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Symmetry-protected topological (SPT) phases are gapped quantum phases with a certain symmetry, which can
all be smoothly connected to the same trivial product state if we break the symmetry. For noninteracting fermion
systems with time reversal (T̂ ), charge conjugation (Ĉ), and/or U (1) (N̂ ) symmetries, the total symmetry group
can depend on the relations between those symmetry operations, such as T̂ N̂ T̂ −1 = N̂ or T̂ N̂ T̂ −1 = −N̂ . As a
result, the SPT phases of those fermion systems with different symmetry groups have different classifications.
In this paper, we use Kitaev’s K-theory approach to classify the gapped free-fermion phases for those possible
symmetry groups. In particular, we can view the U (1) as a spin rotation. We find that superconductors with the
Sz spin-rotation symmetry are classified by Z in even dimensions, while superconductors with the time reversal
plus the Sz spin-rotation symmetries are classified by Z in odd dimensions. We show that all 10 classes of gapped
free-fermion phases can be realized by electron systems with certain symmetries. We also point out that, to
properly describe the symmetry of a fermionic system, we need to specify its full symmetry group that includes
the fermion number parity transformation (−)N̂ . The full symmetry group is actually a projective symmetry group.
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I. INTRODUCTION

We used to believe that all possible phases and phase tran-
sitions are described by Landau symmetry-breaking theory.1–3

However, the experimental discovery of fractional quantum
Hall states4,5 and the theoretical discovery of chiral spin
liquids6,7 indicates that new states of quantum matter without
symmetry breaking and without long-range order can exist.
Such a new kind of orders is called topological order,8,9

because their low-energy effective theories are topological
quantum field theories.10 At first, the theory of topological
order was developed based on its robust ground-state degener-
acy on compact spaces and the associated robust non-Abelian
Berry phases.8,9 Later, it was realized that topological order
can be characterized by the boundary excitations,11,12 which
can be directly probed by experiments. One can develop a
theory of topological order based on the boundary theory.13

Since its introduction, we have been trying to obtain a
systematic understanding of topological orders. Some progress
has been made for certain simple cases. We found that all two-
dimensional (2D) Abelian topological orders can be classified
by integer K matrices.14–16 The 2D nonchiral topological
orders (which can be smoothly connected to time-reversal
and parity-symmetric states) are classified by spherical fu-
sion category.17–20 The recent realization of the relation
between topological order and long-range entanglement19

(defined through local unitary transformations21,22) allows us
to separate another simple class of gapped quantum phases—
symmetry-protected topological (SPT) phases. SPT phases are
gapped quantum phases with a certain symmetry, which can
all be smoothly connected to the same trivial product state
if we break the symmetry. A generic construction of bosonic
SPT phases in any dimension using the group cohomology
of the symmetry group was obtained in Refs. 23 and 24.
The constructed SPT phases include interacting bosonic
topological insulators and topological superconductors (and
much more).

Another type of simple system is the free-fermion system,
for which a classification of gapped quantum phases can

be obtained through K theory25–27 or a nonlinear σ model
of disordered fermions.28 They include the noninteracting
topological insulators29–35 and the noninteracting topologi-
cal superconductors.36–40 Most gapped quantum phases of
free-fermion systems are SPT phases protected by some
symmetries, such as topological insulators protected by the
time-reversal symmetry. However, some others have intrinsic
topological orders (i.e., stable even without any symmetry),
such as topological superconductors with no symmetry. Just
like the interacting topological ordered phases, the topological
phases for free fermions are also characterized by their gapless
boundary excitations. The boundary excitations play a key
role in the theory and experiments of free-fermion topological
phases.

For noninteracting fermion systems with time-reversal
(generated by T̂ ), charge-conjugation (generated by Ĉ), and/or
U (1) (generated by N̂ ) symmetries, the total symmetry
group may not simply be ZT

2 × ZC
2 × U (1). The group can

take different forms, depending on the different relations
between those symmetry operations, such as T̂ N̂ T̂ −1 = N̂

or T̂ N̂ T̂ −1 = −N̂ . As a result, the gapped phases of those
fermion systems with different symmetry groups have differ-
ent classifications. In this paper, we use Kitaev’s K-theory
approach to classify the gapped free-fermion phases for those
different symmetry groups. In Table I, we list some electron
systems and their full symmetry group Gf . In Tables II and III,
the ten classes25,28 of gapped free-fermion phases protected by
those many-body symmetry groups (and many other symmetry
groups) are listed. Here we have assumed that the fermions
form one irreducible representation of the full symmetry
group. The result will differ if the fermions contain several
distinct irreducible representations of the full symmetry group
(see Sec. III E). In Refs. 25 and 28, the ten classes of gapped
free-fermion phases are already associated with many different
many-body symmetries of electron systems. In this paper, we
generalize the results in Refs. 25 and 28 to more symmetry
groups.

We note that electron systems, with T̂ N̂ T̂ −1 = N̂ , only
realize a subset of the possible symmetry groups. The emergent
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TABLE I. Electron systems and their full symmetry groups Gf . The groups are defined in Table IV. The symmetry-group symbols have the
following meaning: for example, G++

−−(U,T ,C) is a symmetry group generated by N̂ [the U (1) fermion number conservation or spin rotation],
T̂ (the time reversal), and Ĉ (the charge conjugation or 180◦ spin rotation). The ± subscripts and superscripts describe the relations between
the transformations N̂ , T̂ , and/or Ĉ (see Table IV). Sometimes, when we describe the symmetry of a fermion system, we do not include the
fermion number parity transformation (−)N̂ in the symmetry group G. Here the full symmetry group Gf does include the fermion number
parity transformation (−)N̂ . So the full symmetry group of a fermion system with no symmetry is Gf = Z

f

2 generated by the fermion number
parity transformation. Gf is a Z

f

2 extension of G: G = Gf /Z
f

2 . Free-electron systems with symmetry G++
−−(U,T ,C) actually have a higher

symmetry G[SU (2),T ]. Similarly, free-electron systems with symmetry G−(U,C) actually have a higher symmetry SU (2).

