si sample also means that the microwave
magnetic field (Bp) is not homogeneous over its entire
volume in the pulsed ESR resonator (a Bruker dielectrically
loaded cylindrical cavity 4118X-MD5), leading to a systematic
rotation angle error. The extent of Bp inhomogeneity and
the resulting rotation errors in our spectrometer setup have
been characterized in our previous publications.58,71 The Bp

variation over the sample volume can be as large as 10%–20%
depending on the sample dimensions. On the other hand, the
rotation axis errors (e.g., relative phase errors between πX

and πY pulses) can be reduced to a subdegree level using
a calibration technique based on phase error amplification
(SPAM),71 in which the phase errors accumulate in a way
that is similar to how the flip angle errors accumulate in the
Carr-Purcell sequences, and hence the orthogonality of the
rotation axes in two pulse-forming channels can be measured
with high precision.

C. Dynamical decoupling protocols

In a spin-echo experiment, the in-plane magnetization of a
spin ensemble decays due to the precession of the spins under
an inhomogeneous magnetic field, and this dephasing can be
refocused by applying a π pulse to all the spins midway during
the evolution. Pulse sequences such as Carr-Purcell-Meiboom-
Gill (CPMG) refocus the dephased ensemble magnetization by
applying a train of equally spaced pulses, each rotating the spin
by π around the x axis of the rotating coordinate frame. In the
following, we denote such pulses as πX, and other pulses are
denoted similarly [e.g., a (π/2)Y pulse is the pulse rotating
the spins by π/2 around the y axis]. However, the single-axis
CPMG protocol has an important drawback. When the electron
spins are prepared along the y axis [by applying a preparatory
(π/2)X pulse], the small errors inevitably present in real DD
pulses accumulate very quickly in the course of the decoupling
experiment, and destroy the performance of the decoupling
protocol, as in the original Carr-Purcell pulse sequence. This
problem is absent for CPMG in case of the initial states along
the x axis, but the goal of DD is to preserve all components
of the spin. Therefore, more general DD protocols must be
considered. A large number of decoupling sequences have
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been developed, aiming at maintaining the state of the central
spin S. Design and analysis of DD schemes are often based on
the Magnus expansion (ME), which is a cumulant expansion
of the evolution operator of the whole system (the qubit and
the bath). DD intervenes the evolution and eliminates the
unwanted system-bath couplings in expansion terms of the
ME. Aside from the DD sequences based on a periodic pulse
structure such as PDD (Ref. 16) and its concatenated version
CDD,18 aperiodic structures such as UDD,19 QDD,25 etc. were
developed recently. In this paper, we focus on the decoupling
sequences with periodic structure.

One of the simplest protocols is the periodic dynamical
decoupling (PDD),16 where the central spin is subjected to a
train of equidistant π pulses applied along different axes. The
unitary operators, which describe the control pulses acting on
the central spin, are taken from a group cyclically, starting
from the identity element I . A typical sequence based on
the group G = {I,σ x,σ y,σ z}, where σx, σ y , and σ z are Pauli
matrices, has a period (I-d-I)(πX-d-πX)(πZ-d-πZ)(πY -d-πY ).
Here, d indicates the delay between pulses with time duration
τ . By virtue of the operator algebra of the Pauli matrices, the
period can be reduced to

d − πX − d − πY − d − πX − d − πY . (4)

This two-axis (XY -) based decoupling scheme is termed XY

PDD. When the interpulse delay time τ is short compared to
the inverse of the cutoff frequency ωc of the spectral density
function of the bath, the resulting evolution operator of the
system is equivalent to the identity up to the first order in ωcτ ,
i.e., has a form 1 + O(ω2

cτ
2). In this paper, we also study an

alternative two-axis decoupling sequence XZ PDD. Its period

d − πX − d − πZ − d − πX − d − πZ (5)

can also be drawn from the group G. For ideal pulses (e.g.,
when the bath is completely static and pulse errors are absent),
XY - and XZ-based DD are equivalent to each other.

SDD is a symmetrized version of PDD. The period of SDD
sequence is twice as long as that of PDD and is symmetric
with respect to the middle.16,17,38 The period for a XY -based
SDD is

d − πX − d − πY − d − πX − d − πY

−πY − d − πX − d − πY − d − πX − d. (6)

Such symmetrization eliminates all even terms in the ME
systematically, leaving the system-bath coupling in the third-
and higher-odd-order terms.

A concatenated version of periodic decoupling CDD was
developed to decouple the system from the bath to higher
orders in ME.18 CDD at level one is just PDD, and sequences
for higher levels are built up by recursively nesting the lower
level sequence within itself. For example,, for the XY -based
sequence, the structure for the nth level CDD, CDDn, is

CDDn−1−πX−CDDn−1−πY −CDDn−1−πX−CDDn−1−πY .

(7)

In ME, CDDn eliminates the interaction between the system
and the bath up to the nth order. Note here the number of pulses
in CDD increases approximately as 4n.

As is customary in NMR and ESR experiments, the initial
state of the electron spin is pseudopure.13,73 The density
matrix for the electron spin polarized along the z axis in the
high-temperature approximation has the form ρ0 = 1

2 1 + ζSz

where ζ is small. Since the identity matrix 1 is not affected
by unitary evolution and gives no contribution to the signal,
we can regard the electron spin as being in a pure state with
Sz = 1/2 (pseudopure state).13,73 The in-plane initial states of
the electron spin prepared by (π/2) pulses at the beginning of
the experiment then can also be considered as pure.

