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We investigate the electronic structure of cobalt atoms on a copper surface and in a copper host by combining
density-functional calculations with a numerically exact continuous-time quantum Monte Carlo treatment of the
five-orbital impurity problem. In both cases we find low energy resonances in the density of states of all five Co d

orbitals. The corresponding self-energies indicate the formation of a Fermi liquid state at low temperatures. Our
calculations yield the characteristic energy scale—the Kondo temperature—for both systems in good agreement
with experiments. We quantify the charge fluctuations in both geometries and suggest that Co in Cu must be
described by an Anderson impurity model rather than by a model assuming frozen impurity valency at low
energies. We show that fluctuations of the orbital degrees of freedom are crucial for explaining the Kondo
temperatures obtained in our calculations and measured in experiments.
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I. INTRODUCTION

The Kondo effect, arising when localized spins interact
with a metallic environment, is a classic many-body problem.1

At present, idealized models dealing with, for instance, a
single spin degree of freedom screened by a sea of conduction
electrons are well understood. Spin S = 1/2 Kondo models
or single orbital Anderson impurity models have been widely
considered to describe magnetic impurities with open d shells
in metallic environments and proved helpful in qualitative
discussions.2–9 As realized, however, by Nozières and Blandin
in 1980,10 such idealized models may ignore important aspects
of the nature of transition-metal impurities as they disregard
orbital degrees of freedom. This makes comparisons between
theory and experiment often very difficult. More realistic
models accounting for the orbital structure, Hund’s rule
coupling, nonspherical crystal fields, and an energy- and
orbital-dependent hybridization of the impurity electrons with
the surrounding metal are theoretically very demanding due
to the multiple degrees of freedom and multiple energy scales
involved.

In recent years, different attempts have been made to ad-
dress this problem. For the classic example of Fe in Au, which
has been experimentally studied since the 1930s, a model
describing the low-energy physics has been derived11 by com-
paring numerical renormalization group (NRG) calculations
to electron transport experiments. The Kondo temperature
TK , below which the impurity spin becomes screened and
a Fermi liquid develops, served as a fitting parameter in this
study. A scaling analysis of multiple Hund’s coupled spins
in a metallic environment showed that Hund’s rule coupling

can strongly quench the formation of Kondo singlet states.12

For highly symmetric systems like Co adatoms on graphene13

or Co-benzene sandwich molecules in contact with metallic
leads,14 the orbital degree of freedom has been suggested
to control Kondo physics down to the lowest energy scale.
However, a general strategy to assess which degrees of freedom
are involved in the formation of low-energy Fermi liquids
around magnetic impurities in metals is still lacking.

Co atoms coupled to Cu hosts present another experimen-
tally extensively studied system, which has been interpreted
in terms of Kondo physics.3,4,6–9,15 Theoretical descriptions
of this system have often been based on single orbital
Anderson impurity models2–5 or Kondo models,6 and the
role of orbital fluctuations in these systems has remained
rather unclear. Recently developed continuous time quantum
Monte Carlo (CTQMC)16 approaches allow us to describe
the full orbital structure of magnetic impurities in metallic
hosts, while accounting for all electron correlations in a
numerically exact way. So far, however, such CTQMC studies
have been limited to rather high temperatures,17 well above
typical Kondo scales on the order of 10 to 500 K. In addition to
QMC, there are approximate schemes such as the noncrossing
approximation (NCA) or extensions thereof18,19 which can
be used to calculate electronic properties of multiorbital
Anderson impurity models. The case of a Co atom between two
Cu leads has been studied in this way.20 However, NCA or its
extensions can have causality problems at low temperatures.
The realistic description of transition-metal Kondo systems
thus remains a long standing open problem in solid-state
physics.
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Here, we employ the recently developed Krylov CTQMC
method21 in combination with density-functional-based first-
principles calculations to achieve an ab initio description
of two archetypical Kondo systems, Co adatoms on a Cu
(111) surface, as well as Co impurities in bulk Cu (see
Fig. 1), down to temperatures T = 0.025 eV = 290 K. We
consider the energy dependent hybridization of the impurities
with the surrounding host material, as well as the full
local Coulomb interaction, and find low energy resonances
developing in the spectral function as the temperature is
lowered. Such resonances are found in all impurity 3d orbitals,
and our calculations indicate that spin and orbital fluctuations
are crucial for the formation of low-energy Fermi liquids
involving all impurity 3d orbitals. We also demonstrate
the intermediate-valence character of the Co impurity in
bulk, which implies that the physics cannot be correctly
described by a low-energy Kondo model which neglects charge
fluctuations.

The paper is organized as follows. Section II defines the
model we use to study the Kondo physics in Co coupled
to Cu hosts. Section III specifies the density-functional
theory calculations of the hybridization function (III A) and
describes the Krylov CTQMC method used to solve the
five-orbital impurity problem (III B). In Sec. IV, we present
the calculated quasiparticle spectra (IV A), exemplify the
low-energy Fermi-liquid behavior based on the self-energies
(IV B), and estimate the Kondo temperature from our quantum
Monte Carlo data (IV C). In Sec. V, we discuss the prevalence
of charge fluctuations and the implications of their presence
(V A). We elaborate on the role of spin and orbital fluctua-
tions and their influence on the low-energy behavior (V B).
Section VI is a summary and conclusion emphasizing the
implications of our findings and outlining prospects for future
investigations.