Electron systems Full symmetry group Gf

Insulators with spin-orbital coupling and spin order (or non-coplanar spin order) U (1)
(iĉ†i n1 · σ ĉi′ + iĉ†j n2 · σ ĉj ′ + iĉ†kn3 · σ ĉk′ ) + (ĉ†i n1 · σ ĉi + ĉ

†
j n2 · σ ĉj + ĉ

†
kn3 · σ ĉk)

Superconductors with spin-orbital coupling and spin order (or non-coplanar spin order) none = Z
f

2

ĉ
†
i n1 · σ ĉi + ĉ

†
j n2 · σ ĉj + ĉ

†
kn3 · σ ĉk + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j )

Insulators with spin-orbital coupling iĉ†i n1 · σ ĉi′ + iĉ†j n2 · σ ĉj ′ + iĉ†kn3 · σ ĉk′ G−
−(U,T )

(symmetry: charge-conservation and time-reversal symmetries)

Superconductors with spin-orbital coupling and real pairing G−(T ) = Z4

iĉ†i n1 · σ ĉi′ + iĉ†j n2 · σ ĉj ′ + iĉ†kn3 · σ ĉk′ + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ) (symmetry: time-reversal symmetry)

Superconductors with Sz conserving spin-orbital coupling and real pairing G+
−(U,T ) = U (1) × ZT

2

iĉ†i σ
zĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ) (symmetry: time-reversal and Sz spin-rotation symmetries)

Superconductors with coplanar spin order and real pairing ĉ
†
i n1 · σ ĉi + ĉ

†
j n2 · σ ĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ) G+(T ) = ZT

2 × Z
f

2

(symmetry: a combined time-reversal and 180◦ spin-rotation symmetry)

Superconductors with real pairing and collinear spin order ĉ
†
i σ

zĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ) G−
+(U,T ) = U (1)�ZT

2

(symmetry: Sz spin rotation and a combined time-reversal and 180◦ Sy spin-rotation symmetry)

Insulators with coplanar spin order ĉ
†
i n1 · σ ĉi + ĉ

†
j n2 · σ ĉj G−

+(U,T ) = U (1) � ZT
2

(symmetry: charge-conservation and a combined time-reversal and 180◦ spin-rotation symmetries)

Superconductors with real triplet Sz = 0 pairing ĉ↑i ĉ↓j + ĉ↓i ĉ↑j G−−
++(U,T ,C)

(symmetry: a combined 180◦ Sy spin-rotation and time-reversal symmetry, a combined
180◦ Sy spin-rotation and charge-rotation symmetry, and Sz spin-rotation symmetry)

Superconductors with time-reversal, G++
−−(U,T ,C)

180◦ Sy spin-rotation, and Sz spin-rotation symmetries

Superconductors with real singlet pairing ĉ↑i ĉ↓j − ĉ↓i ĉ↑j G[SU (2),T ]
(symmetry: time-reversal and SU (2) spin-rotation symmetries)

Superconductors with 180◦ Sy spin-rotation and Sz spin-rotation symmetries G−(U,C)

Superconductors with complex singlet pairing eiθij (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ) SU (2)
(symmetry: SU (2) spin-rotation symmetry)

Insulators with spin-orbital coupling and intersublattice G−+
−−(U,T ,C)

hopping iĉ†iA n1 · σ ĉiB + iĉ†jA
n2 · σ ĉjB

+ iĉ†kA
n3 · σ ĉkB

(symmetry: charge-conservation, time-reversal, and charge-conjugation symmetries)

fermion (such as the spinon in spin liquid) may realize
other possible symmetry groups, since their symmetries are
described by projective symmetry groups which can be
different for different topologically ordered states.41

The p = 0 line in Table II classifies two types of electron
systems: (1) insulators with only fermion number conservation
(which includes integer quantum Hall states) and (2) super-
conductors with only Sz spin-rotation symmetry, which can
be realized by superconductors with collinear spin order. The

p = 1 line in Table II classifies superconductors with only
time-reversal and Sz spin-rotation symmetry [full symmetry
group G+

−(U,T )], which can be realized by superconductors
with real pairing and Sz conserving spin-orbital coupling.

In Table III, the p = 0 column classifies electronic in-
sulators with coplanar spin order [full symmetry group
G−

+(U,T ), which contains the charge conservation and a
time-reversal symmetry]. The p = 1 column classifies elec-
tronic superconductors with coplanar spin order and real
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TABLE II. Classification of the gapped phases of noninteracting fermions in d-dimensional space, for some symmetries. The space of the
gapped states is given by Cp+d mod 2, where p depends on the symmetry group. The distinct phases are given by π0(Cp+d mod 2). “0” means that
only trivial phases exist. Z means that nontrivial phases are labeled by nonzero integers and the trivial phase is labeled by 0.

Symmetry Cp|for d=0 p\d 0 1 2 3 4 5 6 7 Example

U (1)
G−(C)

U (l+m)
U (l)×U (m) × Z 0 Z 0 Z 0 Z 0 Z 0

(Chern)
insulator

Superconductor
with collinear
spin order

G+
±(U,T )

G+
−−(T ,C)

G+
+−(T ,C)

U (n) 1 0 Z 0 Z 0 Z 0 Z
Superconductor with realpairing
and Sz conserving
spin-orbital coupling

pairing [full symmetry group G+(T ), which contains a time-
reversal symmetry]. The p = 2 column classifies electronic
superconductors with non-coplanar spin order (full symme-
try group “none”). The p = 3 column classifies electronic
superconductors with spin-orbital coupling and real pairing
[full symmetry group G−(T ), which contains the time-reversal
symmetry]. The p = 4 column classifies electronic insulators
with spin-orbital coupling [full symmetry group G−

−(U,T ),
which contains the charge-conservation and the time-reversal
symmetry). The p = 5 column classifies electronic insulators
on bipartite lattices with spin-orbital coupling and only
intersublattice hopping [full symmetry group G−+

−−(U,T ,C),
which contains the charge-conservation, the time-reversal, and
a charge-conjugation symmetry). The p = 6 column classifies
electronic spin-singlet superconductors with complex pairing
[full symmetry group SU (2)]. The p = 7 column classifies
electronic spin-singlet superconductors with real pairing (full
symmetry group G[SU (2),T ], which contains the SU (2) spin
rotation and time-reversal symmetry).42

In this paper, we first discuss a simpler case where fermion
systems have only U (1) symmetry. Then we discuss a more
complicated case where fermion systems can have time-

reversal, charge-conjugation, and/or U (1) symmetries. The
classification of the gapped phases with translation symmetry
and the classification of nontrivial defects with protected
gapless excitations are also studied.