For a single electron spin S, we characterize the perfor-
mance of a given DD protocol using the survival probability
of the state (input-output fidelity), which in our case can be
written in the form Tr[ρ(0)ρ(t)], where ρ(0) is the initial
state of the electron spin and ρ(t) is the reduced density
matrix of the electron spin at the end of DD. By virtue of the
relation ρ(t) = 1/2 + 〈Sx〉σx + 〈Sy〉σy + 〈Sz〉σz, the fidelity
is equivalent to

FS
α (t) = 2 Tr[Sα(t)Sα(0)] = 2 Tr[ρα(t)Sα], (8)

and is characterized by the average spin projections 2〈Sx〉,
2〈Sy〉, and 2〈Sz〉. Here, α = x,y,z denotes the three initial
states of the electron spin oriented along the axes x, y, and z,
respectively, and ρα(t) is the corresponding density matrix of
the spin at time t . The fidelity characterizes how well the initial
state of the electron spin is protected by the DD sequence.
FS

α (t) is then averaged over the ensemble as

Fα(t) = 〈
FS

α (t)
〉
, (9)

where 〈· · ·〉 denotes the ensemble average. The quantity Fα(t)
is the measure of the performance of DD in our study. Of
course, this fidelity may, and in fact does, strongly depend on
the specific initial state.

D. Analysis and model of pulse errors

In ESR experiments, pulse errors can be greatly reduced,
e.g., by using composite pulses.41 Still, in many experiments,
pulse errors remain an important (and sometimes a major)
factor that limit the performance of the decoupling sequence.
We now undertake a detailed analysis of the possible pulse
errors in our experiment and arrive at a model to account for
the error effect.

Since the duration of a π pulse, 0.18 μs, is small compared
to the inverse ESR linewidth (∼T ∗

2 ), we treat the pulses as
instantaneous unitary rotations. The validity of this approxima-
tion has been confirmed numerically by modeling the influence
of the dephasing field B [Eq. (2)] during the pulses. Taking
into account the errors in both the rotation axis and the rotation
angle, the operators for the π pulses have forms

UX = exp[−i(π + εx)(S · �n)],
(10)

UY = exp[−i(π + εy)(S · �m)],

where �n = (
√

1 − n2
y − n2

z ,ny ,nz) is the actual rotation axis for a

nominal πX pulse, and �m = (mx,
√

1 − m2
x − m2

z,mz) is the
actual rotation axis for a nominal πY pulse. Small parameters
ny,nz,mx,mz characterize the error in the rotation axes, and εx

and εy characterize the error in the rotation angles.
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1. Error sources

An ideal π pulse generated by a pulse field in exact
resonance with the Larmor frequency of the central spin
realizes a rotation of the central spin by an angle π . In the
rotating frame, the pulse field Bp has a steplike form in
time, i.e., the value of the field is zero before and after the
pulse, and constant during the pulse. The duration tp of the
pulse is determined by tpγeBp = π . In this study, we consider
the following four sources of pulse error.

Due to the inhomogeneity in the static magnetic field over
the sample, the pulse field is not in exact resonance for every
electron spin. In the coordinate frame rotating at angular
frequency ωe0, the detuning B manifests itself as a nonzero
magnetic field along the z axis. As a result, the rotation axis
deviates from the intended x or y directions, and the rotation
angle tpγe

√
B2

p + B2 is different from π .
In our experiment, the coherence signal was obtained by

a single-shot measurement from a macroscopically large Si
sample. The by-product of a large sample is that Bp is not
homogeneous over the entire sample volume. To model this
effect in a simple but physically meaningful way, we assume
a one-dimensional model, where Bp varies only along some
axis l (e.g., along the resonator axis), and the sample position
is optimized near the maximum of the driving field, where Bp

depends quadratically on l:

Bp(l) = B̄p + �Bp[1 − 3l2/d2], (11)

where B̄p is the average of Bp(l) over the sample, and �Bp

quantifies the amplitude of the error. The origin of the l axis is
at the center of the sample, and 2d is the sample length along
the l axis. In the experiment, Bp can be well tuned such that on
average an exact π pulse can be expected, i.e., tpγeB̄p = π .
The error in the rotation angle π + ε(l) for the spin located at
position l then arises from the �Bp term

ε(l) = tpγe�Bp(1 − 3l2/d2). (12)

The corresponding distribution function for the rotation angle
error is

P (ε) = (1/2ε0)[3(1 − ε/ε0)]−1/2 (13)

and −2ε0 � ε � ε0. We further assume the angle errors for
πX and πY pulses to be the same εx = εy = ε.

The imperfectly rectangular shape of the actual pulses also
introduces pulse errors. These errors mainly come from the
leading and trailing edges of the pulse. In ESR experiments,
the edges may constitute about 10% of the total pulse time,
and could have a noticeable influence. At the pulse edges, the
amplitude and the phase of the driving field are ill defined,
introducing errors to both the rotation axis and the rotation
angle. Furthermore, the magnitude of these transient errors
depends on the offset frequency B of the spin and therefore the
pulse errors have a nonuniform distribution over the sample. To
account for the effect of these complex errors, we introduce the
rotation axis errors ny,mx and nz,mz. Similar to the arguments
used in Eq. (13), the axis error nz is drawn from the probability
distributions

P (nz) = (1/2n0)[3(1 − nz/n0)]−1/2, (14)

where −2n0 � nz � n0, and constant n0 quantifies the am-
plitude of the error. Similarly, we assume the axis errors of
πY pulses have the same probability distribution as Eq. (14),
and assume mz = nz for all spins. The value for the in-plane
component of the rotation axis errors mx and ny are extremely
small in experiments, as discussed in Sec. II B, so we take
them to be zero in the simulations, but keep the symbols for
the analysis.

