PHYSICAL REVIEW B 85, 085110 (2012)

Electric-field-induced shift of the Mott metal-insulator transition in thin films
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The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of
an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model
in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by
applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the
surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers
beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our
results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle
weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field
critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field

is totally screened and the slab is again at half-filling.
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I. INTRODUCTION

The rich physics of strongly correlated materials in combi-
nation with the need to overcome the scaling limits of current
silicon-based semiconductor materials in the microelectronic
industry has resulted in an increased activity in this field. Spe-
cial attention has been focused on vanadium dioxide (VO,),
which shows an abrupt metal-insulator transition (MIT) near
room temperature due to a structural phase transition.! It was
found that an electric field is also able to trigger MIT in VO,,
without any structural transition, which is mostly dominated
by electron correlations rather than a Peierls distortion.? Also,
a first-order MIT is observed by applying an electric field in a
two-terminal model of VO, (Refs. 3 and 4) without electrical
breakdown of the material. Note that an electric-field-driven
MIT and metal-superconductor transitions have been observed
at the interface between LaAlO; and SrTiO;.> These kinds of
transitions may be related to a charge transfer mechanism.
A nonlinear dependence of the conductivity on the electric
field is reported for the highly correlated transition-metal
chalcogenide Ni(S,Se),, and a continuous MIT is observed
in this case.’

In this paper, we investigate the behavior of the ground
state of a single-band Hubbard model® in the presence of an
electric field by using the Gutzwiller approximation (GA).’
Originally, GA is rooted in the Gutzwiller wave function used
toreduce the contribution of high-energy states due to Hubbard
repulsion and it was shown to be exact in the limit of infinite
dimensions.1°

While an analytical solution exists only for one
dimension,'! in comparison to other approximate methods,
the GA is equivalent to a slave-boson mean-field'?> (SBMF)
approach for zero temperature, but in contrast to dynamical
mean-field theory (DMFT),'? it is not able to give any
information about higher and lower Hubbard bands. Instead,
it gives a reasonable understanding about the low-energy
excitations near the Fermi surface'* by supplying the quasi-
particle (QP) weight of electrons such that one is then able
to describe the mobility of electrons. Also, GA can not give
any information about the insulating state, instead we are only
able to investigate the properties of the system by approaching
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the transition point U, from below.'? This method was used by
Brinkman and Rice'” to investigate the MIT of the single-band
Hubbard model and it allowed them to predict the critical
Hubbard repulsion, which is finite in two and three dimensions
(U. = 16¢ for 3D). While not as accurate as DMFT, GA is
less computationally intensive and thus allows the description
of inhomogeneous systems such as thin films subjected to a
perpendicular electric field.

Although our simplified approach is only qualitative, it
gives important information about how one may be able to
spatially tune the quasiparticle weight distribution near sur-
faces and interfaces. This could be relevant for future studies;
for example, for an inhomogeneous bad metal-superconductor
transition by the charge transfer mechanism, which may be
responsible for the superconductor (SC) insulator transition
observed at the interface of a band insulator and a strongly
correlated material.> We will show that by applying a perpen-
dicular electric field, charges will be trapped at the surface of
the Mott insulator and shift the MIT for the surface states.

The outline of the paper is as follows. In Sec. II, we review
the concept of GA and discuss the extension of the method to
include the effect of onsite potentials. In Sec. III, we introduce
our model for the slab geometry, present the numerical scheme
used, and analyze the corresponding results. Finally, in Sec. IV,
we present our conclusions.

II. GUTZWILLER APPROXIMATION IN THE PRESENCE
OF AN ELECTRIC FIELD

In order to address the narrow band effects in transition
metals with d or f orbitals for which correlation effects
play a major role in the behavior of the system, the simplest
model that is able to explain the most important terms of
the Coulomb interaction between electrons is the well-known
Hubbard model