II. MODEL

A realistic description of Co atoms on a Cu (111) surface
and in bulk Cu including all five Co 3d orbitals can be
formulated in terms of a multiorbital Anderson impurity
model:

HAIM =
∑

k

εkc
†
kck +

∑
k,α

(Vkαc
†
kdα + H.c.) + Hloc, (1)

with

Hloc =
∑

σ

εαd†
αdα + 1

2

∑
α1,...,α4

Uα1α2α3α4d
†
α1

d†
α2

dα3dα4 . (2)

It describes an impurity characterized by quantum numbers
α (orbital L and spin σ ), with corresponding annihilation
operators dα , onsite energies εα which define the crystal field,
and local Coulomb interactions Uα1α2α3α4 . In the following,
we assume an average screened Coulomb interaction U =
4 eV and an exchange parameter J = 0.9 eV, which are
typical values for transition-metal systems.22 The matrix
elements Uα1α2α3α4 are then defined via the Slater parameters
F 0 = U , F 2 = 14/(1 + 0.625)J , and F 4 = 0.625F 2, which
leads to a rotationally invariant Coulomb vertex involving
general four fermion terms.23 This impurity is embedded

in a sea of conduction electrons described by annihilation
operators ck and dispersions εk , where k includes crystal
momentum, band index, and spin. The coupling between the
impurity and the conduction electrons is provided by the
hybridization Vkα .

In the AIM, only the impurity site is subject to a quartic
interaction term, whereas the bath of conduction electrons is
assumed to be noninteracting. The bath degrees of freedom
can thus be integrated out, and the local electronic properties
of the impurity can be described by the effective action

Seff = −
∑
α1,α2

∫ β

0
dτ

∫ β

0
dτ ′d†

α1
(τ )G−1

0,α1α2
(τ,τ ′)dα2 (τ ′)

+
∫ β

0
dτHloc

[
d†

α1
(τ ), dα2 (τ )

]
, (3)

with

G−1
0,α1α2

(iωn) = (iω + μ)δα1α2 − 	α1α2 (iωn) (4)

and the hybridization function

	α1α2 (iωn) =
∑

k

V ∗
kα1

Vkα2

iωn − εk

. (5)

To specify the hybridization functions and crystal field terms
of impurity models describing Co on Cu (111) as well as Co
in bulk Cu, we have performed density-functional calculations
as described in Sec. III A.

III. COMPUTATIONAL METHODS

A. Density-functional calculations

Density-functional theory (DFT) calculations were per-
formed to obtain relaxed geometries and the hybridization
functions for single Co atoms in Cu and on a Cu (111)
surface. The DFT calculations have been carried out using a
generalized gradient approximation (GGA)24 as implemented
in the Vienna ab initio simulation package (VASP)25 with
projector augmented waves basis sets (PAW).26,27 For the
simulation of a cobalt impurity in bulk Cu, we employed
a CoCu63 supercell structure. Co on Cu (111) was modeled
using a 3 × 4 supercell of a Cu (111) surface with a thickness
of five atomic layers and a Co adatom on the surface, see Fig. 1.

FIG. 1. (Color online) Sketch of Co impurities in a Cu host. We
consider two cases: (i) the impurity buried in the bulk (Co in Cu), and
(ii) on top of the Cu layer (Co on Cu).
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All structures were relaxed in spin-polarized DFT calculations
until the forces acting on each atom were below 0.02 eV Å−1.
For Co in bulk Cu, the entire supercell was relaxed, and for Co
on Cu (111) the adatom and the three topmost Cu layers were
relaxed.

The PAW basis sets intrinsically provide projections 〈L|K〉
of the Kohn-Sham wave functions |K〉 onto localized atomic
orbitals |L〉, which we used to extract the hybridization
functions from non-spin-polarized DFT calculations using the
relaxed structures. To this end, we identify G0 with the local
Kohn-Sham Green function, which we calculate using the
Kohn-Sham eigenenergies εK via

G0,L,L′ (iωn) =
∑
K

〈L|K〉〈K|L′〉
iωn − εK

. (6)

Using Eq. (4), the hybridization function is then obtained by
inversion of the 5 × 5 matrix G0(iωn). (For more details see
Refs. 28 and 29.)