Another possible pulse error is the imperfection in the
relative phases of the πX and πY pulses. In the presence of
such errors, if we assume that the axis for the πX pulse is
perfectly aligned along the x axis, the actual rotation axis of
the πY pulse may have a nonzero x component. However, by
using standard phase calibration techniques, this in-plane axis
error can be reduced to a subdegree level and is negligible in
our experiments.

Summarizing, we treat the pulses as instantaneous rotations
described by Eq. (10). The pulse errors εx = εy = ε and
nz = mz are drawn from distributions Eqs. (13) and (14),
respectively. Note that in our model for pulse errors, ε0 and
n0 are the only adjustable parameters, which are determined
from experiments. With a fixed set of values for ε0 and n0,
good simulation results are achieved in quantitative agreement
with the experiments for all seven different DD protocols (XY

and XZ PDD and CDD; symmetrized DD sequences were not
performed experimentally).

2. Simulation details

Time evolution of the electron spin S is simulated for
initial states along axes x, y, and z. We label these three
initial states, respectively, as |ψx〉, |ψy〉, and |ψz〉, and the
fidelities as Fx , Fy , and Fz. Simulations are performed in the
rotating frame with the frequency at the center of the ESR
line ωe0. For each single spin, the pulses are implemented
as described by Eq. (10), and the evolution operator for the
interpulse delay is U0 = exp[−iH t] with the Hamiltonian H

given by Eq. (2). The static field B felt by spin S is drawn
from the Gaussian distribution [Eq. (3)]. After application of
the decoupling sequence, the input-output fidelities FS

α (t) are
calculated. The fidelities are averaged over ∼104 realizations.
The time delay between pulses is constant τ = 11 μs for all
DD sequences as in the experiments. The values of the error
parameters in Eqs. (13) and (14) are taken as ε0 = 0.3(7.5◦)
and n0 = −0.12(−3.5◦), which provides results that fit well
with the experiments.

III. RESULTS AND DISCUSSION

Experimental and numerical results for different DD pro-
tocols are shown in Figs. 1 through 4. The simulation results
agree well with the experimental data, indicating that the error
model captures the essential features of the system. We present
the results for decoupling sequences based on XY and XZ

pulses for comparison. In the experiment, a πZ pulse was
implemented by a pair of subsequent rotations about the x and
y axes, πXπY . This substitution was carried out in experiments
for all the XZ-based sequences. Since the bath of the electron
spins is static in our study, for ideal pulses (without pulse
errors), XY - and XZ- based sequences are exactly equivalent.
However, as we show in the following, in the presence of pulse
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FIG. 1. (Color online) Fidelity as a function of the number of
cycles N of PDD: (a) XY PDD, (b) XZ PDD for initial states |ψx〉,
|ψy〉, and |ψz〉, respectively. Points are experimental results and lines
are simulation results.

errors they behave very differently in preserving the quantum
states of the electron spin.

A. PDD

1. XY-based sequence

Figure 1(a) shows the fidelities of the electron spin states as
functions of the number of periods (cycles) for XY PDD.
Fidelities for different initial states exhibit different decay
behaviors. Fx and Fy exhibit apparent decays. Fz, on the
contrary, decays very little. Similar phenomena in DD have
been discussed in Ref. 23, where one state of the system is
less sensitive to the decoherence induced by the spin-bath
interactions than the other states. In our study, in the presence
of pulse imperfections, particular initial states of the electron
are preserved, i.e., survive for a long time in the DD process,
while other states are quickly destroyed by the accumulation
of pulse errors.

The electron spins of P are independent of each other, and
are coupled only to external magnetic fields (static field along
the z axis, and a time-varying pulse field along all three axes).
In this case, the time evolution of each spin is unitary, and can
be described as a rotation:

U = exp[−iθ (S · �a)], (15)

where �a is the effective rotation axis and θ is the rotation
angle. In the following, we will examine such rotations, viewed
stroboscopically after each period of the DD sequence.

Consider a period of the XY PDD sequence Eq. (4),
substituting the expressions for pulse errors [Eq. (10)] into
the evolution operator

UXY PDD = UY U0UXU0UY U0UXU0, (16)

and keeping only the zeroth- and first-order terms in the small
parameters (εx,εy,mx,ny,mz,nz), UXY PDD can be expressed
in the form of Eq. (15) with

�a = (0,0,−1),
(17)

θ = 2π + δθ,

where

δθ = 4(mx + ny). (18)

That is, after one period, the spin is rotated about an axis close
to −z by an angle 2π + δθ . For ideal pulses, UXY PDD = −1,
the rotation angle is θ = 2π and the spin returns exactly to its
initial state. The error in the rotation angle δθ can be viewed
as a dephasing error in the plane perpendicular to �a. After N

periods, to first order in the pulse errors, the spin rotates about
the axis �a by an angle Nδθ . Since �a is (approximately) along
the z axis, the spin operator Sz (approximately) commutes with
the evolution operator [Eq. (15)]. Therefore, the initial state
|ψz〉 is an (approximate) eigenstate of the evolution operator,
and thus does not evolve with the DD sequence, and is of
course insensitive to pulse errors (pulse errors in high order
could contribute though). On the other hand, the other two
states |ψx〉 and |ψy〉 are not the eigenstates, and for these
states the error in the rotation angle δθ will accumulate during
the pulse sequence.

