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We study the ground-state (GS) properties of the frustrated spin- 1
2 J1–J2–J3 Heisenberg model on the

two-dimensional honeycomb lattice with ferromagnetic nearest-neighbor (J1 = −1) exchange and frustrating
antiferromagnetic next-nearest-neighbor (J2 > 0) and next-next-nearest-neighbor (J3 > 0) exchanges, for the
case J3 = J2. We use the coupled-cluster method implemented to high orders of approximation, complemented
by the Lanczos exact diagonalization of a large finite lattice with 32 sites, in order to calculate the GS energy,
magnetic order parameter, and spin-spin correlation functions. In one scenario we find a quantum phase transition
point between regions characterized by ferromagnetic order and a form of antiferromagnetic (“striped”) collinear
order at J c

2 ≈ 0.1095 ± 0.0005, which is below the corresponding hypothetical transition point at J cl
2 = 1

7
(≈0.143) for the classical version of the model, in which we momentarily ignore the intervening noncollinear
spiral phase in the region 1

10 < J2 < 1
5 . Hence we see that quantum fluctuations appear to stabilize somewhat

the collinear antiferromagnetic order in preference to the ferromagnetic order in this model. We compare results
for the present ferromagnetic case (with J1 = −1) to previous results for the corresponding antiferromagnetic
case (with J1 = +1). The magnetic order parameter is found to behave similarly for the ferromagnetic and
the antiferromagnetic models for large values of the frustration parameter J2. However, there are considerable
differences in the behavior of the order parameters for the two models for J2/|J1| � 0.6. For example, the
quasiclassical collinear magnetic long-range order for the antiferromagnetic model (with J1 = +1) breaks
down at J

c2
2 ≈ 0.60, whereas the “equivalent” point for the ferromagnetic model (with J1 = −1) occurs at

J c
2 ≈ 0.11. Unlike in the antiferromagnetic model (with J1 = +1), where a plaquette valence-bond crystal phase

intrudes between the two corresponding quasiclassical antiferromagnetic phases (with Néel and striped order)
for J

c1
2 < J2 < J

c2
2 , with J

c1
2 ≈ 0.47, we find no clear indications at all in the ferromagnetic model for an

intermediate magnetically disordered phase between the corresponding phases exhibiting ferromagnetic and
striped order. Instead the evidence for the ferromagnetic model (with J1 = −1) points to one of two scenarios:
either there is a direct first-order transition between the two magnetically ordered phases, as mentioned above; or
there exists an intervening phase between them in the very narrow range 0.10 � J2 � 0.12, which is probably a
remnant of the spiral phase that exists in the classical counterpart of the model over the larger range 1

10 < J2 < 1
5 .
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I. INTRODUCTION

In recent years frustrated quantum spin systems on regular
two-dimensional (2D) lattices have aroused a great deal of
research interest.1–3 In particular the interplay of magnetic
frustration and quantum fluctuations has been seen to be
a very effective route to destabilize or destroy magnetic
order and thereby to create new quantum phases. Such 2D
magnetic systems can thus in turn develop a diverse array
of phases with widely different ordering properties, such as
antiferromagnets with quasiclassical Néel ordering, quantum
“spirals,” valence-bond crystals/solids, phases with nematic
ordering, and spin liquids. Other factors that influence the
ground-state (GS) phase structures are the nature of the
underlying crystallographic lattice, the number and nature of
the bonds on this lattice, and the spin quantum numbers of

the atoms localized to the sites on the lattice. The theoretical
investigation of these models has proceeded hand in hand with
the discovery and experimental investigation of ever more
quasi-2D magnetic materials with novel properties.

One of the most intensively studied of all of the frustrated
2D models is the spin- 1

2 J1–J2 Heisenberg antiferromagnet
(HAF) on the square lattice with nearest-neighbor (NN) bonds
(of strength J1 > 0) competing with next-nearest-neighbor
(NNN) bonds (of strength J2 ≡ αJ1 > 0). This quantum
system has two different quasiclassical phases with collinear
magnetic long-range order (LRO) at small (α < αc1 ≈ 0.4) and
large (α > αc2 ≈ 0.6) values of the frustration strength param-
eter α, separated by an intermediate quantum paramagnetic
phase with no magnetic LRO in the regime αc1 < α < αc2 .
Interest in this model has been greatly stimulated recently by
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its experimental realization in such layered magnetic materials
as Li2VOSiO4,4,5 Li2VOGeO4,4 and VOMoO4.6 The syntheses
of such layered quasi-2D materials has stirred up a great deal of
renewed interest in the model (and see also, e.g., Refs. 7–10).
Among several methods that have been very successfully
applied to the J1–J2 model has been the coupled cluster
method (CCM),11–14 which has also been applied to many
similar strongly interacting and highly frustrated spin-lattice
models with comparable success. Other frustrated 2D models
that have similarly engendered great recent interest include the
spin- 1

2 HAFs on the triangular15,16 and kagome lattices.17,18

There has been a large amount of recent experimental
investigation of the properties of quasi-2D magnetic materials
with a ferromagnetic (FM) NN coupling (J1 < 0) and
an antiferromagnetic (AFM) NNN coupling (J2 > 0).
Examples include Pb2VO(PO4)2,19–23 (CuCl)LaNb2O7,24

SrZnVO(PO4)2,22,25,26 BaCdVO(PO4)2,21,25,27 PbZnVO
(PO4)2,28 and (CuBr)LaNb2O7.29 These experimental studies
have also served to reignite interest in the theoretical
investigation of the GS and thermodynamic properties of
the FM J1–J2 model, i.e., the model with FM NN exchange
(J1 < 0) and frustrating AFM NNN exchange (J2 > 0).30–41

Interestingly, arguments for the existence of a spin-nematic
phase between two quasiclassical magnetically ordered phases
were presented.31,36,37,41 On the other hand, the existence of
such a nonclassical magnetically disordered phase was also
questioned in Ref. 39.

Other systems that have grown in importance in the last
few years are various spin- 1

2 magnetic models defined on
the 2D honeycomb lattice. Several such systems have been
both theoretically and experimentally studied42–51 intensively,
partly because of their special properties and partly due to
the recent syntheses of various quasi-2D honeycomb-lattice
materials. One reason for the theoretical interest in such
models on the 2D honeycomb lattice is that a spin-liquid
phase has been found for the exactly solvable Kitaev model,52

in which the spin- 1
2 particles reside on just such a lattice.