B. Impurity solver

The impurity model (3) can be solved without ap-
proximations using continuous-time quantum Monte Carlo
(CTQMC)16 algorithms, and yields an interacting Green’s
function

Gα1α2 (τ − τ ′) = −〈
Tτdα1 (τ )d†

α2
(τ ′)

〉
Seff

, (7)

where Tτ denotes time ordering. Both the interaction
expansion30 and hybridization expansion31,32 algorithms can
treat multiorbital systems with general four-fermion inter-
action terms. The hybridization expansion is advantageous
in the case of a strongly interacting five orbital model,
because the expansion in the hybridization leads to much
lower perturbation orders than an expansion in the various
interaction terms. For the interaction parameters of the Co
impurities studied in this paper, the order in the hybridization
expansion was found to be a factor of 20 lower than in
the interaction expansion.17 Furthermore, if the hybridization
function is diagonal in the orbital indices, as is to a good
approximation the case in the Co/Cu systems studied here, no
sign problem appears. This is in contrast to the weak-coupling
expansion, where correlated hopping terms were found to lead
to severe sign cancelations.17

In the hybridization expansion CTQMC,16 one obtains
the interacting Green’s function in Eq. (7) as a functional
derivative of the partition function with respect to 	α2α1 (τ ′,τ ),
since this algorithm is based on a representation of the partition
function in the form

ZAIM = Zbath

∑
k

∫
dτ1 · · · dτ ′

kTrloc[e−Sloc · · ·] det �, (8)

where the dots between brackets stand for a sequence of k pairs
of impurity creation and annihilation operators with arbitrary
flavors, and � is a k × k matrix whose elements are given by
hybridization functions 	α′α(τ ′,τ ).

Despite the low perturbation orders, a strong-coupling
CTQMC simulation of a general five orbital model is com-
putationally expensive, because the imaginary time evolution
of the local impurity Hamiltonian Hloc in Trloc[· · ·] has to be
computed exactly. The weight of a Monte Carlo configuration

corresponding to 2k hybridization events (impurity creation
and annihilation operators d†

α and dα) at times τ ′
1 < · · · < τ ′

k

and τ1 < · · · < τk involves the calculation of32

Trloc
[
e−βHlocTτdαk

(τk)d†
α′

k
(τ ′

k) . . . dα1 (τ1)d†
α′

1
(τ ′

1)
]
, (9)

where the trace is over the Hilbert space of Hloc of dimension
N = 210 = 1024 for a d shell. One strategy to evaluate this
trace is to use the eigenbasis of Hloc, in which the time-
evolution operators are diagonal, and to order the eigenstates
according to conserved quantum numbers. The operators d (†)

α

then acquire a block structure,33 which reduces the effort for
matrix-matrix multiplications.

An alternative approach, which was found to be more
efficient in the case of five orbital systems and low tem-
perature, is the Krylov implementation.21 In this algorithm,
one evaluates the trace factor in the occupation number basis.
In this basis, the operators d (†)

α are sparse and can easily be
applied to any state, while the time-evolution operators become
nontrivial dense matrices. However, we never evaluate the
exponential of Hloc, but only exp(−Hlocτk)|v〉, for a given
state |v〉. This can be done with only a small number of
sparse matrix-vector multiplications, by using efficient Krylov
techniques. In this scheme, one can use a small Krylov space
Kp(|v〉) = span{|v〉,Hloc|v〉,H 2

loc|v〉, . . . ,Hp

loc|v〉} to calculate
the time evolution from one operator to the next in Eq. (9).
Schematically

e−Hlocτ |v〉 ≈ Ae−hpτA†|v〉, (10)

where A† is the (p × N ) transformation matrix to the Krylov
space and hp is a small (p × p) tridiagonal matrix which
represents Hloc in the Krylov space (upon building a Lanczos
basis in the Krylov space). Details of the algorithm can be
found in Ref. 21.

The computational advantage of this Krylov-space ap-
proach becomes particularly evident at low temperatures,
where it is sufficient to consider the contributions of a
small number Ntr of low-energy states in Trloc[· · ·], since
the probability of the system at τ = 0,β to be in one of
these states is very large due to the Boltzmann factor e−βHloc .
Nevertheless, during the imaginary-time evolution, all excited
states are accessible via Eq. (10) with properly chosen p (the
latter depends on the time interval and the vector to which
the time-evolution operator is applied). If the outer trace is
truncated in this way, the observables must be measured in
the middle of the imaginary-time interval, i.e., at τ = β/2. In
our calculations for Co impurities, at the lowest temperatures,
we obtained accurate results for Ntr ∼ 10 and an average
dimension of the Krylov space of p ∼ 40. This number is
larger than in the model calculations of Ref. 21 due to the
complex structure of the full Coulomb vertex.