Now, we consider the electron spin ensemble. For each
spin, the time evolution is governed by a rotation [Eq. (15)]
with rotation axis and angle given by Eq. (17). Each spin sees
different pulse errors, and the resultant effective rotation axis �a
and dephasing errors δθ are slightly different from each other
(for first- or higher-order pulse errors). As shown in Eq. (17),
the rotation axes for all spins are along z up to first order in
the pulse errors. The initial state |ψz〉 is then preserved for
all spins in the ensemble, despite their different pulse errors.
The ensemble-averaged fidelity Fz hence remains high until
spoiled by the accumulation of higher-order errors. On the
other hand, for states |ψx〉 and |ψy〉, the spins are initially in
the plane perpendicular to the �a (z) axis. Different spins acquire
different phase errors during the evolution in one period of DD.
As a number of periods N increases, this error accumulates.
After a certain number of periods, the spin components spread
out evenly in the x-y plane, and the ensemble-averaged fidelity
decays to almost zero.

Note here if we analyze the rotation operator after half
a period d − πX − d − πY (which is the repeating unit of
the pulse sequence), and express the corresponding evolution
operator UXY PDD

half up to first order in the pulse errors, the
rotation angle is θ ′ = π + 2(mx + ny) and the axis of the
rotation �a′ is

a′
x = −εy

2
+ nz cos φd − εx

2
sin φd,

a′
y = mz − εx

2
cos φd − nz sin φd, (19)

a′
z = −1,

where φd = γeBτ is the phase accumulated during the inter-
pulse delay. It is noteworthy that, unlike the rotation axis for
a full period in Eq. (17), the rotation axis �a′ involves pulse
errors to first order. That is, some pulse errors accumulated
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during the first half period are balanced out during the second
half. Since a full period is a repetition of two half periods, we
certainly have

UXY PDD = UXY PDD
half UXY PDD

half = exp [−i2θ ′(S · �a′)], (20)

and the rotation axis is still the same and the rotation angle is
twice larger. Although the expressions for �a and �a′ are different,
there is no discrepancy here. Since exp[−i2θ ′(S · �a′)] =
cos θ ′ − i/2 sin θ ′(S · �a′) and sin θ ′ = −2(mx + ny), first-
order pulse errors in �a′ become higher order in UXY PDD.
Therefore, up to fist order, UXY PDD can also be expressed
as Eq. (17) with the effective axis �a free of first-order pulse
errors.

We next undertake a more quantitative examination of
how the decays and the preservation happen to different spin
components. For a single spin S, the fidelity for an initial state
|ψα〉 (α = x,y,z) after N periods is

FS
α (N ) = 2 Tr[UXY PDDρS(0)(UXY PDD)†Sα]

= a2
α + (

1 − a2
α

)
cos (Nδθ ). (21)

That is, the fidelity, if viewed stroboscopically (at the end
of each DD period), exhibits oscillations at a frequency
determined by the phase error δθ . For spin ensemble, after
averaging over B and over the pulse errors [although the
magnetic field B does not show up in Eq. (18), it contributes
in higher order], the cosine factor contributes to the decay, and
the fidelity at long times saturates at a value independent of
time (N )

Fα(N ) → 〈
a2

α

〉
, (22)

where 〈· · ·〉 denotes the ensemble average. For |ψx〉 and |ψy〉,
〈a2

α〉 is small, hence the fidelities decay almost to zero. For
|ψz〉, since az is almost one, the fidelity is preserved with its
value close to 1.

Such preservation of a particular spin state demonstrates
a remarkable feature of the error accumulation in DD: a
large fidelity for certain initial states does not guarantee good
performance of DD for other initial states, hence does not
necessarily suggest a good DD protocol. This is similar to the
error accumulation effect in the single-axis DD sequences.
While |ψx〉 is well preserved by the πX-pulse sequence
(CPMG), |ψy〉 is quickly destroyed by the same sequence
due to the accumulation of errors in the rotation angle
(CP). Sensitivity of Uhrig19 DD and CPMG to initial input
state in the presence of pulse errors also has recently been
studied experimentally in Ref. 48. Therefore, in experiments
implementing DD, the preservation of all three components
Fx , Fy , and Fz should be checked, or full tomography should
be performed.

2. XZ-based sequence

The pulse sequence of XZ PDD preserves the spin
component |ψy〉 [see Fig. 1(b)]. Compared to the decaying
fidelities (Fx and Fy) in XY PDD, the fidelities Fx and Fz

in XZ PDD decay much faster, with values below 0.2 after
barely 3 cycles (12 pulses).

An analysis similar to that in Sec. III A 1 shows that the
evolution operator for one period of XZ PDD UXZ PDD =

exp[−i(2π + δθ )(S · �a)], up to first order in the pulse errors,
corresponds to

�a = (0,−1,0),

δθ = 2[−εy + εx sin φd + 2nz(1 − cos φd)]. (23)

The effective rotation axis �a is close to −y, hence, the state
|ψy〉 is preserved.