Furthermore, the honeycomb lattice is obviously germane to
the very active research field of graphene, where the relevant
physics may well be described by Hubbard-like models on
this lattice.47,53,54 Interestingly, Meng et al.54 found that for
the Hubbard model on the honeycomb lattice with moderate
values of the Coulomb repulsion parameter U , strong quantum
fluctuations lead to an insulating spin-liquid phase between
the nonmagnetic metallic phase and the AFM Mott insulator
phase. From the experimental side recent observations on
the spin- 3

2 honeycomb-lattice HAF Bi3Mn4O12(NO3) demon-
strate a spin-liquid-like behavior at temperatures much lower
than the Curie-Weiss temperature.51

We have recently studied55 the AFM J1–J2–J3 honeycomb
model for the case where the spin quantum number s of each
of the spins on every lattice site is s = 1

2 , and with AFM
nearest-neighbor exchange bonds (J1 > 0) in the presence of
frustration caused by AFM NNN bonds (J2 > 0) and with
next-next-nearest neighbor (NNNN) bonds of strength J3 also
present, for the special case where J3 = J2. We found55 that
the scenario of deconfined criticality may hold for this model
(and see also Ref. 48]). To date there exist only limited
studies of the corresponding FM J1–J2–J3 model (namely

where J1 < 0). In this paper, we further the investigation into
the FM J1–J2–J3 honeycomb model with FM NN bonds (of
strength J1 < 0) in the presence of frustrating AFM NNN
bonds (of strength J2 > 0) and NNNN bonds (of strength
J3 > 0). Once again we consider only the interesting special
case where J3 = J2. We focus our attention in the present
study particularly on the detection and characterization of
the GS phases of the quantum model. Bearing in mind the
controversial discussion of the corresponding J1–J2 square-
lattice model with FM NN exchange bonds (J1 < 0), the
question naturally arises as to whether any indications for
a nonclassical magnetically disordered phase might now be
found for the honeycomb model. To determine the relevant
GS phases and their properties we calculate the GS energy,
the spin-spin correlation function, and the magnetic order
parameter for the stripe-ordered state discussed below that
is present as a GS phase in the corresponding classical version
(equivalent to the s → ∞ limit) of the model.

In view of its proven past ability to give results of high
accuracy for a wide variety of highly frustrated 2D spin-lattice
models, we again use the coupled cluster method (CCM) as
our main computational tool in this paper. Additionally, we
use the exact diagonalization (ED) method for a large finite
lattice of N = 32 spins as a validity check of our CCM results.
Since at the classical level the model now under consideration
also exhibits some similarities with the corresponding model
with AFM NN bonds (J1 > 0), we compare our results for the
quantum model of the FM case (J1 ≡ −1) with those of the
corresponding AFM case (J1 ≡ +1).

The rest of the paper is organized as follows. After
describing the model in Sec. II, we apply the CCM to
investigate its GS properties. The CCM itself is very briefly
described in Sec. III, before presenting and discussing our
CCM and ED results in Sec. IV. We conclude in Sec. V with
a summary of the main results.

II. MODEL

The Hamiltonian of the spin- 1
2 J1–J2–J3 Heisenberg model

on the honeycomb lattice, which we studied recently55 for the
AFM case (J1 > 0) is defined as

H = J1

∑
〈i,j〉

si · sj + J2

∑
〈〈i,k〉〉

si · sk + J3

∑
〈〈〈i,l〉〉〉

si · sl , (1)

where i runs over all lattice sites on the lattice, and where
j runs over all NN sites connected to site i by J1 bonds, k

runs over all NNN sites connected to site i by J2 bonds, and l

runs over all NNNN sites connected to site i by J3 bonds, but
counting each bond once and once only in the three sums. Each
site i of the lattice carries a spin- 1

2 particle with spin operator
si ≡ (sx

i ,s
y

i ,sz
i ). We note that precisely the same model has

also been studied recently on the square lattice, both in the
case where all the bonds are AFM in nature,56 and in the FM
case where J1 < 0 and J2 > 0,J3 > 0.57

The aim of the present work is now to study further the
spin- 1

2 J1–J2–J3 FM model (namely the above model in the
case J1 < 0) on the honeycomb lattice.43–46,58 The lattice and
the exchange bonds are illustrated in Fig. 1(a). The classical
GS phase diagram for the J1–J2–J3 AFM model (with J1 > 0)
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FIG. 1. (Color online) The J1–J2–J3 honeycomb model, showing
(a) the ferromagnetic (FM) state and (b) the classical striped
antiferromagnetic (AFM) state. The arrows represent spins located
on lattice sites �.

on the honeycomb lattice model displays collinear Néel and
striped phases, both AFM in nature, as well as a spiral phase.
These phases meet in a triple point at J3 = J2 = J1/2 (and
for more details see, e.g., Ref. 45). For the remainder of this
paper we again focus on the case where J3 = J2 > 0, but now
where the NN exchange bond is FM in nature (J1 < 0). The
GS energies of the only two corresponding classical collinear
states are then given by

Ecl
FM

N
= s2

(
3

2
J1 + 9

2
J2

)
,

(2)
Ecl

striped AFM

N
= s2

(
1

2
J1 − 5

2
J2

)
,

for the FM state and collinear striped AFM state shown in
Figs. 1(a) and 1(b), respectively. If these were the only GS
phases in this J1 < 0 regime we would thus have a classical
transition between the FM state and the striped AFM state
at J cl

2 = − 1
7J1 (≈0.143 for J1 = −1) and a classical energy

per site at this point of Ecl/N = − 3
14 ≈ −0.214 for the s = 1

2
system with J1 = −1. For the corresponding AFM model with
J1 > 0 such a striped AFM state also exists as stated above,
but the classical transition between the AFM Néel state and
the striped AFM state is at J2 = + 1

2J1. The reason why the
corresponding phase transition in the FM model occurs at a
smaller value of the frustration parameter, J cl

2 /|J1| = 1
7 , than

the value J cl
2 /J1 = 1

2 for the AFM model is due to the J3(>0)
NNNN exchange bonds that act to frustrate the fully polarized
FM state, whereas they reinforce the AFM Néel state. By
contrast, the J2(>0) NNN exchange bonds act to frustrate the
J1 bonds for both the FM state of the FM model and the Néel
state of the AFM model. We note that the classical FM state is
also an eigenstate of the Hamiltonian, with energy eigenvalue
equal to the energy of its classical FM counterpart.