II. GAPPED FREE FERMION PHASES:
THE COMPLEX CLASSES

A. The d = 0 case

Let us first consider a zero-dimensional free fermion system
with one orbital. How many different gapped phases do we
have for such a system? The answer is two. The two different
gapped phases are labeled by m = 0,1: the m = 0 gapped
phase corresponds to the empty orbital, while the m = 1
gapped phase corresponds to the occupied orbital. But “two”
is not the complete answer. We can always add occupied and
empty orbitals to the system and still regard the extended
system as in the same gapped phase. So we should consider
a system with n orbitals in the n → ∞ limit. In this case, the
zero-dimensional gapped phases are labeled by an integer m

in Z, where m (with a possible constant shift) still corresponds
to the number of occupied orbitals.

TABLE III. Classification of gapped phases of noninteracting fermions in d spatial dimensions, for some symmetries. The space of the
gapped states is given by Rp−d mod 8, where p depends on the symmetry group. The phases are classified by π0(Rp−d mod 8). Here Z2 means that
there is one nontrivial phase and one trivial phase labeled by 1 and 0.

Symmetry
G−

+(U,T )
G−

+−(T ,C)

G+(T )
G+

++(T ,C)
G−−

++(U,T ,C)
G−+

++(U,T ,C)
G+−

−+(U,T ,C)
G++

++(U,T ,C)

None
G+(C)

G−
++(T ,C)

G−
−+(T ,C)

G+(U,C)

G−(T )
G+

−+(T ,C)
G−−

−+(U,T ,C)
G−+

−+(U,T ,C)
G+−

++(U,T ,C)
G++

−+(U,T ,C)

G−
−(U,T )

G−
−−(T ,C)

G−−
−−(U,T ,C)

G−+
−−(U,T ,C)

G+−
−−(U,T ,C)

G++
+−(U,T ,C)

G−(U,C)
SU (2)

G−−
+−(U,T ,C)

G−+
+−(U,T ,C)

G+−
+−(U,T ,C)

G++
−−(U,T ,C)

G[SU (2),T ]

Rp |for d=0
O(l+m)

O(l)×O(m) × Z O(n) O(2n)
U (n)

U (2n)
Sp(n)

Sp(l+m)
Sp(l)×Sp(m) × Z Sp(n) Sp(n)

U (n)
U (n)
O(n)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

d = 0 Z Z2 Z2 0 Z 0 0 0
d = 1 0 Z Z2 Z2 0 Z 0 0
d = 2 0 0 Z Z2 Z2 0 Z 0
d = 3 0 0 0 Z Z2 Z2 0 Z

d = 4 Z 0 0 0 Z Z2 Z2 0
d = 5 0 Z 0 0 0 Z Z2 Z2

d = 6 Z2 0 Z 0 0 0 Z Z2

d = 7 Z2 Z2 0 Z 0 0 0 Z

Example
Insulator
with coplanar
spin order

Superconductor
with coplanar
spin order

Superconductor
Superconductor
with time
reversal

Insulator
with time
reversal

Insulator
with time
reversal and
intersublattice
hopping

Spin
singlet
superconductor

Spin
singlet
superconductor
with time
reversal
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Now let us obtain the above result using a fancier math-
ematical setup. The single-body Hamiltonian of the n-orbital
system is given by the n × n Hermitian matrix H . If the orbitals
below a certain energy are filled, we can deform the energies of
those orbitals to −1 and deform the energies of other orbitals
to +1 without closing the energy gap. So, without losing
generality, we can assume H to satisfy

H 2 = 1. (1)

Such a Hermitian matrix has the form

H = Un×n

(
Il×l 0

0 −Im×m

)
U

†
n×n, (2)

where n = l + m and Un×ninU (n) is an n × n unitary matrix.
But Un×n is not a one-to-one labeling of the Hermitian matrix
satisfying H 2 = 1. To obtain a one-to-one labeling, we note
that (Il×l 0

0 −Im×m
) is invariant under the unitary transformation

(Vl×l 0
0 Wm×m

) with Vl×l ∈ U (l) and Wm×m ∈ U (m). Thus, the

space C0 of the Hermitian matrix satisfying H 2 = 1 is given
by ∪mU (l + m)/U (l) × U (m), which, in the n → ∞ limit,
has the form

C0 ≡ U (l + m)

U (l) × U (m)
× Z. (3)

Clearly π0(C0) = Z, which recovers the result obtained above
using a simple argument: the zero-dimensional gapped phases
of free conserved fermions are labeled by integers Z.

B. The properties of classifying spaces

The space C0 is the complex Grassmannian—the space
formed by the subspaces of (infinite-dimensional) complex
vector space. It is also the space of the Hermitian matrix
satisfying H 2 = 1. Actually, C0 is a part of a sequence. More
generally, a space Cp can be defined by first picking p fixed
Hermitian matrices γi , i = 1,2, . . . ,p, satisfying

γiγj + γjγi = 2δij . (4)

Then Cp is the space of the Hermitian matrix satisfying

H 2 = 1, γiH = −Hγi, i = 1, . . . ,p. (5)

To find the C1 space, let us choose γ1 = In×n that satisfy
γ 2

1 = 1. But for such a choice, we cannot find any H that
satisfies γ1H = −Hγ1. Actually, we have a condition on the
choice of γ1. We must choose a γ1 such that γ1H = −Hγ1 and
H 2 = 1 has a solution. So we should choose γ1 = σx ⊗ In×n.
We note that γ1 is invariant under the following unitary trans-
formations: eiσx⊗An×neiσ 0⊗Bn×n ∈ U (n) × U (n) (where An×n

and Bn×n are Hermitian matrices). Then H satisfying H 2 = 1
and γ1H + Hγ1 = 0 has the form

H = eiσx⊗An×neiσ 0⊗Bn×n(σ z ⊗ In×n)e−iσ 0⊗Bn×ne−iσx⊗An×n ,

(6)

whose positive and negative eigenvalues are paired. We see
that the space C1 is U (n) × U (n)/U (n) = U (n).

To construct the C2 space, we can choose γ1 = σx ⊗ In×n

and γ2 = σy ⊗ In×n. Then H satisfying H 2 = 1 and γiH +
Hγi = 0, i = 1,2, has the form

H = σ 0 ⊗ Un×n

[
σ z ⊗

(
Il×l 0

0 −Im×m

)]
σ 0 ⊗ U

†
n×n, (7)

where n = l + m and Un×n ∈ U (n). We see that the space
C2 = C0.

To construct the C3 space, we can choose γ1 = σx ⊗ In×n,
γ2 = σy ⊗ In×n, and γ3 = σ z ⊗ In×n. But for such a choice,
the equations γiH + Hγi = 0, i = 1,2,3, and H 2 = 1 has no
solution for H . So we need to impose the following condition
on γi’s:

The equations γiH + Hγi = 0, H2 = 1
(8)

have a solution for H.