Comparing Eqs. (23) to (17), one can see that XZ PDD
involves rotation angle errors εx , εy and axis error nz to
first order, while the XY -based sequence involves only mx

and ny . Since in experiments, as we mentioned in Sec. II D,
the in-plane rotation components mx and ny are extremely
small and can be neglected, the deviation of the evolution
operator of a period of XY PDD from identity is actually
second order in the pulse errors, while that of XZ PDD is
first order. Furthermore, note that Eq. (23) for XZ PDD is
dependent on the magnetic field (in φd), while Eq. (17) for
XY PDD is not. When performing the ensemble average in
Eq. (21), which holds also for XZ PDD and, in general, for
any periodic decoupling sequence, the first-order pulse error
in δθ and the B dependence leads to a much faster decay of
the cosine term than the second-order pulse error does for XY

PDD. This explains why XY PDD outperforms XZ PDD.
Note that such inferior performance of XZ PDD compared

to XY PDD does not arise from the replacement of πZ by πXπY

in our experiment. The XZ-based sequence still performs
worse even if πZ pulses are applied directly. Taking the form
of the evolution operator for πZ to be similar to Eq. (10), with
rotation axis �p and rotation angle π + εz, Eq. (23) becomes

�a = (0,−1,0),
(24)

δθ = 2[−2px + εx sin φd − 2nz cos φd],

where px is the x component of the rotation axis for the πZ

pulse. [Note, in the limit φd → 0, we have δθ = −4(px + nz),
which is exactly the symmetric form of their counterpart for the
XY -based sequence Eq. (17), as expected from the rotational
symmetry of the system.] The evolution operator for XZ

PDD hence contains multiple first-order pulse errors, similar
to the case where πZ is replaced by πXπY . Therefore, given
the experimental facts that the in-plane component of the pulse
axis errors mx and ny can be made extremely small while the
other errors can not be neglected, we can expect XZ PDD to
perform worse than XY PDD.

In summary, pulse errors play an important role in periodic
DD. Each PDD sequence has an effective axis in the presence
of pulse errors. During the decoupling, viewed stroboscopi-
cally, the spins perform rotations about this axis. Error accumu-
lation could destroy the initial-state components perpendicular
to the effective rotation axis, while the component parallel to
the axis is preserved. For negligible pulse axis errors mx and
ny , XY -based decoupling sequence shows a better resistance
to the pulse imperfections than the XZ-based sequence.

B. CDD

Next, we examine concatenated sequences based on PDD.
We measured the fidelity for a single cycle of XY - and XZ-
based CDD, with concatenation levels 1 to 4. Correspondingly,
the numbers of pulses are 4, 20, 84, and 340, and the number of
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FIG. 2. (Color online) Concatenated DD. Fidelity as a function
of the concatenation level is shown for initial states |ψx〉, |ψy〉, and
|ψz〉. Points are experimental results and lines are simulation results.
(a) XY CDD. All three lines for states |ψx〉, |ψy〉, and |ψz〉 overlap.
(b) XZ CDD.

delays (all delays have the same duration τ ) are 4, 16, 64, and
256, respectively. Fidelities are evaluated after the application
of the whole sequence.

In XY CDD, as shown in Fig. 2(a), all three initial states
are preserved with excellent fidelities (>99%). Numerical
simulations based on our error model are in agreement with
the experimental results. Note here, at level 4, the electron
spin has been subjected to 340 pulses, and its quantum state
is perfectly preserved with fidelity close to unity for 2.8 ms,
which is of the order of T2. For many pulses and over a long
time, no visible sign of the error accumulation appears.

To better understand the excellent performance of XY

CDD, we analyze error accumulation in the concatenation. The
evolution operator for a period of the level-2 CDD UXY CDD2,
up to first order in the pulse errors, corresponds to a rotation
with rotation axis and angle

�a = (0,0,−1),

δθ = 4(mx + ny). (25)

This exactly repeats the rotation corresponding to XY PDD
[Eq. (17)]. Further examining higher concatenation levels, we
arrive at the following relations:

UXY PDD = UXY CDD2 = · · · = UXY CDDn, (26)

where UXY CDDn denotes the evolution operator for level-n
concatenation. Up to first order in the pulse errors, the
evolution operators are exactly the same for all concatenation
levels. Although the number of pulses increases exponentially
with the concatenation level, the first-order errors do not
accumulate. Concatenation endows DD with the capability
of self-correcting the pulse errors.

XZ-based concatenated DD also outperforms its PDD
counterpart [see Fig. 2(b)]. However, compared to XY CDD,
the performance is worse. While |ψy〉 is the saturating

component, the fidelities for the other two states are lower.
Notably, at the first concatenation level, the fidelity is smaller
than at the other levels. Relations similar to Eq. (26) hold for
XZ CDD as

UXZ PDD|Bτ=0 = UXZ CDD2 = UXZ CDD3 = · · · = UXZ CDDn.

(27)

For the first-level concatenation (PDD), the evolution operator
depends on the phase during the interpulse delay φd, i.e.,
depends on the factor γeBτ , but the higher levels are
independent. This explains the dips at level-1 concatenation for
Fx and Fz in Fig. 2(b). Therefore, the concatenation eliminates
the dependence of the error accumulation on the interpulse
delay.

The simulation results for XZ CDD are qualitatively in
agreement with the experimental data, e.g., state |ψy〉 is better
preserved than the other two states, and there is a dip in the
first-order concatenation for |ψx〉. The quantitative difference
may be due to other experimental details that we did not take
into consideration in our error model.