We note, however, that in fact the classical J1–J2–J3

Heisenberg model on the honeycomb lattice with J1 < 0,
J2 > 0, and J3 > 0 also has a spiral phase that intervenes
in a very narrow strip between the FM phase and the
collinear striped AFM phase. (In Refs. 45 and 59 this is
referred to as phase V.) The region in the x-y plane (where
x ≡ J2/J1 and y ≡ J3/J1) in which it is the stable GS
phase in the case J1 < 0 is bounded by the three curves
(i) y = 0, − 1

2 < x < − 1
6 , (ii) y = − 3

2x − 1
4 , − 1

6 < x < 1
2 ,

and (iii) y = 1
8 [1 − 6x − √

36x2 + 20x + 17], − 1
2 < x < 1

2 .

The point (x = 1
2 ,y = −1) is a classical tetracritical point at

which the spiral phase V meets the FM phase, the striped
collinear AFM phase, and the AFM Néel phase (and see Fig. 3
of Ref. 45 for further details). Thus in our case, where J3 = J2

and J1 < 0, the classical spiral phase V exists in the narrow
region 1

10 < J2/|J1| < 1
5 . Naturally this includes the point

J cl
2 /|J1| = 1

7 discussed above at which the FM and striped
collinear AFM phases would meet in the absence of the spiral
phase V as a stable GS phase intervening between them.

In all of our results below for the FM J1–J2–J3 honeycomb
system we henceforth set J1 ≡ −1 with no loss of generality,
since this simply sets the overall scale of the Hamiltonian, and
we consider the case where J3 = J2 > 0, such that both the
NNN and NNNN bonds act to frustrate the ferromagnetism.

III. COUPLED CLUSTER METHOD

The CCM (see, e.g., Refs. 60–62 and references cited
therein) that we use here is one of the most powerful and most
versatile modern techniques in quantum many-body theory.
It has been used to study various quantum magnets (see,
e.g., Refs. 11–14 and 61–71, and references cited therein)
very successfully. The method is particularly suitable for
investigating frustrated systems, due to the fact that some of
the main alternative methods are restricted by certain problems
that arise in such cases. For instance, quantum Monte Carlo
(QMC) techniques suffer from the infamous and well-known
“sign problem” for such systems. The exact ED method is
also usually restricted by available computational power to
relatively small finite-sized lattices. Nevertheless it can often
be used, as here, to provide a handy tool to check and validate
the results of other numerical or approximate methods.

We briefly describe here some of the important features of
the CCM as applied to spin-lattice problems (and see, e.g.,
Refs. 11 and 61–65, and references cited therein, for further
details). The starting point for any CCM calculation is to select
a normalized state |�〉 as a reference or model state against
which to incorporate in a systematic and potentially exact
fashion the correlations present in the exact ground state. We
often use a relevant classical ground state as the model state for
spin systems for the sake of convenience, but other appropriate
states may certainly also be used. In order to treat each site
equivalently, a mathematical rotation of the local axes of the
spins is conveniently performed in such a way that all spins
in the reference state align along the same direction, say the
negative z axis. Clearly, such rotations leave unchanged the
SU(2) commutation relations between components of the spin
operators.

The exact ket and bra GS energy eigenstates, |�〉 and 〈�̃|,
of the many-body system are then parametrized in the CCM
form as

|�〉 = eS |�〉; S =
∑
I 	=0

SIC
+
I , (3)

〈�̃| = 〈�|S̃e−S ; S̃ = 1 +
∑
I 	=0

S̃IC
−
I , (4)

where

H |�〉 = E|�〉; 〈�̃|H = E〈�̃|, (5)
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are the Schrödinger GS ket and bra equations, respectively.
The multiconfigurational creation operators C+

I ≡ (C−
I )† are

defined so that 〈�|C+
I = 0 = C−

I |�〉 ; ∀I 	= 0, and where we
have defined C+

0 ≡ 1 ≡ C−
0 . They are required to form a

complete set of mutually commuting many-body creation
operators in the Hilbert space, defined with respect to |�〉
as a cyclic vector. Clearly the states are normalized such that
〈�̃|�〉 = 〈�|�〉 = 〈�|�〉 ≡ 1. For spin-lattice systems they
take the form of multispin raising operators and are written as
products of single-spin raising operators, C+

I ≡ s+
j1
s+
j2

· · · s+
jn

,
where s+

j ≡ sx
j + is

y

j . The GS energy is calculated in terms
of the correlation coefficients {SI } as E = 〈�̃|H |�〉 =
〈�|e−SHeS |�〉; and the average on-site magnetization M

in the rotated spin coordinates is calculated equivalently in
terms of the coefficients {SI ,S̃I } as M ≡ − 1

N
〈�̃| ∑N

j=1 sz
j |�〉,

which now plays the role of the order parameter. Finally,
the complete set of unknown ket- and bra-state correlation
coefficients {SI ,S̃I } is calculated by requiring the expectation
value H̄ = 〈�̃|H |�〉 to be a minimum with respect to all
parameters {SI ,S̃I ; ∀I 	= 0}. This readily leads to the coupled
set of nonlinear equations for the ket-state creation correlation
operators {SI }, 〈�|C−

I e−SHeS |�〉 = 0 ; ∀I 	= 0, and to the
coupled set of linear equations, 〈�|S̃(e−SHeS − E)C+

I |�〉 =
0 ; ∀I 	= 0, which can then be solved for the bra-state destruc-
tion correlation operators {S̃I }.