Hy = _Ztij(cjgcja+C}L‘”cia)+ZUﬁiaﬁi6- (1)
(ij)o i
We will describe the ground-state properties of the Hub-

bard model by using the Gutzwiller approximation, which
suppresses the contribution of high-energy states (these are
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configurations with a higher number of double occupancies).
This is done by introducing a trial wave function, which
contains variational parameters that are subsequently used
to minimize the total energy of the system. Our aim is to
investigate the properties of a strongly correlated system in
the presence of an external electric field modeled in the
Hamiltonian as a position-dependent potential in the field
direction, while translational invariance is maintained in the
direction perpendicular to the applied field. To study the
ground-state properties in the absence of the electric field,
the Gutzwiller wave function is defined as

W) = [Te2 o) = [ 11 - (1 =g Dillve), @

where the double occupancy operator is D; = A;,f;5, the vari-
ational parameters g; are introduced to reduce the contribution
of high-energy configurations in the many-body wave function
[¥,), and |vy) is the unprojected noninteracting (Fermi sea)
many-body wave function. Although it is obvious that by the
inclusion of onsite potentials, no new variational parameters
are needed because they do not induce any new correlations
since the term is a single-body interaction, nevertheless we
will prove it rigorously. To obtain the normalization factors
in the limit of spatial infinite dimensions, for which the
Gutzwiller approximation is exact,”'” we have to remove
spatial correlations that occur in infinite dimensions together
with onsite Hartree contributions, which remain in the d = oo
limit. This can be done by introducing an expansion parameter
following the guidelines of Ref. 10. If we include onsite
potentials for capturing the effects of external fields, the
Hamiltonian becomes

H = Hy + Z Vil 3

io
In order to find the ground state of the Hamiltonian in Eq. (3),
we introduce variational parameters ¢;, and {5 to decrease the

weight of the occupancy of the sites with higher onsite energy.
The Gutzwiller wave function now becomes

W) = [1 — (I = Lio)ig 11 — (1 — Gig)iis]
x [1= (1= g)Dillo). “
The standard way of removing onsite Hartree contributions is
to introduce the fugacity factors u;, and j;5,'° the expansion

parameter x;, and the noninteracting state |@g). Then, the
Gutzwiller wave function can be written as

) = 1—[ ;io_ﬁiu ;i&ﬁié giz(yi*lliﬁﬁfa*maﬁiﬂr[),)|(p0)
=[] +x(D: — DT))lgo). (5)

The Hartree double occupancy operator can be defined as
DT = i (Riz)o + (Ris)oRis — (Rio)o(iz)o and it is the
result of the usual mean-field decomposition 7i;; — ;e —
<ﬁia>0~ By deﬁning Cia = giﬁ’”, ;iﬁ’ = giﬂ”?, Hfi(r/ = ,Bitr + Mios
and pis" = Bis + Mis, We have

lW,) = 1_[giz(}’z—llify’ﬂi&—l/«m’ﬁm"rDi)I(p())' (6)

L
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Therefore, by using the above change of variables, it is
possible to obtain the same renormalization factors for the
infinite dimensions limit as stated in Ref. 10. Moreover, by
using the condition (#i;,) = (#i;s )y, Which holds for infinite
dimensions, it can be inferred that the physical counterparts of
the variational parameters ;, are (7i;,)o. We need to minimize
the energy with respect to |¢o) together with local variational
parameters g; needed to describe the correlation effects. In
short, the addition of onsite potentials does not add any new
variational parameters and the procedure of finding the ground
state is the same as in the conventional Gutzwiller method.
Thus, the expectation value of the Hamiltonian

(H) = =" aia/Tiotii (@olety éi0 + Hee.lgo)

(ij)o

+ ) Vilgolriilgo) + Y _Ud; (7)

has to be minimized only with respect to g; and |¢y). Here, the
renormalization factors g;, depend on the local density of the
noninteracting state |@g) and g;:

|
(fligYo(1 — (Mis)0)
+V(Aiz)o — d)(A —nig +di)] s (8)

where n; 0 = (i )o + (s )o, While g; are described by the
following equations, which hold in infinite dimensions:

2 _ di(1 —n;o+d;)
" ((hig)o — di)((Aig)o — i)

Although in normal metals any deviation from half-filling
may lead to the lowering of the electron conductivity, in
strongly correlated materials, doping plays a different role
because of the dependence of tight-binding renormalization
factors ¢;, on the local charge density. Thus, one may predict
that if an applied electric field would be able to change the
charge distribution of the system, then it will be able to change
the electron conductivity and even shift the metal-insulator
transition point.