(Later, we see that such a condition has an amazing geometric
origin.) Let us choose γ1 = σx ⊗ σx ⊗ In×n, γ2 = σy ⊗ σx ⊗
In×n, and γ3 = σ z ⊗ σx ⊗ In×n instead. Then H satisfying
H 2 = 1 and γiH + Hγi = 0, i = 1,2,3, has the form

H = eiσ 0⊗σx⊗An×neiσ 0⊗σ 0⊗Bn×n(σ 0 ⊗ σ z ⊗ In×n)

× e−iσ 0⊗σ 0⊗Bn×ne−iσ 0⊗σx⊗An×n . (9)

We find that C3 = C1.
Now, it is not hard to see that Cp = Cp+2, which leads to

πd (Cp) = πd (Cp+2). Thus,

π0(Cp) =
{
Z, p = 0 mod 2,

{0}, p = 1 mod 2.
(10)

C. The d �= 0 cases

Next we consider d-dimensional free conserved fermion
systems and their gapped ground states. Note that the only
symmetry that we have is the U (1) symmetry associated with
the fermion number conservation. We do not have translation
symmetry and other symmetries.

To be more precise, our d-dimensional space is a ball with
no nontrivial topology. Since the systems have a boundary, here
we can only require that the “bulk” gap of the fermion systems
is nonzero. The free-fermion system may have protected
gapless excitations at the boundary. (Requiring the fermion
systems to be even gapped at the boundary only gives us
trivial gapped phases.) We call the free-fermion systems that
are gapped only inside of the d-dimensional ball as “bulk”
gapped fermion systems. A bulk gapped fermion system may
or may not be gapped at the boundary.

Kitaev has shown that the space CH
d of such bulk gapped

free-fermion systems is homotopically equivalent to the space
CM

d of mass matrices of a d-dimensional Dirac equation:
πn(CH

d ) = πn(CM
d ).25 In the following, we give a intuitive

explanation of the result.
To start, let us first assume that the fermion system has

translation symmetry and charge-conjugation symmetry. We
also assume that its energy bands have some Dirac points at
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zero energy and there are no other zero-energy states in the
Brillouin zone. So if we fill the negative energy bands, the
single-body gapless excitations in the system are described
by the Hermitian matrix H , whose continuous limit has the
form

H =
d∑

i=1

γi i∂i, (11)

where we have folded all the Dirac points to the k = 0 point.
Without losing generality, we have also assumed that all the
Dirac points have the same velocity. Since i∂i is Hermitian,
γi , i = 1, . . . ,d, are the Hermitian γ matrices (of infinite
dimension) that satisfy Eq. (4).

When d = 1, do we have a system that has γ1 = In×n? The
answer is no. Such a system will have n right-moving chiral
modes that cannot be realized by any pure one-dimensional
systems with short-ranged hopping. In fact γ1 must have the
form γ1 = (Il×l 0

0 −Im×m
) with l = m (the same number of right-

and left-moving modes). So the allowed γ1 always satisfies the
condition that H 2 = 1 and γ1H + Hγ1 = 0 has a solution for
H . We see that the extra condition Eq. (8) on γi has a very
physical meaning.

Now we add perturbations that may break the translation
symmetry. We like to know how many different ways there are
to gap the Dirac point. The Dirac points can be fully gapped
by the “mass” matrix M that satisfies

γiM + Mγi = 0, M† = M. (12)

To fully gap the Dirac points, M must have no zero eigenvalues.
Without losing generality, we may also assume that M2 = 1.
(Since the Dirac points may have different crystal momenta
before the folding to k = 0, we need perturbations that break
the translation symmetry to generate a generic mass matrix
that may mix Dirac points at different crystal momenta.) The
space CM

d of such mass matrices is nothing but Cd introduced
before: CM

d = Cd .
So the different ways to gap the Dirac point form a space

Cd . The different disconnected components of Cd represent
different gapped phases of the free fermions. Thus, the gapped
phases of the conserved free fermions in d dimensions are
classified by π0(Cd ), which is Z for even d and 0 for odd d.
The nontrivial phases at d = 2 are labeled by Z, which are
the integer quantum Hall states. The results are summarized in
Table II.

III. GAPPED FREE-FERMION PHASES:
THE REAL CLASSES

When the fermion number is not conserved and/or when
there is a time-reversal symmetry, the gapped phases of
noninteracting fermions are classified differently. However,
using the idea and approaches similar to the above discussion,
we can also obtain a classification. Instead of considering
Hermitian matrices that satisfy certain conditions, we just need
to consider real antisymmetric matrices that satisfy certain
conditions.

A. The d = 0 case: The symmetry groups

Again, we start with d = 0 dimensions. In this case, a free-
fermion system with n orbitals is described by the following
quadratic Hamiltonian:

Ĥ =
∑
ij

Hij ĉ
†
i ĉj +

∑
ij

[Gij ĉi ĉj + H.c.], i,j = 1, . . . ,n.

(13)

Introducing the Majorana fermion operator η̂I , I = 1, . . . ,2n,

{η̂I ,η̂J } = 2δIJ , η̂
†
I = η̂I , (14)

to express the complex fermion operator ĉi ,

ĉi = 1
2 (η̂2i + iη2i+1), (15)

we can rewrite Ĥ as

Ĥ = i

4

∑
IJ

AIJ η̂I η̂J , (16)

where A is a real antisymmetric matrix. For example, for a
one-orbital Hamiltonian Ĥ = ε(ĉ†ĉ − 1

2 ), we get A = (0 −ε
ε 0 ).

If the fermion number is conserved, Ĥ commutes with the
fermion number operator

N̂ ≡
∑

i

(
ĉ
†
i ĉi − 1

2

)
= i

4

∑
IJ

QIJ η̂I η̂J , (17)

where

Q = ε ⊗ I, Q2 = −1, ε ≡ −iσy. (18)

[Ĥ ,N̂ ] = 0 requires that

[A,Q] = 0. (19)

Such a matrix A has the form A = σ 0 ⊗ Ha + ε ⊗ Hs , where
Hs is symmetric and Ha antisymmetric. We can convert such
an antisymmetric matrix A into a Hermitian matrix H = Hs +
iHa and reduce the problem to the one discussed before.

The time-reversal transformation T̂ is antiunitary: T̂ iT̂ −1 =
−i. Since T̂ does not change the fermion numbers, therefore,
T̂ ĉi T̂

−1 = Uij ĉj , where U is a unitary matrix. In terms of the
Majorana fermions, we have

T̂ η̂2i T̂
−1 = ReUij η̂2j − ImUij η̂2j+1,

(20)
T̂ η̂2i+1T̂

−1 = −ReUij η̂2j+1 − ImUij η̂2j .