When all many-body configurations {I } are included in the
expansions of the correlation expansions operators S and S̃, the
CCM formalism is exact. However, it is necessary of course in
practice to use approximation schemes to truncate the sets of
configurations {I } contained in the expansions of Eqs. (3) and
(4) for the CCM correlation operators. For systems defined
on a regular periodic spatial lattice as here, it is convenient
to use the well-established LSUBm approximation scheme in
which all possible multi-spin-flip correlations over different
locales on the (here, honeycomb) lattice defined by m or
few contiguous lattice sites are retained. Clusters are defined
to be contiguous in this sense if every site in the cluster is
adjacent (as a nearest neighbor) to at least one other site in the
cluster. This is the scheme we use for all our results presented
below. The number Nf of independent fundamental clusters
(i.e., those that are inequivalent under the symmetries of the
Hamiltonian and of the model state) increases rapidly with the
truncation index m, as shown in Table I for the present spin- 1

2
J1–J2–J3 model on the honeycomb lattice, where we use the
natural lattice geometry itself to define the notion of adjacency
inherent in the definition of the LSUBm scheme. We see, for
example, that the number Nf of such fundamental clusters
(and hence the number of simultaneous nonlinear equations

TABLE I. Number of fundamental LSUBm configurations (Nf )
for the collinear striped AFM state of the spin- 1

2 J1–J2–J3 honeycomb
model.

Method Nf

LSUB6 72
LSUB8 941
LSUB10 14679
LSUB12 250891

we need to solve for the retained correlation coefficients {SI })
for the striped model state is 250 891 at the highest LSUB12
level of approximation that we utilize here. The corresponding
numbers Nf of fundamental configurations are appreciably
higher at a given LSUBm level when the spiral phase V is
used as the CCM model state, due to the considerably reduced
symmetry. It is necessary to use massive parallelization and
supercomputing resources in order to perform the CCM
calculations at such high level of approximation.72 Thus, for
example, to obtain a single data point (i.e., for a given value
of J3 = J2) for the striped model state at the LSUB12 level
typically requires about 0.5 h computing time using 1000
processors simultaneously.

We present CCM results below based on the striped
collinear AFM state as model state, at various LSUBm levels
of approximation with m = {6,8,10,12}, and also in the
corresponding m → ∞ extrapolated limits (LSUB∞) based
on the well-tested extrapolation schemes described below and
in more detail elsewhere.11–13,61,62 We have also performed
extrapolations for the data set with m = {6,8,10}. Both sets
of results agree well with one another, which gives added
credence to our results. Note that we do not use the LSUBm

approximation scheme for values m < 6 of the truncation
index, since these low-order approximations will not capture
the natural hexagonal structure of the lattice. We remark that,
as always, the CCM exactly obeys the Goldstone linked-cluster
theorem at every LSUBm level of approximation. Hence we
work from the outset in the limit N → ∞, where N is the
number of sites on the honeycomb lattice, and extensive
quantities such as the GS energy are always guaranteed to
be linearly proportional to N in this limit.

We clearly do not need to perform any finite-size scaling
of our results, as all CCM approximations are automatically
performed from the outset in the infinite-lattice limit, N → ∞,
as discussed above. It is, however, necessary to extrapolate to
the exact m → ∞ limit in the LSUBm truncation index m, in
which limit the complete (infinite) Hilbert space is reached. For
the GS energy per spin, E/N , a well-tested and very accurate
extrapolation ansatz (and see, e.g., Refs., 12,13,39,64,66, and
73) is

E(m)/N = a0 + a1m
−2 + a2m

−4 , (6)

while for the magnetic order parameter M , different schemes
have been employed for different situations. For models
showing no or only relatively small amounts of frustration,
a well-tested and accurate rule (and see, e.g., Refs. 64 and 66)
is

M(m) = b0 + b1m
−1 + b2m

−2 . (7)

For highly frustrated systems, particularly those showing a GS
order-disorder transition, a more appropriate extrapolation rule
with fixed exponents that has been found to give good results
(and see, e.g., Refs. 12 and 39) is

M(m) = c0 + c1m
−1/2 + b2m

−3/2 . (8)

We give illustrations here of the use of each of these schemes,
wherever and whenever possible.
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IV. RESULTS AND DISCUSSION

We now present and discuss our CCM results. In order to
have an independent check on the accuracy and consistency of
our CCM results, we have also performed additional compu-
tations of selected GS properties of the present models using
the ED technique that is a well-established and successful
tool for studying frustrated quantum spin systems (and see,
e.g., Refs. 39,48,74–77). In Fig. 2(a) we show the CCM
results for the GS energy per spin, E/N , in various LSUBm

approximations based on the striped state as CCM model state,
as well as the exact GS energy for a finite lattice of size
N = 32. We also show separately, in Fig. 2(b), the extrapolated
(m → ∞) results obtained from Eq. (6) using the data set
m = {6,8,10,12}. Comparison is made with the results for the
corresponding AFM version of the model with J1 = +1.

The CCM LSUBm data displayed in Fig. 2(a) show that
the GS energy results converge extremely rapidly as the
truncation index m is increased, such that the difference
between the LSUB12 results and the extrapolated (m → ∞)
results obtained from Eq. (6) is very small indeed. We note
too that, just as in the corresponding AFM case of the model
with J1 = +1, the various CCM LSUBm solutions based on
the striped model state now also terminate at some lower
termination point J t

2 as J2 is decreased. Such terminations
of CCM solutions are very common and have been very well
documented.62 In all such cases a termination point always
arises due to the solution of the CCM equations becoming
complex at this point, beyond which there exist two branches
of entirely unphysical complex conjugate solutions.62 In the
region where the solution reflecting the true physical solution
is real there actually also exists another (unstable) real solution.
However, only the shown branch of these two solutions
reflects the true (stable) physical ground state, whereas the
other branch does not. The physical branch is usually easily
identified in practice as the one which becomes exact in
some known (e.g., perturbative) limit. This physical branch
then meets the corresponding unphysical branch at some

termination point with infinite slope, beyond which no real
solutions exist. The LSUBm termination points are themselves
also reflections of the quantum phase transitions in the real
system and may be used to estimate the position of the phase
boundary,62 although we do not do so for this critical point in
the FM model, since we have more accurate criteria that we
now discuss.

We note first from Fig. 2(a) that the LSUBm termination
points, using the striped state as the CCM model state for the
present FM version of the model with J1 = −1, lie very close
indeed to the points where the curves cross (or nearly cross)
the corresponding curve for the FM state given by Eq. (2). This
gives us our first evidence that either there is no intermediate
phase between the quantum striped phase and the FM phase for
the case J1 = −1, or, if one exists, it can occur only over a very
narrow regime indeed. This situation may be contrasted with
that of the AFM version of the model (J1 = +1),55 where the
LSUBm results for the GS energy using the striped model state
terminate before they meet the corresponding results using the
Néel state as model state (which themselves also terminated at
some upper termination points that were lower in value than
the lower termination points for the striped state). In the latter
case there is an intermediate plaquette valence-bond crystal
(PVBC) phase.