C. Symmetrized DD

We also examined the symmetrized XY -based decoupling
sequence via numerical simulations and theoretical analysis.
The symmetrized pulse sequence unit Eq. (6) is repeated
periodically (XY SDD). Figure 3 shows the simulation
results. The fidelities of the spin states exhibit much slower
overall decay compared to XY PDD. Indeed, thanks to the
symmetrization, the first-order pulse errors balance out in the
evolution operator for a single period of SDD. Up to second
order, the evolution operator reads as

UXY SDD = 1 + 2iεy(mx + ny)σx

+ 2i(mx + ny) (εx cos φd + 2nz sin φd) σy. (28)

Furthermore, since in our case the in-plane axis errors mx

and ny are negligible, pulse errors actually contribute only in
the third and higher orders. The good performance of SDD
in Fig. 3 compared to XY PDD is hence expected. The SDD
sequence we study here has a similarity in spirit with the
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FIG. 3. (Color online) Simulation results for XY -based SDD.
Fidelity as a function of the number of cycles is shown for different
initial states. Fidelities in XY PDD are plotted as broken lines for
comparison. Note that the number of pulses in one cycle of SDD is
twice as large as that in PDD.
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FIG. 4. (Color online) Simulation results for concatenated XY -
based SDD. Fidelity as a function of the concatenation level is shown
for different spin states. (a) Results for the full sequence. (b) Results
for the reduced sequence (with all adjacent πY pulses removed).

Eulerian decoupling (EDD).38 By making the structure of the
decoupling sequence more symmetric, both SDD and EDD
cancel the pulse errors to first order.

Recall that, in XY PDD, spin component |ψz〉 is preserved
against pulse errors for a much longer time than the other
two components. For SDD, such asymmetric behavior is less
obvious. This is because to third order, UXY SDD is a rotation
operator with the rotation axis in the x-y plane (the expression
is cumbersome and not shown here). Symmetrized DD treats
the three spin components on a more equal footing.

In the symmetrized sequence [Eq. (6)], two πY pulses are
adjacent to each other in the middle of a period. Since σyσ y =
1, one would expect that removing these two imperfect pulses
from the sequence will yield better fidelity. However, the
concatenated decoupling sequence based on such a reduced
version of the SDD behaves much worse than the full sequence,
as seen in Fig. 4. This can also be understood from the
error dependence of the evolution operator. While UXY SDD

is identity up to first order in the pulse errors, with the two
πY pulses removed, the evolution operator involves εy to first
order

UXY SDD
reduced = −1 − iεyσ

y, (29)

where the subscript “reduced” denotes that all adjacent πY

pulses are removed from the sequence. Therefore, these two
πY pulses help keep a balanced structure for the symmetrized
XY sequence to suppress error accumulation.

IV. CONCLUSIONS

We have studied the effects of pulse imperfections on
dynamical decoupling. Using the electron spins of phosphorus
donors in silicon as a testbed, we investigated the performance
of different DD protocols. Experimental results are quali-
tatively explained by theoretical analysis and quantitatively
reproduced by numerical simulations.

Dynamical decoupling sequences are susceptible to pulse
imperfections. The accumulation of small pulse errors can
have appreciable influence on the performance of DD. In
two-axis-based PDD, the spin component along a certain
direction is preserved with high fidelity for a long time, while
the components in the perpendicular directions decay rapidly.
DD sequences are analyzed in terms of spin rotation, and each
DD sequence has an effective axis in the presence of pulse
errors. During the decoupling, viewed stroboscopically, the
spins perform rotations about this axis. The better preservation
of a particular spin component is attributed to the fact that this
component is parallel to the effective axis of the DD sequence
and hence is a quasi-integral of motion, in spite of pulse errors.

The XY -based decoupling protocols prominently outper-
form their XZ-based counterparts. The different performance
is explained analytically in terms of pulse errors. A sym-
metrized DD sequence suppresses the accumulation of first-
order pulse errors systematically and thus performs better than
regular PDD. Interestingly, the accumulation of pulse errors
is better suppressed by keeping the seemingly trivial adjacent
identical pulses πY πY in SDD. The symmetrized sequence
itself has an error-balance structure in which these two pulses
are indispensable.

The concatenated dynamical decoupling sequences are
found to be error resistant. Although the number of pulses
increases exponentially with the concatenation level, CDD
have exactly the same error effects up to first order in the
pulse errors. Concatenation can also alleviate the dependence
of the error accumulation on the interpulse delay as well as
the inhomogeneity in the static magnetic field. XY CDD,
with the advantage of both the slow accumulation of pulse
errors compared to XZ-based sequences and the superior
error resistance of the concatenation structure, demonstrates
the ability to store all three spin components for a long time.

In a general situation, when the internal bath dynamics
is important, the joint action of the fluctuating bath and the
imperfect pulses leads to a very complex qubit dynamics.
However, in the case where the two effects are small, we
can, at least on a qualitative level, consider their contributions
separately.42 As such, our work focused on the role of the
pulse-error accumulation, is complementary to the studies of
the bath dynamics and the resulting homogeneous dephasing.
By treating the bath field as static, we can single out the
effect of the pulse-error accumulation, and clarify its important
role in the dynamical decoupling experiments. Moreover, the
inhomogeneous static broadening is often important by itself.
For instance, in the experiments using single qubits with the
projective readout (such as most experiments on quantum dots,
the nitrogen-vacancy centers in diamond, superconducting
qubits, etc.), where many experimental runs are needed in
order to build statistics, the quasistatic shot-to-shot variations
lead to inhomogeneous dephasing, and have to be refocused.
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APPENDIX: RADIATION DAMPING

In NMR and ESR experiments, when the in-plane magne-
tization signal is strong, its precession about the static field
induces a noticeable time-dependent current in the resonator.
This current generates an ac magnetic field, which exerts
a torque on the spins, and causes them to relax back to
their equilibrium states. This phenomenon is called radiation
damping (RD).72,73 We now consider the effect of RD on
dynamical decoupling in our ESR experiments.