IV. RESULTS

The DFT calculations yield the orbital dependent hybridiza-
tion functions shown in Fig. 2. In bulk Cu, the environment of
the Co impurities is cubically symmetric, and the hybridization
function decomposes into threefold degenerate t2g and twofold
degenerate eg blocks. The bulk symmetry forbids off-diagonal
elements in the hybridization function. On the surface, the
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FIG. 2. (Color online) Hybridization functions and crystal fields for Co in bulk Cu (left panels) and as adatom on Cu (111) (right panels).
In the upper panel, the dynamical crystal field εd + Re 	 is shown. Lower panel: Im 	.

symmetry is reduced to C3v . For Co on Cu, the hybridization
function decomposes into two twofold degenerate blocks
transforming according to the E-irreducible representation of
C3v (we label the subblocks as E1 (dxz, dyz) and E2 (dx2−y2 ,
dxy)) and the dz2 -orbital transforming according to the A1

representation. For Co on Cu, the hybridization functions
contain small off-diagonal matrix elements between the E1-E2

subblocks. These off-diagonal elements, which are much
smaller than the diagonal ones near the Fermi level, will
be neglected in our simulations. As a general trend, one can
already see that the hybridization of the Co d electrons is about
twice as large in the bulk as on the surface.

DFT calculations are also used to calculate the occupancy
of the Co 3d impurity orbitals. To this end, we performed spin-
polarized DFT calculations using GGA as well as GGA + U

of Co in and on Cu, with the full interaction vertex defined
via the average screened Coulomb interaction U = 4 eV
and the exchange parameter J = 0.9 eV.23 We obtained the
occupancies of the Co 3d orbitals derived from the PAW

TABLE I. Occupancies n and impurity spins S as obtained from
our GGA and GGA + U calculations. Values obtained directly from
the PAW projectors (n,S) and normalized by the integrated orbital
Co d-electron DOS, N = ∫

ν(E)dE, are shown (ñ = n/N , S̃z =
Sz/N ).

GGA GGA + U

n Sz ñ S̃z n Sz ñ S̃z

Co in Cu 7.3 0.51 7.6 0.53 7.3 0.90 7.5 0.93
Co on Cu 7.3 0.96 7.6 1.00 7.4 0.96 7.7 1.00

projectors n = n↑ + n↓ and the impurity spin Sz = 1
2 (n↑ −

n↓) and present them in Table I. In all cases, the average Co
3d occupancy suggested by our DFT calculations is between
n = 7 and n = 8. For Co on Cu, the impurity spin is Sz ≈ 1,
which is well in line with a d8 configuration of the Co. In
the bulk, the Co spin is Sz ≈ 1 in GGA + U and Sz ≈ 1/2 in
GGA.

In the following, we study Co in and on Cu in the
five-orbital Anderson impurity model formulation [Eq. (1)].
In this framework, the chemical potential has to be chosen
to fix the occupancy of the Co d orbitals. Due to a double-
counting problem similar to the one encountered in the
combination of LDA and dynamical mean-field approaches,28

the precise chemical potential μ and the Co d occupancy
are not known. Therefore, we computed results in a range
of chemical potential values which yield a total d occupancy
consistent with the estimates from the DFT calculations. For
both systems, the results of the DFT calculations predict a total
density n � 8 and suggest a spin S ≈ 1 or slightly below in the
case of Co in Cu. For μ = 26, 27, and 28 eV (Co in Cu) and

TABLE II. Total density and spin.

System μ (eV) 〈n〉 〈S〉
Co in Cu 26 7.51 ± 0.07 1.02 ± 0.02
Co in Cu 27 7.78 ± 0.05 0.92 ± 0.02
Co in Cu 28 8.06 ± 0.03 0.817 ± 0.007

Co on Cu 27 7.76 ± 0.05 1.07 ± 0.01
Co on Cu 28 7.93 ± 0.05 0.99 ± 0.01
Co on Cu 29 8.21 ± 0.03 0.860 ± 0.007

085114-4



MULTIORBITAL KONDO PHYSICS OF Co IN Cu HOSTS PHYSICAL REVIEW B 85, 085114 (2012)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-6 -5 -4 -3 -2 -1  0  1  2  3  4

D
O

S

E (eV)

Co in Cu
GGA

GGA+U
μ=26eV
μ=27eV

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

-6 -5 -4 -3 -2 -1  0  1  2  3  4

D
O

S

E (eV)

Co on Cu
GGA

GGA+U
μ=28eV
μ=29eV

FIG. 3. (Color online) DOS of the Co impurities in bulk Cu (top)
and on Cu (111) (bottom) obtained from DFT (GGA and GGA + U ),
as well as QMC simulations at temperature T = 0.025 eV. QMC
results obtained at different chemical potentials μ are shown.

μ = 27, 28, and 29 eV (Co on Cu), we obtain total densities
and spins close to these DFT estimates. The values of both
observables for the lowest simulation temperature T = 0.025
eV are presented in Table II.