At the classical level the difference in the values of the
GS energy per spin of the collinear striped states between the
two s = 1

2 cases (i.e., for positive and negative values of J1

with |J1| = 1) is 0.25, independent of J2 and J3. The quantum
versions follow this pattern for larger values of J3 = J2, as seen
from Fig. 2, but the constancy in the difference breaks down
at around J2 ≈ 0.6, where the AFM case (J1 = +1) exhibits a
critical point marking a transition to the PVBC phase, which
then in turn undergoes a further phase transition to the Néel
phase at another lower critical value. The corresponding best
available CCM estimates for those two critical values for the
AFM case of the model with J1 = +1 are J

c2
2 ≈ 0.60 and

J
c1
2 ≈ 0.47, respectively.55 In the present FM case of the model
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FIG. 2. (Color online) Ground-state energy per spin, E/N , versus J2 for the striped phase of the spin- 1
2 J1–J2–J3 honeycomb model with

J1 = −1 compared with those for J1 = +1 (with J3 = J2 > 0 for both cases). The CCM results using the striped model state for various
LSUBm approximations with m = {6,8,10,12}, together with the ED (N = 32) results are shown in (a). We show in (b) the extrapolated CCM
LSUB∞ results using the m = {6,8,10,12} data points fitted to Eq. (6). In all cases curves without symbols attached refer to the case J1 = −1,
whereas the corresponding curves with symbols refer to the case J1 = +1. The FM result from Eq. (2) with s = 1

2 is also displayed.
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with J1 = −1 we see no evidence (apart from the seeming
termination of the solutions to the equations for the LSUB12
approximation based on the striped state as CCM model state
very slightly before the GS energy crossing point with the FM
state) of any similar intermediate state between the FM state
and the collinear striped AFM state. If any such intermediate
state exists at all, however, it must be confined to a very
narrow region indeed around J2 ≈ 0.11, probably confined
to 0.10 � J2 � 0.12. We return to a more detailed discussion
of this region later. For the moment we note only that it is
much reduced from the region 0.1 < J2 < 0.2 in which the
corresponding classical version of the model has the spiral
phase V as its stable GS phase.

For the present FM case with J1 = −1 the CCM LSUBm

GS energy curves using the striped model state cross the cor-
responding GS energy curve for the FM state from Eq. (2) for
m = {6,8,10} at corresponding critical values J c

2 (LSUB6) ≈
0.1106 (where Ec

LSUB6/N ≈ −0.2506), J c
2 (LSUB8) ≈ 0.1101

(where Ec
LSUB8/N ≈ −0.2511), and J c

2 (LSUB10) ≈ 0.1098
(where Ec

LSUB10/N ≈ −0.2515). The corresponding LSUB12
result for the GS energy using the striped state as the CCM
model state appears to terminate just before meeting the
GS energy curve for the FM phase. However, we note that
for such very high-order CCM calculations it becomes very
computationally expensive to determine the termination point
with high accuracy. If we use the extrapolated LSUB∞ results
for the GS energy for the striped phase by making use of Eq. (6)
and employing the whole data set m = {6,8,10,12}, we thus
need to perform a further very small extrapolation of the CCM
results to lower values of J2 to find the presumed crossing point
of the energies of the striped and FM phases, in the scenario
in which these two phases meet at a first-order transition with
no intermediate phase (that would itself be confined to the
very narrow intervening region 0.10 � J2 � 0.12, as discussed
above). As expected, simple power-law expansions give very
accurate fits, and give crossing points very close to those
above. Putting all the energy data together, our best estimate
for the critical point of the first-order phase transition from
the collinear striped phase to the FM phase (in the scenario
where this transition occurs directly, with no intermediate
phase confined to the narrow region 0.10 � J2 � 0.12) for
the spin- 1

2 J1–J2–J3 Heisenberg ferromagnet (with J1 = −1)
on the honeycomb lattice, and with J3 = J2 > 0, is J c

2 =
0.1095 ± 0.0005, at which point the GS energy per spin is
Ec/N = −0.2518 ± 0.0006.

We see from Fig. 2(a) that the agreement between the
ED (N = 32) and the CCM energies is very satisfactory.
Moreover, due to the finite-size scaling of the GS energy,
E/N = e0 − a/N3/2 with a > 0 (and see, e.g., Refs. 74 and
76), the difference between the CCM and the ED GS energies
would become even smaller if finite lattices of larger size
could be considered. The ED turnover point in the energy
curve that marks the termination of the FM phase occurs at
a value of about 0.1003 for the N = 32 lattice used, and for
the same reasons as above this value will increase as N is
increased. Thus, in summary, while the CCM estimates for
the GS energy per spin for the spin- 1

2 J1–J2–J3 Heisenberg
model on the extended infinite honeycomb lattice are much
more accurate than the ED results, the latter do serve as an
independent check on the former.

The hypothetical phase transition (i.e., when the existence
of the intervening spiral phase V is momentarily ignored) from
FM order to collinear striped AFM order for the classical
version of the FM model with J1 = −1 occurs at a value
J cl

2 = 1
7 ≈ 0.143, compared with the corresponding value

J c
2 ≈ 0.110 found here. Thus quantum fluctuations act to

stabilize the collinear AFM order, at the expense of the FM
order, to higher values of frustration than in the classical
case. It is interesting to note that a similar situation was
found in the FM version (J1 = −1,J2 > 0) of the spin- 1

2
J1–J2 model on the square lattice,39 where a quantum critical
point exists at a value J c

2 ≈ 0.39 for a similar transition
from FM order to collinear striped order, compared with a
corresponding classical value of J cl

2 = 0.5. It is well known,
from many cases studied, that quantum fluctuations almost
always favor collinear states over noncollinear ones (e.g.,
spiral or canted states). What is interesting in both the present
case and the spin- 1

2 J1–J2 model on the square lattice cited
above, is that quantum fluctuations seem also to favor one
collinear state (namely the collinear striped AFM state in
these two cases) where the quantum fluctuations are present,
over another collinear state (namely the FM state in these
two cases) where quantum fluctuations are absent. It is
intriguing to wonder whether these are examples of a more
general rule.