The magnetic field generated by RD (the RD field), Br ,
is in the x-y plane, with its magnitude proportional to the
in-plane magnetization M and its direction perpendicular to
M (Ref. 73):

γeBr = 1

τr

(−My x̂ + Mx ŷ), (A1)

where �M is the overall magnetization normalized by the
equilibrium magnetization M0,

�M = M/M0,

and the damping time constant

τr = 1

2πγeM0Qη
(A2)

is determined by the quality factor Q, the filling factor η

of the microwave-frequency resonator, and the equilibrium
magnetization M0, which is determined by the temperature T

and the doping density of 31P.
In our experiment, the static field is B0 = 3500 G, tem-

perature T = 8 K, the filling factor and the quality factor of
the resonator are η = 0.5, Q = 500, respectively. The doping
density of 31P is very low, 5 × 1014 cm−3, corresponding to
a damping time constant τr ∼ 500 μs, which is much longer
than T ∗

2 and, hence, the radiation damping effect is negligible
in our DD experiments.

However, for a higher doping density of the order of
1015-17 (cm)−3, RD could be noticeable. We calculated the
influence of RD on the performance of the DD sequence
with τr = 2 μs (corresponding to a doping density ∼1.5 ×
1017 cm−3 and other parameters the same as in the exper-
iments). We find that in the dynamical decoupling process
with imperfect pulses, RD could induce an asymmetry to the
evolution of the initial states corresponding to the electron spin
along the +z and −z directions.

In Sec. III, when we studied the effect of pulse errors on the
DD performance, we neglected the finite pulse duration and
treated the pulses as instantaneous rotations. RD, however,

has its largest impact on spins during the pulses. If the pulses
are ideal, the RD effects that take place during the delays
before and after each pulse cancel each other.73 Moreover,
here we focus on the initial states parallel or antiparallel to
the z axis. For a single electron spin during the interpulse
delays, the in-plane component of the spin magnetic moment
is nonzero due to pulse errors (but is small). For a large number
of electron spins, these nonzero components are expected to
be evenly distributed in the x-y plane, giving almost zero
net in-plane magnetization. The magnitude of the RD field
Br is proportional to the in-plane magnetization, hence, little
RD can be induced. During the pulse, on the other hand, the
in-plane magnetization has nonzero value, and RD has finite
contributions.

We therefore take into consideration the finite duration of
the magnetic field pulse. The pulse is implemented by applying
a driving field to the electron spin for a finite duration tp. For
the spin state along the +z or −z directions, at the edges
of a pulse the in-plane magnetization is still small, and the
resulting RD is negligible. This is in contrast with the pulse
errors analyzed in Sec. III, where contributions from the pulse
edges were important. So, here we can assume that the driving
field for the pulse is turned on and off abruptly, and during
the pulse the magnitude of the alternating field is constant
for each spin. That is, in the rotating frame, the driving field
as a function of time is a square wave. In simulations in the
rotating frame, the driving field of the pulse πX (πY ) is taken
to be along the axis �n ( �m). The amplitude of the driving field
is taken as

Bp = B̄p + δBp, (A3)

where the average B̄p = π/(γetp) and the deviation

δBp = ε/(γetp) (A4)

with ε drawn from distribution Eq. (13). The parameters for
pulse errors (angle errors εx , εy and the rotation axis errors nz,
mz) have the same magnitudes and distributions as specified in
Sec. II D. During the pulse, both the static field and the driving
field are present. So, in the rotating frame, the Hamiltonian
(2) also participates in driving the evolution during the pulse.
We took the magnitude of the driving field Bp = 1 G as in
experiment and, correspondingly, the duration of a π pulse is
tp = 0.18 μs.

We simulated XY CDD with concatenation levels up to 4 for
the electron spin initial states along the +z and −z directions.
The fidelities are denoted as F+z and F−z, respectively. Here,
−z refers to the equilibrium state of the spin in the static field,
and the +z state is prepared by applying a preparatory πX

pulse to the spin in the −z state. Due to the imperfection in
the preparatory pulse, the fidelity for the +z state becomes
slightly different from the fidelity of the −z state, see case (A)
in Table I.

The difference between states +z and −z produced by
the preparatory pulse is further amplified by the RD in the
concatenated DD sequence. Figure 5 shows the simulation
results for XY CDD. The decoupling protocol preserves the
state −z with higher fidelity than +z. The difference is more
prominent for concatenation level 4.
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TABLE I. XY CDD pulse sequence. Dependence of the fideli-
ties on the concatenation level for electron spin initial states along
the +z and −z directions. Pulse field Bp = 1 G. Results for three
cases are shown: (A) τr = ∞; (B) τr = 2 μs, RD takes effect only
during inter-pulse delays; (C) τr = 2 μs, RD takes effect all the
time.

Level (A) F+z F−z (B) F+z F−z (C) F+z F−z

1 0.929 0.999 0.930 0.999 0.929 0.999
2 0.923 0.994 0.923 0.995 0.924 0.993
3 0.928 0.998 0.926 0.998 0.920 0.994
4 0.924 0.994 0.877 0.933 0.668 0.832

This is because RD only takes effect during the magnetic
field pulses when the in-plane magnetization is nonzero.
The RD time constant τr is larger than the pulse duration
by two orders of magnitude. The effect of RD is therefore
very small for the first three concatenation levels, and after
the accumulation during hundreds of pulses, RD shows up
prominently at level 4 (Fig. 5).