Therefore, we have

T̂ η̂i T̂
−1 = Tij η̂j , T = σ 3 ⊗ ReU − σ 1 ⊗ ImU. (21)

We see that, in the Majorana fermion basis, U → σ 3 ⊗ ReU −
σ 1 ⊗ ImU = T and i → ε ⊗ I . We indeed have T (ε ⊗ I ) =
−T (ε ⊗ I ).

For fermion systems, we may have T̂ 2 = sN̂
T , sT = ±. In

fact sT = − for electron systems. This implies that T̂ 2ĉi T̂
−2 =

sT ĉi and T 2 = sT . The time-reversal invariance T̂ Ĥ T̂ −1 = Ĥ
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implies that T �AT = −A, where T � is the transpose of T .
We can show that
T �T = (σ 3 ⊗ ReU † − σ 1 ⊗ ImU †)(σ 3 ⊗ ReU + σ 1 ⊗ ImU )

= σ 0 ⊗ (ReU †ReU − ImU †ImU )

− ε ⊗ (ReU †ImU + ImU †ReU )

= σ 0 ⊗ I, (22)

where we have used ReU †ReU − ImU †ImU = I and
ReU †ImU + ImU †ReU = 0 for unitary matrix U . Therefore,
T � = T −1 and

AT = −T A, T 2 = sT . (23)

Also, for fermion systems, the time-reversal transformation T̂

and the U (1) transformation N̂ may have a nontrivial relation:
T̂ eiθN̂ T̂ −1 = esUT iθN̂ , sUT = ±, or T̂ N̂ T̂ −1 = −sUT N̂ . This
gives us

T Q = sUT QT . (24)

The charge-conjugation transformation Ĉ is unitary. Since
Ĉ changes ĉi to ĉ

†
i , then Ĉĉi Ĉ

−1 = Uij ĉ
†
j , where U is a unitary

matrix. In terms of the Majorana fermions, we have

Ĉη̂2i Ĉ
−1 = ReUij η̂2j + ImUij η̂2j+1,

(25)
Ĉη̂2i+1Ĉ

−1 = −ReUij η̂2j+1 + ImUij η̂2j .

Therefore, we have

Ĉη̂i Ĉ
−1 = Cij η̂j , C = σ 3 ⊗ ReU + σ 1 ⊗ ImU. (26)

Again, we can show that C� = C−1.
For fermion systems, we may have Ĉ2 = sN̂

C , sC = ±,
which implies that Ĉ2ĉi Ĉ

−2 = sCĉi and C2 = sC . The charge-
conjugation invariance ĈĤ Ĉ−1 = Ĥ implies that A satisfies

CA = CA, C2 = sC. (27)

Since ĈN̂Ĉ−1 = −N̂ , we have

CQ = −QC. (28)

However, the commutation relation between T̂ and Ĉ has two
choices: T̂ Ĉ = sN̂

T CĈT̂ , sT C = ±; we have

CT = sT CT C. (29)

We see that when we say a system has U (1), time-reversal,
and/or charge-conjugation symmetries, we still do not know
what is the actual symmetry group of the system, since
those symmetry operations may have different relations as
described by the signs of sT , sC , sUT , and sT C , which lead
to different full symmetry groups. Because symmetry plays a
key role in our classification, we cannot obtain a classification
without specifying the symmetry groups. We have discussed
the possible relations among various symmetry operations. In
Table IV, we list the corresponding symmetry groups.

We like to point out that sometimes, when we describe
the symmetry of a fermion system, we do not include the
fermion number parity transformation (−)N̂ in the symmetry
group G. However, in this paper, we use the full symmetry
group Gf to describe the symmetry of a fermion system. The
full symmetry group Gf does include the fermion number
parity transformation (−)N̂ . So the full symmetry group of a
fermion system with no symmetry is Gf = Z

f

2 generated by
the fermion number parity transformation. Gf is actually a

TABLE IV. Different relations between symmetry transforma-
tions give rise to 36 different groups that contain U (1) (represented
by U ), time-reversal (T ), and/or charge-conjugation (C) symmetries.

Symmetry groups Relations

U (1), SU (2)

GsC (C) Ĉ2 = sN̂
C , sC = ±

GsC (U,C) Ĉ2 = sN̂
C , ĈeiθN̂ Ĉ−1 = e−iθN̂ , sC = ±

GsT (T ) T̂ 2 = sN̂
T , sT = ±.

GsUT
sT

(U,T ) T̂ eiθN̂ T̂ −1 = esUT iθN̂ , T̂ 2 = sN̂
T , sUT ,sT = ±

GsT C
sT sC

(T ,C) T̂ 2 = sN̂
T , ĈT̂ = (sN̂

T C)T̂ Ĉ,
sT C,sT ,sC = ±

GsUT sT C
sT sC

(U,T ,C) ĈeiθN̂ Ĉ−1 = e−iθN̂ , T̂ eiθN̂ T̂ −1 = esUT iθN̂ ,
T̂ 2 = sN̂

T ,
Ĉ2 = sN̂

C , ĈT̂ = (sN̂
T C)T̂ Ĉ, sT ,sC,sUT ,sT C = ±

Z
f

2 extension of G: G = Gf /Z
f

2 . It is a projective symmetry
group discussed in Ref. 41.

In the following, we study the symmetries of various
electron systems to see which symmetry groups listed in
Table IV can be realized by electron systems.

For insulators with non-coplanar spin order δH = ĉ
†
i n1 ·

σ ĉi + ĉ
†
j n2 · σ ĉj + ĉ

†
kn3 · σ ĉk , the full symmetry group is

Gf = U (1) generated by the total charge N̂C .
For superconductors with non-coplanar spin order δH =

ĉ
†
i ň1 · σ ĉi + ĉ

†
j n2 · σ ĉj + ĉ

†
kn3 · σ ĉk + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ), the

full symmetry group is reduced to Gf = Z
f

2 generated by
the fermion number parity operator Pf = (−)N̂C . We note that
the full symmetry group of any fermion system contains Z

f

2 as
a subgroup. So we usually use the group Gf /Z

f

2 to describe
the symmetry of the fermion system, and we say there is no
symmetry for superconductors with non-coplanar spin order.
But in this paper, we use the full symmetry group Gf to
describe the symmetry of fermion systems.