We present results in Fig. 3 for the CCM collinear stripe
order parameter M , as defined in Sec. III. Figure 3(a) shows
LSUBm results with m = {6,8,10,12}, while Fig. 3(b) shows
the corresponding extrapolated CCM LSUB∞ (m → ∞)
results using both Eqs. (7) and (8). We note first that the CCM
LSUBm order parameter results depend on the approximation
level m much more strongly than those for the GS energy. It
is clear that the order parameter behaves similarly for large
values of J2 for both the FM model (J1 < 0) and the AFM
model (J1 > 0). However, once again there are considerable
differences in the behavior of M between the two models
for values of the frustration parameter J2/|J1| � 0.6. The
extrapolated CCM results for M for the AFM model in
Fig. 3(b) clearly show the breakdown of the quasiclassical
collinear magnetic LRO near the critical value of J2 ≈ 0.6,
i.e., significantly above the classical transition point J cl

2 = 0.5
(and see, e.g., Refs. 44,48,49, and 55). Indeed, the CCM
estimate for the critical value of the frustration parameter in
the AFM case for the disappearance of collinear striped order
is J

c2
2 ≈ 0.60 from the point at which M becomes zero, using

the extrapolation scheme of Eq. (8).55 By contrast, the order
parameter for the FM model stays almost constant over the
whole parameter region shown in Fig. 3. We do not observe any
indication of the breakdown of the collinear striped magnetic
LRO until J2 ≈ 0.11 for the FM model, which is below
the hypothetical classical transition point J c

2 ≈ 0.143, as we
observed previously in the results for the GS energy.

Last, we present results for various spin-spin correlation
functions for the FM as well as for the AFM model in
Fig. 4. Figure 4(a) shows the CCM LSUB10 results and
Fig. 4(b) shows the corresponding ED results. Once again
we note that for large values of the frustration parameter J2

the corresponding spin-spin correlations functions for both the
FM (J1 = −1) and AFM (J1 = +1) models agree remarkably
well with one another for both the CCM and ED calculations.
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FIG. 3. (Color online) Ground-state magnetic order parameter M for the striped AFM state of the spin- 1
2 J1–J2–J3 honeycomb model with

J1 = −1, compared with those for J1 = +1 (with J3 = J2 > 0 for both cases). The CCM results for various LSUBm approximations with
m = {6,8,10,12} are shown in (a). We also show in (b) the extrapolated LSUB∞ results using the m = {6,8,10,12} data points. The curves
labeled LSUB∞(1) and LSUB∞(2) are obtained using Eqs. (7) and (8), respectively. In all cases curves without symbols attached refer to the
case J1 = −1, whereas the corresponding curves with symbols refer to the case J1 = +1.

Furthermore, for the FM model the agreement of the CCM
correlation functions with the ED data is excellent. For
the AFM model the agreement between the CCM and ED
results is again excellent for values of J2 above the transition
point at which the AFM collinear striped order disappears,
namely J

c2
2 ≈ 0.60, but around and below this value there

are noticeable differences. In particular, the very steep change
in the correlation functions at J2 ≈ 0.62 present in the ED
(N = 32) data for the AFM model is not observed in the
CCM LSUB10 data. Instead the CCM data show a smoother
change in that region. However, we have argued55 that for
J < J

c2
2 ≈ 0.60 no striped magnetic LRO order exists. Indeed

we argued that no magnetic LRO order exists at all for the AFM
model in the regime J

c1
2 < J < J

c2
2 , where instead we have a

PVBC state. Hence it is not surprising that the CCM solution in

a finite order of LSUBm approximation based on the collinear
stripe reference state does not provide such accurate results for
the correlation functions inside this magnetically disordered
phase.

To conclude, we return to examine more closely the very
narrow region 0.10 � J2 � 0.12 for which our CCM results
based on the striped AFM state as model state could not
exclude the possibility of an intervening phase between the
striped AFM and the FM phases. In Fig. 5 we show a
more detailed view of the ED results for the same spin-spin
correlation functions shown in Fig. 4(b) in this narrow region
just above the FM transition point. The ED data does definitely
indicate the existence of a phase in precisely the region
0.10 � J2 � 0.12. It is difficult from this data to say with any
certainty whether or not the state is the quantum-mechanical
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FIG. 4. (Color online) Selected spin-spin correlation functions 〈s(0) · s(r)〉 for the spin- 1
2 J1–J2–J3 model on the honeycomb lattice with

J3 = J2, for both the FM case (with J1 = −1) and the AFM case (with J1 = +1), using (a) the CCM with the striped collinear state as
model state, at the LSUB10 level of approximation; and (b) the ED method on a lattice of size N = 32. Values r = 1,1.732 and 2 correspond
respectively to NN, NNN, and NNNN pairs of spins. In all cases curves without symbols attached refer to the case J1 = −1, whereas the
corresponding curves with symbols refer to the case J1 = +1.
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FIG. 5. (Color online) An expanded view near the FM boundary
of the same spin-spin correlation functions 〈s(0) · s(r)〉 shown in
Fig. 4(b) for the spin- 1

2 J1–J2–J3 model on the honeycomb lattice
for the FM case with J1 = −1 and J3 = J2 using the ED method on
a lattice of size N = 32.

remnant of the classical spiral phase V that exists in the
classical regime 0.1 < J2 < 0.2. Furthermore, without ED
calculations on larger lattices, for which the computational
cost would be prohibitive, it is also not possible to say whether
these results over such a narrow region are an artefact of the
finite lattice size. Our results are summarized in Sec. V.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented results on the GS properties
of the spin- 1

2 J1–J2–J3 Heisenberg model with FM NN
(J1 = −1) exchange bonds in the presence of frustrating AFM
NNN (J2 > 0) and NNNN (J3 > 0) exchange bonds of equal
strength (J3 = J2) on the honeycomb lattice, using both the
CCM and Lanczos ED. By comparison with previous studies
for the AFM (J1 = +1) version of the model,55 we find similar
behavior for both models for values J2 � 0.6|J1|, but for values
of J2 � 0.6|J1| the models differ markedly. The results of the
present paper for the FM version of the model and that of
the previous paper55 for the AFM version may conveniently
be combined and summarized in the phase diagram shown
in Fig. 6.

We note that, by contrast with the corresponding model with
AFM NN exchange (J1 = +1), we do not find indications for
a nonclassical magnetically disordered phase for the model
with FM NN exchange (J1 = −1). If such a phase exists at
all it must be confined to a very small range of the frustration
parameter around 0.10 � J2 � 0.12. However, any such phase
is much more likely to be a quasiclassical remnant of the
spiral phase V that exists in the corresponding classical model
(with J1 = −1) in the parameter regime 0.1 < J2 < 0.2. As
expected, quantum fluctuations then usually favor a collinear
phase over a noncollinear one, and the extent of any spiral
phase is smaller in the quantum spin- 1

2 case than in the classical
(s → 0) case.