In practice, minimizing the expectation value of the
Hamiltonian is difficult because of the existence of a large
number of variational parameters in |@p) together with the
dependence of the renormalization factors on |¢g). This will
lead to a highly nonlinear set of equations. In order to
alleviate some of the difficulties, it is possible to allow local
densities and |¢p) to vary independently in the minimization
procedure. Then, by introducing the Lagrange multipliers A;,,
it is possible to ensure that the local charge densities of the
Gutzwiller wave function are equal to the local charge densities
of the noninteracting state. Other multipliers, A and E, are
introduced in order to ensure total charge conservation and
guarantee that |@g) is normalized. Therefore, the final form of
the energy expectation value is

Gic = di((Ais)o — d;)

8i C))

(H) = = Tij{ol¢,io + Hee.lgo)
(ij)o

+ Y vilgoliigleo) + > Ud;
i,o0 i
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+ Z )\ia(<ﬁia>0 - nia)
i,0

+A (N - an) + E(L— (golgo)),  (10)

io

where 7; i = \/qioc+/qjotij are the renormalized hopping am-
plitudes. To find the optimum energy, we first vary the |¢p),
which obeys the following Schrodinger-type equation:

3 i@, éi0 + Hee)lgo)
(ij)o

+ ) (Vi + hio)iislpo) = Elgo), (11)

which is solved by exact diagonalization for both spins. This
noninteracting energy is the amount of kinetic energy that is
stored in the QP state |¢). Then, |¢p) is substituted in Eq. (10)
and the expectation value becomes

(H)y=Ey;+ Y Udi+ A (N - an> + Y hiohia

12)

where Ey; is the noninteracting energy, which depends on
the variational parameters 7,5, A5, and |@o). |@p) is now a
function of the variational parameters A;,, #;,, and g;, and the
above energy functional has to be minimized in accordance
to all these parameters. This leads to the following set of
saddle-point conditions:

a(H a(H
. N (13)
d(H H
(H) _o, ) _
8nlo’ 8gl

In general, the onsite potential profile is a functional of the
spatial density distribution due to the effects of long-range
electron-electron and electron-ion interactions. This effect
should be addressed by considering an additional Poisson
equation in the set of equations. Although the effect of
charge redistribution due to long-range interactions has major
effects in weak Hubbard coupling, it has minor effects in
intermediate- and strong-coupling regimes due to the already
very large screening effects induced by the Hubbard interaction
at half-filling.

III. MODEL AND NUMERICAL SCHEME
A. Model

We consider a slab geometry with translational invariance
in the x and y directions and finite size in the z direction.
In addition, we apply a linear potential profile from —v/2 to
+v/2 in the z direction.
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With the above assumptions, the expectation value of the
Hamiltonian can be written as

() = (pol Y [=21qiq(cosky + cosky) + vi+higlely o Cityo

ikj,o
— Y Vo Tiot @l ity + €Ly Cigo)0)
(ij)kyo
— NkH Z)\,igl’lig + A (Nk ZI’L,‘J — N)
+E(1 = {golgo)) + Y N, Ud;, (14)

L

where i and j correspond to atoms in the z direction and
Ny, = Ny, Ny, is the total number of & points.

First, we minimize the energy with respect to |¢g), which
leads to the following eigenvalue problem:

Z[—thig(coskx + cosky) + v; + Ajo]
i,0
x 61‘Tku(réiku0|(p0> - Z VioA/djot
(ij)o
X (&l o ity + Ehio)lgo) = Exlgo).  (15)

Equation (15) has to be solved for each kj point, and in order
to find the noninteracting ground state, the eigenvalues will be
summed up to the desired filling level:

Exi= Y Ex (16)

E<Ep

where EF is the Fermi energy of the QP states and #n is the
quantum number for the energy level of each & point.