A. Quasiparticle spectra

We now analyze the excitation spectra of the Co impurities
in order to understand the dominant physics at different energy
scales. For a first, qualitative insight into the strength of
many-body renormalizations, we compare in Fig. 3 the Co
3d-electron DOS obtained from our DFT calculations to the
Co 3d spectral functions obtained from analytical continuation
of our QMC results.34

The non-spin-polarized GGA calculations used to deter-
mine the hybridization functions yield—by definition—the
DOS corresponding to the Anderson model without two-
particle interactions (U = J = 0 eV). For both Co in and
on Cu, the GGA DOS exhibits a peak near the Fermi level
(EF = 0). The QMC DOS qualitatively reproduces the GGA
DOS for the case of Co in Cu. Here the main difference
between the two approaches is that QMC yields a peak near
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FIG. 4. (Color online) Orbitally resolved DOS of the Co im-
purities in bulk Cu (top) and on Co (111) (bottom) obtained from
our QMC simulations at temperature T = 0.025 eV and chemical
potential μ = 27 and 28 eV, respectively.

the Fermi level which is approximately twice narrower and
shifted toward EF . GGA + U accounts for the local Coulomb
interactions on the Co atoms on a Hartree Fock level, which
leads to the destruction of the quasiparticle peak near EF with
all the spectral weight shifted to broad Hubbard bands. The
comparison to the QMC results shows that this destruction of
the quasiparticle peak is unphysical.

For Co on Cu the hybridization is weaker, and the DOS
from the QMC simulations exhibits both quasiparticle peaks
near EF as well as Hubbard type bands at higher energies.
The reduction of spectral weight of the quasiparticle peak as
compared to GGA is stronger here. The orbitally resolved DOS
of Co in and on Co is shown in Fig. 4. For Co in Cu, the DOS of
the eg and the t2g orbitals is very similar particularly regarding
the quasiparticle peak, despite the (energy dependent) crystal-
field splitting on the order of some 0.1 eV.

The DOS of Co on Cu exhibits stronger differences between
the E1, E2, and A1 orbitals. The E2 orbitals, which spread out
perpendicular to the z axis, show the weakest hybridization
effects, but even here, a quasiparticle peak appears in all
orbitals. The appearance of low-energy quasiparticle peaks in
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FIG. 5. (Color online) Orbitally resolved self-energies for Co in Cu (upper panel) and Co on Cu (lower panel). From left to right, Im �(iω)
is shown for the chemical potentials μ = 26, 27, and 28 eV (Co in Cu) and μ = 27, 28, and 29 eV (Co on Cu).

all orbitals is different from the behavior expected for a spin-1
two-channel Kondo model, where a low-energy quasiparticle
resonance would be observed in two orbitals (four spin
orbitals) only. The situation with low-energy quasiparticle
peaks involving all Co d orbitals found here is also different
from the situation suggested for a Co atom in contact with two
Cu leads,20 where an extension of the NCA yields low-energy
resonances in three of five d orbitals. The DOS as obtained
from our QMC calculations suggests a low-temperature Fermi
liquid state involving all orbitals for both Co in and on Cu.
We investigate the nature of this state in the following sections
by analyzing the self-energies obtained from QMC and the
statistics of relevant atomic states.

B. Low-energy Fermi liquid

If a Fermi liquid develops, the self-energy takes the form

�(T ,ω) = �(T ,0) + �′(T ,0)ω + O(ω2), (11)

with �(T ,0) and the first energy derivative �′(T ,0) being real
for T → 0. In this regime, the spectral weight Z associated
with the quasiparticle peak is determined by

Z = [1 − Re�′(0) − Re	′(0)]−1. (12)

(In order to find the many-body renormalization factor, one
needs to skip the last term in the bracket). Our QMC
calculations yield the self-energy on the Matsubara axis.
Analytic continuation ω → iωn shows that Fermi liquid
behavior manifests itself on the Matsubara axis by

Im�(T , iωn) ≈ Im�(T , 0) − Im�′(T , 0)ωn (13)

at low frequencies with Im�(T ,0) ∼ T 2. We now compare
these relations to the frequency and the temperature depen-
dence of Im�(T ,iωn) obtained from our QMC calculations. At
the lowest accessible temperature, T = 0.025 eV, we obtained

the Matsubara self-energies depicted for Co in and on Cu in
Fig. 5.

In both systems, |Im�| clearly decreases as ωn → 0, for
all orbitals except for the E2 orbitals of Co on Cu at μ =
27 eV. This is clearly different from the diverging �(iωn) ∼

1
iωn

, expected for the localized moment of an isolated atom.
For Co in bulk Cu, the eg and t2g orbitals exhibit very similar
self-energies, whose low-energy behavior is consistent with
the form expected for a Fermi liquid [Eq. (13)]. For Co on
Cu, the self-energies differ considerably between the different
orbitals with the E1 orbitals being least correlated and the E2

orbitals exhibiting the largest self-energies at low frequencies.
Our results indicate that a Fermi liquid develops in all Co
orbitals, also here, although the Kondo temperature appears to
be orbital dependent.
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FIG. 6. (Color online) Orbitally resolved quasiparticle weight of
Co in Cu and Co on Cu at temperature T = 0.025 eV.
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C. Estimation of TK from QMC

To define a Kondo temperature scale even in cases without
well defined local moment at intermediate temperatures, we
define TK through the width of the quasiparticle resonance
in the single particle spectral function near EF , which is
measured in STM experiments. In our QMC simulations,
we determine TK from the quasiparticle weight Z. The
simulations yield the self-energy at the Matsubara frequencies
ωn = (2n + 1)πT . Analytical continuation of Eq. (12) yields