For insulators with spin-orbital coupling δH = iĉ†i n1 ·
σ ĉi ′ + iĉ†j n2 · σ ĉj ′ + iĉ†kn3 · σ ĉk′ , they have the charge-

conservation (N̂C) and the time-reversal (T̂phy) symmetries.
The time-reversal symmetry is defined by

T̂phyĉα,i T̂
−1

phy = εαβ ĉβ,i , T̂phyĉ
†
α,i T̂

−1
phy = εαβ ĉ

†
β,i . (30)

We can show that

T̂phyĉ
†
i σ ĉj T̂

−1
phy = −ĉ

†
i σ ĉj ,

(31)
T̂phyN̂CT̂ −1

phy = N̂C, T̂ 2
phy = (−)N̂C

Thus, δH is invariant under T̂phy and eiθN̂C . Let T̂ = T̂phy and
N̂ = N̂C ; we find that

T̂ eiθN̂ T̂ −1 = e−iθN̂ , T̂ 2 = (−)N̂ , (32)

which define the full symmetry group G−
−(U,T ) of an electron

insulator with spin-orbital coupling.
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For superconductors with spin-orbital coupling and
real pairing δH = iĉ†i n1 · σ ĉi ′ + iĉ†j n2 · σ ĉj ′ + iĉ†kn3 · σ ĉk′ +
(ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ), they have the time-reversal symmetry T̂phy.
Setting T̂ = T̂phy and N̂ = N̂C , we find

T̂ 2 = (−)N̂ , (33)

which defines the full symmetry group G+
−(U,T ) = Z4 of

superconductors with spin-orbital coupling and real pairing. -
For superconductors with Sz conserving spin-orbital coupling
and real pairing δH = iĉ†i σ

zĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ), they have
the time-reversal T̂phy and Sz spin-rotation symmetries. Setting
T̂ = T̂phy and N̂ = 2Ŝz, we find

T̂ eiθN̂ T̂ −1 = eiθN̂ , T̂ 2 = (−)N̂ , (34)

which defines the full symmetry group G+
−(U,T ) = U (1) ×

Z2 of superconductors with Sz conserving spin-orbital cou-
pling and real pairing.

For superconductors with real pairing and coplanar spin
order δH = ĉ

†
i n1 · σ ĉi + ĉ

†
j n2 · σ ĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ), they

have a combined time-reversal and 180◦ spin-rotation sym-
metry. The spin rotation is generated by Sa = ∑

i
1
2c

†
i σ

aci ,
a = x,y,z. We have

T̂phyŜaT̂
−1

phy = −Ŝa. (35)

The Hamiltonian δH is invariant under T̂ = eiπŜy

T̂phy. Since
T̂ 2 = 1, the full symmetry group of superconductors with real
pairing and coplanar spin order is G+(T ) = Z2 × Z

f

2 .
For superconductors with real pairing and collinear spin

order δH = ĉ
†
i σ

zĉj + (ĉ↑i ĉ↓j − ĉ↓i ĉ↑j ), they have the Sz spin
rotation and a combined time-reversal and 180◦ Sy spin-
rotation symmetry. The Hamiltonian δH is invariant under
T̂ = eiπŜy

T̂phy and Sz spin rotation N̂ = 2Ŝz. We find that

T̂ eiθN̂ T̂ −1 = e−iθN̂ , T̂ 2 = (−)N̂ , (36)

which define the full symmetry group G−
+(U,T ) of supercon-

ductors with real pairing and collinear spin order.
For insulators with coplanar spin order ĉ

†
i n1 · σ ĉi + ĉ

†
j n2 ·

σ ĉj , they have the charge-conservation and a combined time-
reversal and 180◦ spin-rotation symmetries. The Hamiltonian
δH is invariant under T̂ = eiπŜy

T̂phy and the charge rotation
N̂ = N̂C . We find that

T̂ eiθN̂ T̂ −1 = e−iθN̂ , T̂ 2 = (−)N̂ , (37)

which define the full symmetry group G−
+(U,T ) of insulators

with coplanar spin order.
For superconductors with real triplet Sz = 0 pairing δH =

ĉ↑i ĉ↓j + ĉ↓i ĉ↑j , they have a combined time-reversal and
charge-rotation symmetry, a combined 180◦ Sy spin-rotation
and charge-rotation symmetry, and the Sz spin-rotation sym-
metry. The Hamiltonian δH is invariant under T̂ = ei π

2 N̂C T̂phy,
Ĉ = ei π

2 N̂C eiπŜy , and the Sz spin rotation N̂ = 2Ŝz. We find
that

ĈeiθN̂ Ĉ−1 = e−iθN̂ , T̂ eiθN̂ T̂ −1 = eiθN̂ ,
(38)

T̂ 2 = 1, Ĉ2 = 1, ĈT̂ = (−)N̂ T̂ Ĉ,

which define the full symmetry group G−−
++(U,T ,C) of

superconductors with real triplet Sz = 0 pairing.
For superconductors with real triplet Sz = 0 pairing and

collinear spin order δH = ĉiσ
zci + (ĉ↑i ĉ↓j + ĉ↓i ĉ↑j ), they

have a combined time-reversal and 180◦ Sy spin-rotation sym-
metry, and the Sz spin-rotation symmetry. The Hamiltonian
δH is invariant under T̂ = eiπŜy T̂phy and the Sz spin rotation
N̂ = 2Ŝz. We find that

T̂ eiθN̂ T̂ −1 = e−iθN̂ , T̂ 2 = 1, (39)

which define the full symmetry group G−
+(U,T ) of supercon-

ductors with real triplet Sz = 0 pairing and collinear spin order.
For superconductors with the time-reversal, the 180◦ Sy

spin-rotation, and the Sz spin-rotation symmetries, the Hamil-
tonian is invariant under T̂ = T̂phy, Ĉ = eiπŜy , and N̂ = 2Ŝz.
We find that

ĈeiθN̂ Ĉ−1 = e−iθN̂ , T̂ eiθN̂ T̂ −1 = eiθN̂ ,
(40)

T̂ 2 = Ĉ2 = (−)N̂ , ĈT̂ = T̂ Ĉ,

which define the full symmetry group G++
−−(U,T ,C) of super-

conductors with the time-reversal, the 180◦ Sy spin-rotation,
and the Sz spin-rotation symmetries. For free electrons with the
180◦ Sy spin rotation, and the Sz spin-rotation symmetries, they
actually have the full SU (2) spin-rotation symmetry. So the
above systems are also superconductors with real pairing and
SU (2) spin-rotation symmetry. Similarly, for superconductors
with complex pairing and SU (2) spin-rotation symmetry, the
symmetry group is SU (2), or G−(U,C).