In the next step, the above noninteracting state |¢g), which
is now an implicit function of all variational parameters A;,,
nis, &, and A, should be inserted into Eq. (14):

(H) = (@lhio:nio» & A Hol@lhio nio,gis Al)

+Niy D diohio + A (Nkl D nig — N) V)

i,0 i,o

We therefore minimize the total energy according to the
variational parameters by considering

a a
8—A(¢[X]|Ho[)»]|1ﬂ[k]) = (w[klla—AH()[k]llﬂ[k]>, (18)

which holds when the wave function is an eigenfunction of
the noninteracting Hamiltonian and obtain the following set
of saddle-point equations for the paramagnetic case ({(fi;;) =

(fiz)):

d(H) 0Gio .+

— = 2{¢py| —2t(cosky, +cosky)—¢;; Ciko
08 leI: "og e

[Qjo 3Gio i A A
— 8 j+1 C;faa—(;f(cjk”acjk”o + C}kuacl‘kua)Wo)
1o 1

ad;
+ ZN,{HU? =0, (19)
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d(H)
Bnm

3%0 A A
= 2{¢o| Z —2t(cosk, + cos ky)wcjk”acik"g

ik ’
[Gio 0Gic .+ . R A
—(Si,jil #an_l‘(’t(cjkuacjk\\”+C}k|\acikua)Z |¢0>
dic 1o ikH

ad;
—2Ni hig = 2N A+ Y Ny, Us—=0, (0

d(H)
8)\50

= (ol Y el o Cityol@0) — Nignig =0, (21)
ky

a(H)

= <N — 2Ny, Zna) =0. (22)

In addition to the above equations, the electrostatic stability
of the system should be considered by the inclusion of the
Poisson equation. The effects of long-range electron-electron
and electron-ion interactions on the electric potential could
be evaluated by considering a simple version of the Poisson
equation for slab geometry as follows:'®

0
vi=v" = Y alz -zl — D), (23)

Ji#]
where z; is the position of plane i. Here, o = 2;:05 where

€ 1S vacuum permittivity, €, is relative permittivity, a is
lattice constant, and e is electron charge. We considered three
values of the Poisson coupling parameter « = 0, 0.02, and 0.2
corresponding to €, = 0o, 150, and 15, respectively. For o <
0.02, the effect of the Poisson term on the relevant quantities
is negligible, while for larger values, « > 0.2, additional
screening occurs but we observe the same qualitative behavior.
Experimental data show that for transition-metal oxides, the
relative permittivity is usually very large.!” Therefore, because
€, = 00 is a good approximation for strongly correlated ma-
terials, we choose o = 0 and neglect the additional screening
of charges induced by the Poisson term.

In order to numerically solve the above set of nonlinear
equations, we employ MINPACK.1,'®!" which uses a trust-
region-dogleg method, while for the k-space summation,
we choose a 16 x 16 Monkhorst-Pack® grid, which gives
accurate estimates for the total energy. From the above
equations, it is obvious that the Jacobian matrix required by
the nonlinear solver has to be calculated by a finite difference
method because no analytical evaluation of the Jacobian matrix
is possible. Also, note that the Jacobian matrix is dense and all
of its elements are nonzero.

We also tried to implement another approach by solving
Egs. (15) and (19)—(22) iteratively by starting from an
estimation of the variational parameters and a calculation of
|@o), which are then supplied to the set of Egs. (19)—(22) to
find a new set of variational parameters and then the whole
procedure is repeated. The iterative approach did not converge
for values of U > 4¢, which could be because of the high
nonlinearity of the equations for large U. Other authors also
reported similar problems with such an iterative scheme.?' In
order to achieve convergence, it should be noticed that during
the procedure of solving the set of Egs. (19)—(22) to satisfy
Eq. (21), one also needs to change |¢y), otherwise there is no
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way to fix (i;s)¢ at n;s. Thus, it is possible in one step to
fix A, and |py) and minimize with respect to g;, n;, and A,
while in the next step to do the opposite. This speeds up the
numerical procedure because there is no need to calculate |¢)
for the changes of g;, n;, and A.

In the next sections, we report results for g; as the
position-dependent QP weight, which is an indication of
the mobility of the electrons in Fermi-liquid theory. It is
possible to show that the inverse of this factor is proportional
to the mass renormalization, which is divergent for ¢; = 0 and
which corresponds to an insulating phase.??

The quantity U; = v; + X;x + A is considered as an ef-
fective potential, which acts effectively only on |g). In
the following, the parameters U and v are scaled with the
tight-binding parameter 7.