Z ≈
[

1 − ∂Im�(iωn)

∂ωn

∣∣∣∣
ωn=0

− Re	′(0)

]−1

, (14)

and we use Eq. (13) to evaluate the derivative. In Fig. 6, we
show the quasiparticle weight of Co in Cu and Co on Cu for
the different types of orbitals as a function of the chemical
potential μ. The values of degenerate orbitals agree within an
accuracy of 10−2, at which precision we are listing them in
Table III for T = 0.025 eV. The systems whose spin is closest
to S = 1 are found to have the lowest values of Z. Co in Cu
clearly has higher quasiparticle weights compared to Co on
Cu. As we will see, this results in a higher Kondo temperature
TK , which is also confirmed experimentally. In experiments
using STM measurements, the Kondo temperature has been
found to be TK = 655K ± 155K = 0.056 ± 0.013 eV for Co
in Cu9 and TK ≈ 54 ± 5 K = 0.0046 ± 0.0005 eV for Co on
Cu.3,6,9,15

TABLE III. Kondo temperatures TK computed from the quasi-
particle weight Z and the hybridization function 	(ω) according to
Eq. (15) at the lowest simulation temperature T = 0.025 eV. The
experimental Kondo temperatures are TK = 0.056 ± 0.013 eV (Co
in Cu) and TK = 0.0046 ± 0.0002 eV (Co on Cu).3,9

System μ (eV) orbital −Im[	(0)] (eV) Z TK (eV)

Co in Cu 26 t2g 0.43 ± 0.01 0.38 0.13
Co in Cu 26 eg 0.340 ± 0.009 0.39 0.10
Co in Cu 27 t2g 0.43 ± 0.01 0.42 0.14
Co in Cu 27 eg 0.340 ± 0.009 0.47 0.12
Co in Cu 28 t2g 0.43 ± 0.01 0.48 0.16
Co in Cu 28 eg 0.340 ± 0.009 0.56 0.15

Co on Cu 27 E2 0.124 ± 0.002 0.06 0.006
Co on Cu 27 E1 0.226 ± 0.002 0.19 0.03
Co on Cu 27 A1 0.197 ± 0.001 0.08 0.01
Co on Cu 28 E2 0.124 ± 0.002 0.05 0.005
Co on Cu 28 E1 0.226 ± 0.002 0.15 0.03
Co on Cu 28 A1 0.197 ± 0.001 0.10 0.01
Co on Cu 29 E2 0.124 ± 0.002 0.14 0.01
Co on Cu 29 E1 0.226 ± 0.002 0.26 0.05
Co on Cu 29 A1 0.197 ± 0.001 0.27 0.04

Following Hewson’s derivation of a renormalized perturba-
tion theory of the Anderson model,35,36 we use as a definition
for the Kondo temperature:

TK,α = −π

4
ZIm	α(0). (15)
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FIG. 7. (Color online) Upper panel: Im � of Co in Cu at μ = 28 eV for t2g (dxy , dyz, dxz) and eg (dz2 , dx2−y2 ) orbitals (from left to right).
Lower panel: Im � of Co on Cu at μ = 29 eV for E2 (dxy , dx2−y2 ), E1 (dyz, dxz), and A1 (dz2 ) orbitals (from left to right).
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The values computed according to Eq. (15) are listed in
Table III for all impurity orbitals at temperature T = 0.025
eV. As for the quasiparticle weights, we find the lowest values
of TK for μ = 26 eV (Co in Cu) and μ = 28 eV (Co on Cu).
Averaging over orbitals, we obtain TK = 0.118 eV (Co in Cu,
μ = 26 eV, T = 0.025 eV) and TK = 0.016 eV (Co on Cu,
μ = 28 eV, T = 0.025 eV) with a ratio of T IN

K /T ON
K = 7.4.

This large difference between the two Kondo temperatures is in
fair agreement with experiments, where a ratio of T IN

K /T ON
K =

12.1 has been found.9 As discussed in Sec. V, the physical
quantities which determine the Kondo temperature scale enter
in the argument of an exponential function, suggesting that
a comparison of the logarithms log(Texp)/ log(TK ) is more
appropriate when judging the predictive power of our first-
principles simulations. We find log(Texp)/ log(TK ) = 1.4 (Co
in Cu, μ = 26 eV, T = 0.025 eV) and log(Texp)/ log(TK ) =
1.3 (Co on Cu, μ = 28 eV, T = 0.025 eV).

For both systems, our computed Kondo temperatures are
higher than the experimentally determined values. This can be
either due to the neglect of spin-orbit coupling effects, which
lift degeneracies and narrow the low-energy resonances, or due
to the Coulomb interactions being larger than the U = 4 eV
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FIG. 8. (Color online) Temperature dependent quasiparticle life-
times for Co in Cu at μ = 26 eV for the t2g (top) and eg orbitals
(bottom).

assumed here. The temperature dependence of the self-energy
allows for an alternative test depending on whether and at
which energy scale a Fermi liquid emerges. This is illustrated
for Co in and on Cu in Fig. 7. We find an almost temperature
independent behavior of Im �(T ,iωn) for Co in Cu if T < 0.05
eV, which provides an estimate of TK ≈ 0.05 eV. In the case
of Co on Cu, Im �(T ,iωn) still evolves as one lowers the
temperature from T = 0.05 to T = 0.025 eV, which suggests
a lower Kondo temperature.