In one scenario the results presented here for the case J1 =
−1 indicate a direct first-order transition between the two mag-
netically ordered phases, namely the FM ground state at small

FIG. 6. (Color online) The phase diagram of the spin- 1
2 J1–J2–J3

honeycomb model in the J1–J2 plane, for the case J3 = J2. The
continuous transition between the AFM Néel and PVBC phases at
J2/J1 ≈ 0.47 is shown by a broken line, while the first-order transition
between the PVBC and AFM striped phases at J2/J1 ≈ 0.60 is
shown by a solid line. Our results indicate that the transition
between the striped AFM and FM phases is either a first-order
one at J2/J1 ≈ −0.11 or occurs via an intermediate phase, probably
with noncollinear spiral order, which exists in the region −0.12 �
J2/J1 � 0.10. The region between the FM and AFM Néel phases
with J3 = J2 < 0 has not been investigated by us.

values of the frustration parameter J2 and the striped collinear
AFM ground state at larger values of J2. Our best estimate
of the phase transition point is then J c

2 = 0.1095 ± 0.0005.
Although in this scenario a quasiclassical GS phase (viz., the
collinear striped AFM state) exists in the whole parameter
space down to the FM GS phase, the frustration might still have
a strong effect on the low-temperature thermodynamics near
the transition point at J c

2 = 0.1095 ± 0.0005.38,39 For values
J2 � J c

2 the FM multiplet becomes a low-lying excitation, and
this might lead to an additional low-temperature peak in the
specific heat C(T ).30,78,79 We note that indications for such
an additional low-temperature peak in C(T ) were also found
on the FM side near such a transition38,80 (i.e., at J2 � J c

2 ) in
other frustrated spin models.

In an alternative scenario our results also indicate the
possibility of an intervening phase between the collinear FM
and striped AFM phases. Any such phase, however, is limited
to lie within the very narrow range 0.10 � J2 � 0.12, as shown
in Fig. 6. In principle we could more accurately establish the
existence of such a phase as a quasiclassical remnant of the
classical spiral phase V, and thence also more accurately estab-
lish its phase boundaries, by performing another comparable
set of CCM calculations to those performed here with the
striped AFM state as model state, but using instead the spiral
state V as model state. Such calculations would be much more
onerous and computationally expensive, however, since on the
one hand the number Nf of fundamental CCM configurations
at a given LSUBm level is greater for the spiral model state
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than for the striped model state and, furthermore, the CCM
results would need to be optimized at a given LSUBm level
with respect to the spiral pitch angle parameters by minimizing
the corresponding result for the energy per spin separately for
each set of values for the bond strength parameters.

We note finally that we have not yet investigated the present
model in the case where J3 = J2 < 0. For the FM version of the
model when J1 < 0 also, the FM phase is then obviously the
stable ground state. Conversely, when J1 > 0 and frustration
occurs, there is a direct first-order transition in the classical
version of the model between the FM and Néel AFM states at
a value J2/J1 = −1. Following the discussion in Sec. IV we
might expect that quantum fluctuations could again act either
(a) to retain the direct transition but to stabilize the collinear
AFM order in preference to the FM order, thus pushing the
phase boundary to a somewhat lower value, J2/J1 < −1,
for the spin- 1

2 case; or (b) to permit an intervening state
with no classical counterpart. Indeed, very preliminary CCM
calculations indicate that scenario (a) is realized and that
this corresponding critical point may be pushed to a value
J2/J1 ≈ −1.15 ± 0.05. We hope to report in more detail on
this region and to give a more accurate value of this phase
boundary in a future paper.

As discussed briefly in Sec. I, it has been proposed31,36,37,41

that the competition between FM Heisenberg interactions
between NN pairs of spins and AFM interactions between
other spins in frustrated spin- 1

2 systems on the square lattice
could lead to gapless spin-liquid states with multipolar order
(e.g., spin-nematic states) adjacent to the FM state. Similar
states have also been proposed to arise in frustrated multiple
cyclic spin-exchange models on the triangular lattice with FM
NN pairwise interactions,81 either in the presence of a magnetic
field (where octupolar order occurs) or in its absence (where
quadratic or nematic ordering occurs in a state bordering the

FM state). In the case of the frustrated honeycomb-lattice
ferromagnet considered here we have found no evidence for
such states. However, the multipolar-ordering phenomenon in
the zero-field case considered here is evidently rather fragile,
and in the square-lattice case for the spin- 1

2 FM version of the
J1–J2 model (i.e., with J1 < 0) even their existence has been
questioned in recent rather accurate work39 that also employed
both high-order CCM and ED techniques. No evidence was
found for such states either in a very recent Schwinger boson
study on the square lattice,57 using the same FM version of
the spin- 1

2 J1–J2–J3 Heisenberg model that we studied here
on their honeycomb lattice. Nevertheless, the history of the
study of quantum magnets has shown us that the detection of
phases with novel quantum ordering, such as nematic states
of various kinds, is extremely subtle. In particular, the present
honeycomb-lattice model surely warrants further investigation
before the absence of nematic states in the FM case discussed
here is considered definite.

Finally we mention that frustrated ferromagnets are also in-
teresting with respect to multimagnon bound states appearing
in high magnetic fields (and see, e.g., Refs. 31 and 82–84).
The present model also warrants further investigation when
the coupling to an external magnetic field is included.
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58A. Mattsson, P. Fröjdh, and T. Einarsson, Phys. Rev. B 49, 3997
(1994).

59E. Rastelli, A. Tassi, and L. Reatto, Physica 97B, 1 (1979).
60R. F. Bishop, Theor. Chim. Acta 80, 95 (1991).
61C. Zeng, D. J. J. Farnell, and R. F. Bishop, J. Stat. Phys. 90, 327

(1998).
62D. J. J. Farnell and R. F. Bishop, in Quantum Magnetism (Ref. 1),

p. 307.
63D. J. J. Farnell, R. F. Bishop, and K. A. Gernoth, Phys. Rev. B 63,

220402(R) (2001).
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J. Richter, and C. Zeng, J. Phys.: Condens. Matter 12, 6887
(2000).