B. Numerical results

We solve the set of Egs. (19)—(22) for a slab geometry
and a linear distribution of the potential along the direction
perpendicular to the slab in order to investigate its effect on
the strong correlations.

The spatial distribution of the QP weights and the charge
densities are shown in Figs. 1(a) and 1(b) and Figs. 2(a) and
2(b) for different values of the Hubbard repulsion U for a slab
of width N; = 90. The presence of a potential profile causes
charge distortion in the system, and because of the nature of
the Gutzwiller renormalization factors that are minimum at
half-filling (n; = 1.0), it is predicted that any deviation from
half-filling may lead to larger QP weights when compared to
the case without electric field.

U=12.75v=2 ——
U=13.75,v=2
U=14.75,v=2 -
U=15.75,v=2 -
0.40 | U=15.75.v=0

0.30 [\ /‘X

0.60

0.50

0.20 f

0.10 { (a)

Quasiparticle weight

0.00 &

1.04
1.03
1.02 [
1.01 .
1.00 |
0.99
0.98
0.97
0.96

Charge Density

10 20 30 40 50 60 70 80 90
Position of atoms in the z direction

FIG. 1. (Color online) (a) QP weight distribution for U < 16,
N, =90, and v = 2 and 0; (b) charge distribution for U < 16, N, =
90, and v = 2. Note that for v = 0, the system is at half-fillingn; = 1.
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U=16.0206
1071 H U=16.0406
U=16.0612 -

U=15.9606 ——
U=15.9806 - ]
U=16.0006

Quasiparticle weight

1.0015 1
1.0010

1.0005 £
1.0000

Charge Density

0.9995

0.9990

0.9985 |
1.5

Effective potential x 104

(©)
10 20 30 40 50 60 70 80 90
Position of atoms in the z direction

FIG. 2. (Color online) (a) QP weight distribution, (b) charge
distribution, and (c) effective potential for v = 2. Notice the U/2
contribution is subtracted from the effective potential.

In the presence of an electric field, for both U < U, and
U > U, (where U, = 16 for bulk), the maximum QP weight is
achieved in few layers beneath the surface as is obvious from
Figs. 1(a) and 2(a). For U < U, akin to the zero electric-field
case,”’ the minimum QP weight is achieved at the surface sites.
In contrast, for U > U,, the QP weight of the central atoms
starts to dramatically drop to extremely low values and creates
adead region as is indicated in Fig. 2(a). This is presented more
clearly in Figs. 3(a) and 3(b) where we show the QP weight
versus the Hubbard repulsion for three significant locations
(surface, near surface, and bulk) for both v = 0 and 2.

The formation of the dead zone leads to charge being
trapped near the surfaces of the slab because the tunneling
through the bulk is suppressed. This charge trapping prevents
the system to exhibit a metal-insulator transition even for
values of the Hubbard repulsion larger than the bulk U,. This
result is contrary to the zero-field case where for U close
to U,, the surface region forms a dead zone instead of the
central region. Therefore, in the absence of an electric field,
the QP weight is maximal in the central parts as shown in
Fig. 1(a). This is due to the fact that the surface sites have a
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FIG. 3. (Color online) QP weight of various sites versus Hubbard
repulsion for N, = 90, (a) v = 0, and (b) v = 2.

lower kinetic energy (due to lower coordination number at the
surface). Interestingly, surface sites will always have a finite
(but low) QP weight, as long as the bulk QP weight is finite.
The surface sites are always able to gain kinetic energy from
the central sites that have the highest QP weight, which act as
a source of kinetic energy.”>>

In Figs. 2(b) and 2(c), the spatial distribution of the charge
densities and the effective potential are shown for different
values of U > U,. Both of these two quantities behave
similarly to the QP weight. The charge density is maximum in
the same location in which we have the maximum QP weight,
while for the sites with charge density near local half-filling
(n; = 1.0), we have the lowest QP weight and this is where
the electric field has the weakest effect. This confirms that the
larger QP weight is due to a larger carrier density near the
surface of the slab. The deviations of the carrier densities from
half-filling correspond to larger electron density for sites with
lower effective potential and hole density for sites with higher
effective potential as shown in Fig. 2(c). The charge frustration
is responsible for the nonzero QP weight for these sites near
the surfaces of the system even for U > U.,.