For insulators with spin-orbital coupling and only
intersublattice hopping H = iĉ†iAn1 · σ ĉiB + iĉ†jA

n2 · σ ĉjB
+

iĉ†kA
n3 · σ ĉkB

, they have charge-conservation, time-reversal,
and deformed charge-conjugation symmetries. The charge-
conjugation transformation Ĉphy is defined as

Ĉphyĉα,i Ĉ
−1
phy = εαβ ĉ

†
β,i , Ĉphyĉ

†
α,i Ĉ

−1
phy = εαβ ĉβ,i . (41)

We find that

Ĉphyĉ
†
i σ ĉj Ĉ

−1
phy = ĉ

†
i σ ĉj , ĈphyT̂phy = T̂phyĈphy,

(42)
ĈphyN̂CĈ−1

phy = −N̂C, Ĉ2
phy = (−)N̂C

The above Hamiltonian is invariant under T̂ = T̂phy, N̂ = N̂C ,
and Ĉ = (−)N̂B Ĉphy, where N̂B is the number of electrons on
the B sublattice. We find

ĈeiθN̂ Ĉ−1 = e−iθN̂ , T̂ eiθN̂ T̂ −1 = e−iθN̂ ,
(43)

T̂ 2 = (−)N̂ , Ĉ2 = (−)N̂ , ĈT̂ = T̂ Ĉ,

which define the full symmetry group G−+
−−(U,T ,C) of

insulators with spin-orbital coupling and only intersublattice
hopping. The above results for electron systems and their full
symmetry groups Gf are summarized in Table I.

B. The d = 0 case: The classifying spaces

The Hermitian matrix iA describes single-body excitations
above the free-fermion ground state. We note that the eigen-
values of iA are ±εi . The positive eigenvalues |εi | correspond
to the single-body excitation energies above the many-body
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ground state. The minimal |εi | represents the excitation-energy
gap of Ĥ above the ground state (the ground state is the lowest
energy state of Ĥ ). So, if we are considering gapped systems,
|εi | is always nonzero. We can shift all εi to ±1 without closing
the gap and change the (matter) phase of the state. Thus, we
can set A2 = −1.

In the presence of symmetry, A should also satisfy some
other conditions. The space formed by all those A’s is called the
classifying space. Clearly, the classifying space is determined
by the full symmetry group Gf . In this section, we calculate
the classifying spaces for some simple groups.

If there is no symmetry, then the real antisymmetric matrix
A satisfies

A2 = −1. (44)

The space of those matrices is denoted as R0
0, which is the

classifying space for a trivial symmetry group.
If there is only charge-conjugation symmetry [full symme-

try group = GsC
(C)], then the real antisymmetric matrix A

satisfies

A2 = −1, AC = CA, C2 = sC. (45)

For sC = +, since C commutes with A and C is symmetric,
we can always restrict ourselves in an eigenspace of C and C

can be dropped. Thus, the space of the matrices is R0
0, the same

as before. For sC = −, we can assume C = ε ⊗ I . In this case,
A has the form A = σ 0 ⊗ Ha + ε ⊗ Hs , where Hs = HT

s and
Ha = −HT

a . Thus, we can convert A into a Hermitian matrix
H = Hs + iHa , and the space of the matrices is C0.

If there are U (1) and charge-conjugation symmetries [full
symmetry group = GsC

(U,C)], then the real antisymmetric
matrix A satisfies

A2 = −1, AQ = QA, AC = CA, QC = −CQ,

Q2 = −1, C2 = sC. (46)

For sC = +, we can assume C = σ z ⊗ I and Q = ε ⊗ I .
Since Q and C commute with A, we find that A must have
the form A = σ 0 ⊗ Ã, with Ã2 = −1. Thus, the space of the
matrices Ã, and hence A, is R0

0.
For sC = −, we can assume C = ε ⊗ σx ⊗ I and

Q = ε ⊗ σ z ⊗ I . We find that A must have the
form A = σ 0 ⊗ σ 0 ⊗ H0 + ε ⊗ σ 0 ⊗ H1 + σ z ⊗ ε ⊗ H2 +
σx ⊗ ε ⊗ H3, where H0 = −HT

0 and Hi = HT
i , i = 1,2,3.

Now, we can view σ 0 ⊗ σ 0 as 1, ε ⊗ σ 0 as i, σ z ⊗ ε as j,
and σx ⊗ ε as k. We find that i,j,k satisfy the quaternion
algebra. Thus, A can be mapped into a quaternion matrix H =
H0 + iH1 + jH2 + kH3 satisfying H † = −H and H 2 = −1.
The quaternion matrices that satisfy the above two conditions
have the form

H = eXn×n iIn×ne
−Xn×n , (47)

where X
†
n×n = −Xn×n is a quaternion matrix. eXn×n form the

group Sp(n). However, the transformations eAn×n+iBn×n keeps
iIn×n unchanged, where An×n is a real antisymmetric matrix
and Bn×n is a real symmetric matrix. eAn×n+iBn×n form the group
U (n). Thus, the space of the quaternion matrices that satisfy
the above two conditions is given by Sp(n)/U (n). Such a space
is the space R6, which is introduced later.

When sC = −1, we can view Q as the generator of Ŝz

spin rotation, and C as the generator of Ŝx spin rotation
acting on spin-1/2 fermions. In fact eθzQ and eθxC in this
case generate the full SU (2) group. So when sC = −, the free
spin-1/2 fermions with U (1) � ZC

2 symmetry actually have
the full SU (2) spin-rotation symmetry. Therefore, G−(U,C) ∼
SU (2).

If there is only the time-reversal symmetry [full symmetry
group = GsT

(T )], then A satisfies

A2 = −1, Aρ1 + ρ1A = 0, ρ2
1 = sT , ρ1 = T . (48)

The space of those matrices is denoted as R1
0 for sT = −1 and

R0
1 for sT = 1.
If there are time-reversal and U (1) symmetries [full

symmetry group = GsUT
sT

(U,T )], then for sUT = −, A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = sT , ρ2

2 = sT ,

ρ1 = T , ρ2 = T Q. (49)

The space of those matrices is denoted as R0
2 for sT = + and

R2
0 for sT = −.
For sUT = +, Q commutes with both A and T . Since Q2 =

−1, we can treat Q as the imaginary number i and convert
both A and T to complex matrices. To see this, let us choose
a basis in which Q has a form Q = ε ⊗ I . In this basis A and
T become A = σ 0 ⊗ A2 + ε ⊗ A1 and T = σ 0 ⊗ T1 + ε ⊗
T2, where A1 is symmetric and A2 is antisymmetric. Let us
introduce complex matrices H = −A1 + iA2 and T̃ = T1 +
iT2 for sT = + or T̃ = −T2 + iT1 for sT = −. From A2 = −1,
T 2 = sT , and AT = −T A, we find

H 2 = 1, H T̃ + T̃ H = 0, T̃ 2 = 1. (50)

Also AT = −A allows us to show H † = H . For a fixed T̃ , the
space formed by H ’s that satisfy the above conditions is C1

introduced before. This allows us to show that the space of the
corresponding matrices A is C1 for sT = ±, sUT = +.