74H. J. Schulz and T. A. L. Ziman, Europhys. Lett. 18, 355 (1992);
H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, J. Phys. I 6, 675
(1996).

75Ch. Waldtmann, H.-U. Everts, B. Bernu, C. Lhuillier, P. Sindzingre,
P. Lecheminant, and L. Pierre, Eur. Phys. J. B 2, 501 (1998).

76J. Richter and J. Schulenburg, Eur. Phys. J. B 73, 117 (2010).
77H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 80, 053704

(2011).
78F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev. B 74,

020403(R) (2006).
79H. T. Lu, Y. J. Wang, Shaojin Qin, and T. Xiang, Phys. Rev. B 74,

134425 (2006).

085115-10

http://dx.doi.org/10.1103/PhysRevB.79.224432
http://dx.doi.org/10.1103/PhysRevB.79.224432
http://dx.doi.org/10.1209/0295-5075/88/57005
http://dx.doi.org/10.1103/PhysRevB.80.214430
http://dx.doi.org/10.1143/JPSJ.74.1702
http://dx.doi.org/10.1103/PhysRevB.79.214417
http://dx.doi.org/10.1103/PhysRevB.80.132407
http://dx.doi.org/10.1103/PhysRevB.78.064422
http://dx.doi.org/10.1103/PhysRevB.78.064422
http://dx.doi.org/10.1103/PhysRevB.81.174424
http://dx.doi.org/10.1143/JPSJ.75.113601
http://dx.doi.org/10.1140/epjb/e2004-00156-3
http://dx.doi.org/10.1140/epjb/e2004-00156-3
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1103/PhysRevLett.96.027213
http://dx.doi.org/10.1016/j.jmmm.2006.10.694
http://dx.doi.org/10.1016/j.jmmm.2006.10.694
http://dx.doi.org/10.1088/0953-8984/19/14/145211
http://dx.doi.org/10.1088/0953-8984/19/14/145211
http://dx.doi.org/10.1016/j.jmmm.2006.10.484
http://dx.doi.org/10.1016/j.jmmm.2006.10.484
http://dx.doi.org/10.1103/PhysRevB.75.052403
http://dx.doi.org/10.1088/1742-6596/145/1/012048
http://dx.doi.org/10.1088/1742-6596/145/1/012048
http://dx.doi.org/10.1088/1742-6596/200/2/022058
http://dx.doi.org/10.1088/1742-6596/200/2/022058
http://dx.doi.org/10.1103/PhysRevB.81.174421
http://dx.doi.org/10.1103/PhysRevB.81.174421
http://dx.doi.org/10.1103/PhysRevB.81.174429
http://dx.doi.org/10.1088/1742-5468/2011/05/P05016
http://dx.doi.org/10.1088/1742-5468/2011/05/P05016
http://dx.doi.org/10.1103/PhysRevB.84.134414
http://dx.doi.org/10.1103/PhysRevB.84.134414
http://dx.doi.org/10.1103/PhysRevB.82.024419
http://dx.doi.org/10.1143/JPSJ.79.114705
http://dx.doi.org/10.1143/JPSJ.79.114705
http://dx.doi.org/10.1103/PhysRevB.83.094506
http://dx.doi.org/10.1103/PhysRevB.83.094506
http://dx.doi.org/10.1007/s100510170273
http://dx.doi.org/10.1007/s100510170273
http://dx.doi.org/10.1143/JPSJ.78.054701
http://dx.doi.org/10.1143/JPSJ.78.054701
http://dx.doi.org/10.1209/0295-5075/94/17004
http://dx.doi.org/10.1103/PhysRevB.84.024406
http://dx.doi.org/10.1103/PhysRevB.84.024406
http://dx.doi.org/10.1103/PhysRevB.84.014417
http://dx.doi.org/10.1103/PhysRevB.84.014417
http://dx.doi.org/10.1103/PhysRevB.84.094424
http://dx.doi.org/10.1088/1742-6596/200/2/022042
http://dx.doi.org/10.1088/1742-6596/200/2/022042
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1103/PhysRevB.84.012403
http://dx.doi.org/10.1103/PhysRevB.83.064416
http://dx.doi.org/10.1103/PhysRevB.84.214406
http://dx.doi.org/10.1103/PhysRevB.84.214406
http://dx.doi.org/10.1103/PhysRevB.49.3997
http://dx.doi.org/10.1103/PhysRevB.49.3997
http://dx.doi.org/10.1007/BF01119617
http://dx.doi.org/10.1023/A:1023220222019
http://dx.doi.org/10.1023/A:1023220222019
http://dx.doi.org/10.1103/PhysRevB.63.220402
http://dx.doi.org/10.1103/PhysRevB.63.220402
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevLett.97.157201
http://dx.doi.org/10.1103/PhysRevB.72.104425
http://dx.doi.org/10.1103/PhysRevB.72.104425
http://dx.doi.org/10.1007/s10955-009-9703-7
http://dx.doi.org/10.1007/s10955-009-9703-7
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.82.024416
http://dx.doi.org/10.1103/PhysRevB.82.024416
http://dx.doi.org/10.1103/PhysRevB.82.104406
http://dx.doi.org/10.1103/PhysRevB.82.104406
http://dx.doi.org/10.1140/epjb/e2011-10817-7
http://www-e.uni-magdeburg.de/jschulen/ccm/index.html
http://www-e.uni-magdeburg.de/jschulen/ccm/index.html
http://dx.doi.org/10.1088/0953-8984/12/30/317
http://dx.doi.org/10.1088/0953-8984/12/30/317
http://dx.doi.org/10.1209/0295-5075/18/4/013
http://dx.doi.org/10.1051/jp1:1996236
http://dx.doi.org/10.1051/jp1:1996236
http://dx.doi.org/10.1007/s100510050274
http://dx.doi.org/10.1140/epjb/e2009-00400-4
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1143/JPSJ.80.053704
http://dx.doi.org/10.1103/PhysRevB.74.020403
http://dx.doi.org/10.1103/PhysRevB.74.020403
http://dx.doi.org/10.1103/PhysRevB.74.134425
http://dx.doi.org/10.1103/PhysRevB.74.134425


GROUND-STATE PHASES OF THE FRUSTRATED SPIN- . . . PHYSICAL REVIEW B 85, 085115 (2012)
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