Figure 4 shows the change of QP weight throughout the
system as the voltage difference is increased for U = 16.0602.
Notice that the location of the maximal QP weight slowly shifts
toward the surface and at the same time its value increases
with electric field. As a consequence, the size of the central
dead zone reduces with increasing applied voltage difference.
One should note that when measuring an /-V curve, only the
in-plane conductivity will exhibit metallic behavior because
the z-axis conductivity will be dominated by the bulk insulating
layer.
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Quasiparticle weight

-6
10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90

Position of atoms in the z direction

FIG. 4. (Color online) QP weight distribution for various poten-
tial difference for U = 16.0602 where N, = 90.

In order to better understand the formation of the dead zone
with suppressed QP weight, we plot in Fig. 5 the dependence
of the central QP weight on the thickness of the slab. This is
shown for two values of the potential difference, v = 1.8 and
2, and for two values of the Hubbard repulsion, above and
below the critical U,, U = 15.75 and 16.025, respectively. As
discussed previously, in the presence of an electric field, sites
near the surface will always have larger QP weight due to
the accumulation of surface charge. This will ensure that the
central region will always have its QP weight enhanced due
to its proximity to regions with increased kinetic energy. As
shown in Fig. 5, we can distinguish two regimes, depending
whether the Hubbard repulsion is above or below the critical
value obtained in the absence of the electric field. When U <
U., the QP weight of the central sites converges toward a finite
value since even in the absence of the electric field, the system
is still metallic, albeit with a small QP weight. When U > U,
the homogeneous system should be insulating with vanishing
QP weight. Instead, even if the electric field is screened in the
central region, the QP weight will never exactly vanish because
it is in contact with a doped region with finite QP weight. We
can infer that for large enough electric fields and as long as
the slab is finite, the QP weight will never vanish.

Next, we discuss the possible appearance of a critical field
value above which the system is metallic. We plot in Fig. 6(a)
the maximum and central QP weights for four values of 6U =
U — U, as a function of potential difference v. Note that for

~ 318 T T T T T T 9.0
<) 6_' v=2.0,u=15.750 —— | | 8.0

< 3.16 M, v=1.8,u=15.750 s | | 70

= v=2.0,u=16.025 -~ —— ’

-g 3.14 l - v=1.8,u=16.025 & ’—) 6.0 <
K - 150 %
2 3.12 40 7
< 3.0
.S 3.10 20

& .

£ 308 1.0

(s}

50 60 70 80 90 100 110 120
Thickness of slab in the z direction

FIG. 5. (Color online) QP weight at the center of the slab versus
width for v = 1.8, 2, and two values of the Hubbard repulsion U =
15.75, 16.025.
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du=-0.0174
=
2
(]
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e
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45 6u=-0.0174 —— | |
5u=0.0000 ----+----
8u=0.0026 -

35 5u=0.0226 - | |

Position of maximum QP

5u=-0.0174 —— |
$u=0.0000 - - - -
(c) 5U=0.0026 -----rreeee
du=0.0226 -weeeeeee
107 T

0 02040608 1 12 14 16 18 2

Voltage difference

Average charge accumulation

FIG. 6. (Color online) (a)Maximum and central QP weight,
(b) position of maximum QP weight, (c) average charge accumulation
versus v for U = U — U,. = 0.0226, 0.0026, 0.0, and —0.0174
where N, = 90.

larger Hubbard repulsions, the minimization procedure is not
stable if the maximum QP is strongly suppressed, and thus we
have converged solutions only above certain field strengths.
We observe that as the electric field increases, the difference
between the maximal and central QP weights increases in
all situations since the maximum will be near the surface.
This can be also seen in Fig. 6(b), where the location of the
maximum QP weight is plotted as a function of electric field.
For low-field values, the maximum is located at the center of
the slab not only due to the vanishing charge accumulation near
the surface [shown in Fig. 6(c)], but also due to the increase in
the correlation length near half-filling. Although the electron
density might have a local maximum near the surface due to
the presence of the electric field, a long correlation length will
ensure that the suppression due to the existence of the surface
recovers only deep into the central regions.