According to Eq. (13), the linear extrapolation of
Im�(T , iω) to iωn → 0 yields the inverse lifetime h̄τ−1 =
Im�(T , 0) of quasiparticles at the Fermi level if a Fermi
liquid is formed. In Fig. 8, we plot this extrapolation for Co
in Cu, μ = 26 eV, and we show Im�(T , 0) as a function of
temperature. We find a Im�(T , 0) ∼ T 2 behavior for both sets
of orbitals, which corroborates the formation of a Fermi liquid
in the eg and t2g orbitals at the lowest accessible temperatures.

V. DISCUSSION

Our QMC calculations showed that, for both Co in and on
Cu, Fermi liquids involving all orbitals of the Co impurity form
at low temperatures. We now want to understand these results
on the basis of scaling arguments starting with (higher-energy)
charge fluctuations going to (lower-energy) spin and orbital
fluctuations.

A. Charge fluctuations

With our values of the Coulomb interaction strength in the
local Hamiltonian (U = 4 eV; J = 0.9 eV) the energies of
removing (E−) or adding (E+) an electron to the impurity are
E− ≈ E+ ≈ 2 eV. A first-order expansion in the hybridization
gives a qualitative estimate of the role of charge fluctuations:10

The norm of the admixtures of d7 and d9 configurations to a
predominantly d8 ground state of the impurity is approxi-
mately Nn�=8 = − 1

π
Im	(0) 10

U/2 . For Co in Cu, −Im 	(0) ≈
0.4 eV leads to Nn�=8 ≈ 0.6. The hybridization of Co on
Cu is about twice as small, −Im 	(0) ≈ 0.2 eV, yielding
a correspondingly smaller weight of non-d8 configurations
Nn�=8 ≈ 0.3.

Our QMC calculations allow us to quantitatively measure
the charge fluctuations. In Fig. 9, we plot the “valence
histogram”33 for Co in/on Cu for different choices of the
chemical potential and compare it to the “valence histogram”
of the Slater determinant built from the lowest GGA eigen-
states. The histogram shows the weights which the eigenstates
in the different charge sectors n = 0, 1, . . . ,10 contribute to
the partition function [via the trace in Eq. (9)]. In all cases,
the local Coulomb interaction in the QMC simulation leads
to a narrower distribution of the occupancies as compared to
the GGA valence histograms. This effect is most pronounced
in the case of Co on Cu (111), where the d8 configuration
clearly dominates over the d7 and d9 configurations. For Co
in Cu, there are still noticeable correlations and the narrowing
of the valance histogram as compared to the GGA case, but
the d8 configuration contributes only about 50% in the QMC
simulations, with significant weight coming from the d7, d9,
and even the d6 and d10 configurations. The measured values
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FIG. 9. (Color online) Top: Occupation statistics of Co in Cu
for T = 0.025 eV. Bottom: Occupation statistics of Co on Cu for
T = 0.025 eV.

for Nn�=8 (≈0.5 for Co in Cu and ≈0.3 for Co on Cu) agree
surprisingly well with the simple perturbative estimate.

A Schrieffer-Wolff decoupling of ionized impurity states to
discuss the low-energy physics can be justified if the weight
of non-d8 configurations is Nn�=8 � 1. Hence an intermediate
energy state characterized by well formed (unscreened) fluctu-
ating spin or orbital moments at frozen impurity valency might
be defined in the case of Co on Cu (111), but clearly not in the
case of Co in Cu.

B. Spin and orbital fluctuations

While for Co in Cu charge, spin, and orbital fluctuations
will be present down to lowest energies, for Co on Cu only
fluctuations of the orbital and the spin degree of freedom
are expected to dominate the low-energy physics. To further
investigate to which extent orbital and spin fluctuations might
determine the low-energy behavior of the impurity, we estimate
Kondo temperatures within simplified models and compare
these estimates to our QMC calculations as well as to
experiments.

Assuming well-defined magnetic moments (Nn�=8 � 1), a
scaling analysis (cf. Ref. 10) allows us to estimate the Kondo
scale analytically in simplified situations: If neither Hund’s

rule coupling nor crystal-field splitting or any other symmetry
breaking terms were present, the spin and the orbital degrees
of freedom of the Co impurities could fluctuate freely and
independently. This would lead to a Kondo temperature10

TK ∼ D0 exp[−1/2Nn�=8], where D0 ∼ min(E±,�) is related
to the impurity charging energies (E±) and the electronic
bandwidth �. D0 is on the order of several eV. With D0 =
U/2 = 2 eV, we estimate TK ≈ 0.4D0 = 0.9 eV in the case
of Co in Cu and TK ≈ 0.2D0 = 0.4 eV in the case of Co
on Cu. This is in both cases (at least) an order of magnitude
larger than the Kondo temperatures obtained from QMC and
the experimentally measured Kondo temperatures.