To better understand the different roles of the preparatory
pulse, the effect of RD during the pulses and during the
interpulse delays, simulations are performed for three cases:
(A) without RD, i.e., τr = ∞; (B) RD is only included during
interpulse delays; (C) RD is included throughout the whole
evolution (i.e., both during and between the pulses). Table I
shows the data for XY CDD in the three cases. Compared to
the results without RD, the difference between the F+z and F−z
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FIG. 5. (Color online) Simulation results for fidelities F+z and
F−z for XY CDD sequence with radiation damping considered. Bp =
1 G and τr = 2 μs.

for levels 1–3 is mainly due to the preparatory pulse, and is
little affected by RD. For level 4, RD contributes appreciably.
The different fidelities for level 4 in cases (B) and (C) confirm
that RD contributes mostly during the pulses.

Conventionally, starting from the linear Bloch equations,
the states +z and −z would have exactly the same dynamical
behavior. Radiation damping breaks this symmetry. The RD
field Br [Eq. (A1)] is a macroscopic field and is dependent on
the overall magnetization of the electron spin ensemble. The
Bloch equation is then no longer linear in the magnetization
M, resulting in the different dynamics of the quantum states
along the +z and −z directions.

1J. A. Jones, S. D. Karlen, J. Fitzsimons, A. Ardavan, S. C. Benjamin,
G. A. D. Briggs, and J. J. L. Morton, Science 324, 1166 (2009).

2P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S. Lloyd,
and D. G. Cory, Phys. Rev. Lett. 94, 020502 (2005).

3B. M. Chernobrod and G. P. Berman, J. Appl. Phys. 97, 014903
(2005).

4J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R.
Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4,
810 (2008).

5C. Degen, Appl. Phys. Lett. 92, 243111 (2008).
6G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud,
J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger,
T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and
J. Wrachtrup, Nature (London) 455, 648 (2008).

7D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
8L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, Phys.
Rev. Lett. 96, 070504 (2006).

9P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
10D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81,

2594 (1998).
11P. W. Shor, Phys. Rev. A 52, R2493 (1995).
12E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84, 2525

(2000).
13C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin,

1990).
14E. Hahn, Phys. Rev. 80, 580 (1950).
15L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).

16L. Viola, S. Lloyd, and E. Knill, Phys. Rev. Lett. 83, 4888 (1999).
17U. Haeberlen, High Resolution NMR in Solids: Selective Averaging

(Academic, New York, 1976).
18K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501

(2005).
19G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
20L. Cywinski, R. M. Lutchyn, C. P. Nave, and S. Das Sarma, Phys.

Rev. B 77, 174509 (2008).
21G. S. Uhrig, New J. Phys. 10, 083024 (2008).
22Ren-Bao Liu, Wang Yao, and L. J. Sham, New J. Phys. 9, 226

(2007).
23W. X. Zhang, V. V. Dobrovitski, L. F. Santos, L. Viola, and B. N.

Harmon, Phys. Rev. B 75, 201302(R) (2007).
24W. Zhang, N. P. Konstantinidis, V. V. Dobrovitski,

B. N. Harmon, L. F. Santos, and L. Viola, Phys. Rev. B 77,
125336 (2008).

25J. R. West, B. H. Fong, and D. A. Lidar, Phys. Rev. Lett. 104,
130501 (2010).

26J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W.
Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, and S. A.
Lyon, Nature (London) 455, 1085 (2008).

27D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London)
456, 218 (2008).

28E. Fraval, M. J. Sellars, and J. J. Longdell, Phys. Rev. Lett. 95,
030506 (2005).

29H. Uys, M. J. Biercuk, and J. J. Bollinger, Phys. Rev. Lett. 103,
040501 (2009).

085206-11

http://dx.doi.org/10.1126/science.1170730
http://dx.doi.org/10.1103/PhysRevLett.94.020502
http://dx.doi.org/10.1063/1.1829373
http://dx.doi.org/10.1063/1.1829373
http://dx.doi.org/10.1038/nphys1075
http://dx.doi.org/10.1038/nphys1075
http://dx.doi.org/10.1063/1.2943282
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1103/PhysRevLett.96.070504
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRevA.58.2733
http://dx.doi.org/10.1103/PhysRevLett.83.4888
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevB.77.174509
http://dx.doi.org/10.1103/PhysRevB.77.174509
http://dx.doi.org/10.1088/1367-2630/10/8/083024
http://dx.doi.org/10.1088/1367-2630/9/7/226
http://dx.doi.org/10.1088/1367-2630/9/7/226
http://dx.doi.org/10.1103/PhysRevB.75.201302
http://dx.doi.org/10.1103/PhysRevB.77.125336
http://dx.doi.org/10.1103/PhysRevB.77.125336
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1038/nature07295
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1103/PhysRevLett.95.030506
http://dx.doi.org/10.1103/PhysRevLett.95.030506
http://dx.doi.org/10.1103/PhysRevLett.103.040501
http://dx.doi.org/10.1103/PhysRevLett.103.040501


ZHI-HUI WANG et al. PHYSICAL REVIEW B 85, 085206 (2012)

30M. J. Biercuk, H. Uys, A. P. Vandevender, N. Shiga, W. M. Itano,
and J. J. Bollinger, Nature (London) 458, 996 (2009).

31J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Nature
(London) 461, 1265 (2009).

32V. V. Dobrovitski, G. de Lange, D. Riste, and R. Hanson, Phys. Rev.
Lett. 105, 077601 (2010).

33B. Naydenov, F. Dolde, L. T. Hall, C. Shin, H. Fedder, L. C.
L. Hollenberg, F. Jelezko, and J. Wrachtrup, Phys. Rev. B 83,
081201(R) (2011).

34G. A. Alvarez, A. Ajoy, X. Peng, and D. Suter, Phys. Rev. A 82,
042306 (2010).

35G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski, and R.
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