It is important to note that for §U = —0.0174, the QP
weight recovers its bulk value when the electric field goes to
zero, while for §U > 0.0, it decreases rapidly at a finite critical
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FIG. 7. (Color online) Critical Hubbard repulsion for which the
maximal QP weight is Z = 5.0 x 10~ versus slab thickness for
different electric fields.

v.. Although our method breaks down when the QP weight
is very small, the results hint toward a true metal-insulator
phase transition when the Hubbard repulsion totally screens
the electric field. To accurately settle whether at v, there is
a rapid increase of the QP weight or a true phase transition,
either analytical approaches, arbitrary precision methods, or
DMEFT calculations below v, are necessary.

Next, we discuss the effect of slab dimensions and in
Fig. 7 we show as a function of thickness the value of
the Hubbard repulsion for which the maximum QP weight
is Z =5.0x 1073, This will give a lower bound for the
critical U f.lab in the presence of a perpendicular electric field.
We observe that US® is larger for larger thicknesses and
stronger fields v. Again, this is related to the amount of
charges localized near the surfaces. When U increases, the
QP weight corresponding to the central parts drops faster
in the thicker slabs, as is indicated in Fig. 8(a), and this
causes more charge accumulation at the surfaces. This happens
because the probability of the electrons to tunnel through the
central parts is being reduced, which makes charge relaxation
more difficult. In other words, by increasing the Hubbard
repulsion, the system tries to screen the charges in order to
lower the energy, while on the other hand, the increase of U
suppresses the metallic behavior of the central part and thus
hinders the charge relaxation. This can be better understood
by considering the average charge accumulation in half of
the slab, which increases slowly with the slab’s thickness as
indicated in Fig. 8(b). The numerical calculations indicate
that even for U > U,, we did not obtain a clear asymptotic
behavior for maximum QP weight by increasing the slab width.
One may expect that an asymptotic solution is reachable for
thicker slabs, but this turns out to be beyond our numerical
resources.

IV. CONCLUSIONS

In conclusion, we described the Mott metal insulator in
a slab geometry in the presence of a perpendicular external
electric field by calculating the site-dependent QP weight. This
is done by using an inhomogeneous Gutzwiller approximation,
which is exact in the limit of infinite dimensions. Increasing the
Hubbard repulsion in the presence of an external electric field
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FIG. 8. (Color online) (a) QP weight distribution of different sites
for various slab thicknesses. (b) The charge density averaged over half
of the slab for different thicknesses. Here, U = 15.956 and v = 2.

leads to the formation of a dead insulating zone at the center of
the thin film. The formation of the dead zone for U > 16 occurs
before complete screening of the electric field and, therefore,
charge trapping occurs at the surface. This causes the MIT to
be shifted in the presence of the external field. We therefore
show that even though the QP weight of the central region is
strongly suppressed for U > U®0_ the surface layers remain
metallic and with larger QP weight.

Although our calculation can not give a definitive answer
on whether a critical value v, of the electric field exists,
below which the slab becomes insulating, it shows that a rapid
change in the maximum QP weight and charge accumulation

FIG. 9. (Color online) Sketch of the possible electric-field-
induced changes on the phase diagram. The two metallic regions
differ only in the location of the maximum QP weight: center of slab
in region 1 and near surface in region 2.
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will occur above v,.. The resulting phase diagram is sketched
in Fig. 9 and shows the electric-field-induced shift of the
metal-insulator transition. We uncover two metallic regions,
depending whether the maximum QP weight is achieved in
the center of the slab (region 1) or near the surface (region 2).
Analytical or numerical methods, which can accurately probe
the insulating region, will shine light on the exact nature of
this transition.

From an experimental point of view, our results are relevant
for transport measurements in thin films. In the presence of
an external electric field perpendicular to an insulating film,
one could use the surface states for transport since the charge

PHYSICAL REVIEW B 85, 085110 (2012)

transfer at the surface creates two-dimensional underdoped and
overdoped regions. In the same time, transport perpendicular
to the thin film is suppressed due to the dead insulating zone,
thus protecting the surface states from leakages. The electric
field needed to create the surface states is also much lower
than the breakdown field needed to pass current across the
insulating zone.
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