The opposite limit is given by the case with strong Hund’s
rule coupling and suppressed orbital fluctuations. Without
orbital fluctuations, but still disregarding the Hund’s coupling
J , the Kondo temperature reads1,10 TK ∼ D0 exp[ πU

8Im	(0)
] =

D0 exp[− 5
2Nn �=8

], which would lead to TK = 0.02D0 ≈
0.04 eV for Co in Cu. The Hund’s rule coupling reduces
the Kondo temperature12 further to T ∗

K = TK (TK/JH S)2S−1.
With S = 1 and JH = 0.9 eV, this would lead to T ∗

K ≈ 0.002
eV. For Co on Cu, the assumption of an orbital singlet yields
TK = 0.0004D0 ≈ 0.001 eV, and Hund’s rule coupling further
reduces the Kondo temperature to T ∗

K ≈ 1 μeV. This limit thus
yields Kondo temperatures which are orders of magnitude
smaller than those obtained in our QMC calculations, as well
as the Kondo temperatures measured experimentally for Co in
and on Cu. It is thus the successive locking of the impurity
electrons to a large spin by the Hund’s rule coupling and the
partial freezing out of orbital fluctuations that determines the
onset of Fermi liquid behavior and the Kondo temperature in
realistic systems like Co in or on Cu.

With this in mind, it is instructive to analyze the influence
of a static crystal field on the energy spectrum of otherwise
isolated Co atoms. Without crystal fields, in a d8 configuration
our local Coulomb interaction (U = 4 eV; J = 0.9 eV) yields
a 21 fold degenerate L = 3,S = 1 ground state which is
separated from the L = 2,S = 0 multiplet by an energy of
EL=2,S=0 = 1.3 eV. This is clearly larger than the crystal field
acting on the Co impurities (Fig. 2): The cubic crystal field
(evaluated at the Fermi level) of Co in Cu leads to the eg

states being 0.18 eV higher in energy than the t2g states. In
this crystal field, the resulting d8 ground state is an orbital
singlet. Excitations to higher crystal field split states require
energies on the order of 0.2 eV. This is larger, but comparable
in order of magnitude to the Kondo temperatures obtained in
experiments and simulation. However, fluctuations to these
higher crystal-field split states must be taken into account to
explain the characteristic temperature of the low-energy Fermi
liquid formed at Co impurities in Cu.

In our model of Co on Cu, the static crystal fields also
lift the degeneracy of the ground state multiplet, but a double
degeneracy in the orbital space remains. Excitations to higher
crystal-field split states require 0.03–0.08 eV. In this model,
even the ground state multiplet allows for fluctuations of the
orbital degree of freedom.

In order to examine the effect of constraining orbital
fluctuations, we consider the case of Co on Cu, which exhibits
a strong reduction of the quasiparticle peak compared to the
GGA spectral function representing the U = 0, J = 0 case.
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FIG. 10. (Color online) Comparison of the DOS (top) and
quasiparticle weight Z (bottom) of Co on Cu at U = 4 eV for the two
values J = 0.0 eV and J = 0.9 eV.

Turning off the Hund’s coupling J allows the orbital and
spin degrees of freedom to fluctuate more freely, and given
the scaling considerations should result in a higher Kondo
temperature as well as a broader quasiparticle peak. We studied
the effect of J = 0 for Co on Cu, T = 0.025 eV, μ = 29 eV

and present the comparison of the quasiparticle weight and
peak in Fig. 10. In line with our statement that the Kondo
temperature is determined by the locking of the impurity
electrons to a larger spin and possible restrictions of the orbital
fluctuations, we find a broadening of the quasiparticle peak and
an increase of the quasiparticle weight Z by almost a factor of
two as J → 0.

VI. CONCLUSIONS

For Co in and on Cu we found that a Fermi liquid is formed
at low T involving all impurity d orbitals. The example of Co
on Cu shows that the characteristic temperature TK associated
with the onset of Fermi liquid behavior can depend on the
impurity orbital. The comparison of our QMC calculations and
scaling arguments further demonstrates that fluctuations in the
orbital degree of freedom and Hund’s rule coupling are crucial
in determining TK in realistic systems. This is well beyond the
physics of simple “spin-only” models. The understanding of
magnetic nanostructures based on 3d adatoms on surfaces, as
well as magnetic impurities in bulk metals, requires an explicit
treatment of the orbital degrees of freedom.

Dynamical mean-field theory provides a link between
quantum impurity problems and extended lattices of atoms
which are subject to strong electron correlations. It remains
thus a future challenge to understand how the orbital degree
of freedom controls the quenching of magnetic moments
and eventually the formation of low-energy Fermi liquids
in realistic extended correlated electron systems as well as
magnetic nanostructures.
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