If there are time-reversal and charge-conjugation symme-
tries [full symmetry group = GsT C

sT sC
(T ,C)], then for sT C = −,

A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = sT , ρ2

2 = −sT sC,

ρ1 = T , ρ2 = T C. (51)

The space of the matrices A is R1
1 for sT = +, sC = +; R0

2 for
sT = +, sC = −; R1

1 for sT = −, sC = +; and R2
0 for sT = −,

sC = −. For sT C = +, C will commute with both A and T .
We find space of the matrices A to be R0

1 for sT = +, sC = +;
R1

0 for sT = −, sC = +; and C1 for sT = ±, sC = −.
If there are U (1), time-reversal, and charge-conjugation

symmetries [full symmetry group = GsUT sT C
sT sC

(U,T ,C)], then
for sT C = sUT = −, A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = ρ2

2 = sT , ρ2
3 = −sT sC,

ρ1 = T , ρ2 = T Q, ρ3 = T C. (52)

The space of the matrices A is R1
2 for sT = +, sC = +; R0

3 for
sT = +, sC = −; R2

1 for sT = −, sC = +; and R3
0 for sT = −,

sC = −.
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For sUT = −, sT C = +, A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = ρ2

2 = sT , ρ2
3 = −sT sC,

ρ1 = T , ρ2 = T Q, ρ3 = T QC. (53)

The space of the matrices A is R1
2 for sT = +, sC = +; R0

3 for
sT = +, sC = −; R2

1 for sT = −, sC = +; and R3
0 for sT = −,

sC = −.
For sUT = +, sT C = −, A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = sT , ρ2

2 = ρ2
3 = −sT sC,

ρ1 = T , ρ2 = T C, ρ3 = T CQ. (54)

The space of the matrices A is R2
1 for sT = +, sC = +; R0

3 for
sT = +, sC = −; R1

2 for sT = −, sC = +; and R3
0 for sT = −,

sC = −.
For sUT = +, sT C = +, we find that A satisfies

A2 = −1, Aρi + ρiA = 0, ρ2
1 = −sT , ρ2

2 = ρ2
3 = sT sC,

ρ1 = T Q, ρ2 = T C, ρ3 = T CQ. (55)

We see that the matrices A form a space R1
2 for sT = +, sC =

+; R3
0 for sT = +, sC = −; R2

1 for sT = −, sC = +; and R0
3

for sT = −, sC = −.

C. The properties of classifying spaces

In general, we can consider a real antisymmetric matrix A

that satisfies (for fixed real matrices ρi , i = 1, . . . ,p + q)

A = ρp+q+1, ρjρi + ρiρj = |i �=j 0,
(56)

ρ2
i = |i=1,...,p 1, ρ2

i = |i=p+1,...,p+q+1 − 1.

The space of those A matrices is denoted as R
q
p.

Let us show that

Rq
p = R

q+1
p+1. (57)

From Ã ∈ R
q
p that satisfies the following Clifford algebra

Cl(p,q + 1),

Ã = ρ̃p+q+1, ρ̃j ρ̃i + ρ̃i ρ̃j = |i �=j 0,
(58)

ρ̃2
i = |i=1,...,p 1, ρ̃2

i = |i=p+1,...,p+q+1 − 1,

we can define

ρi = |i=1,...,pρ̃i ⊗ σ z, ρp+1 = I ⊗ σx,
(59)

ρi = |i=p+2,...,p+q+2ρ̃i−1 ⊗ σ z, ρp+q+3 = I ⊗ ε.

We can check that such ρi satisfy the following Clifford algebra
Cl(p + 1,q + 2),

ρjρi + ρiρj = |i �=j 0,
(60)

ρ2
i = |i=1,...,p+1 1, ρ2

i = |i=p+2,...,p+q+3 − 1.

If we fix ρi , i �= p + q + 2, then the space formed by A =
ρp+q+2 satisfying the above condition is given by R

q+1
p+1. The

above construction gives rise to a map from R
q
p → R

q+1
p+1. Since

A = ρp+q+2, satisfying Eq. (60) must has the form Ã ⊗ σ z,
with Ã satisfying Eq. (58). This gives us a map R

q+1
p+1 → R

q
p.

Thus,Rq+1
p+1 = R

q
p.

We can also consider a real symmetric matrix A that satisfies
(for fixed real matrices ρi , i = 1, . . . ,p)

A = ρp+1, ρjρi + ρiρj = |i �=j 0, ρ2
i = |i=1,...,p+1 1.

(61)

The space of those matrices is denoted as Rp.
In the following, we show that

R
q

0 = Rq+2. (62)

From Ã ∈ R
q

0 that satisfies the Clifford algebra Cl(0,q + 1),

Ã = ρ̃q+1, ρ̃j ρ̃i + ρ̃i ρ̃j = |i �=j 0, ρ̃2
i = |i=1,...,q+1 − 1,

(63)

we can define

ρi = |i=1,...,q+1ρ̃i ⊗ ε, ρq+2 = I ⊗ σ z, ρq+3 = I ⊗ σx.

(64)

We can check that ρi form the Clifford algebra Cl(q + 3,0),

ρjρi + ρiρj = |i �=j 0, ρ2
i = |i=1,...,q+3 1. (65)

If we fix ρi , i �= q + 1, then the space formed by A = ρq+1

satisfying the above condition is given by Rq+2. The above
construction gives rise to a map from R

q

0 → Rq+2. Since A =
ρq+1, satisfying Eq. (65) must have the form Ã ⊗ ε, with Ã

satisfying Eq. (63). This gives us a map Rq+2 → R
q

0 . Thus,
R

q

0 = Rq+2.
In addition we also have the following periodic relations:

Rq
p = Rq+8

p = R
q

p+8, Rp = Rp+8. (66)

This can be shown by noticing the following 16-
dimensional real symmetric representation of Clifford algebra
Cl(0,8):

θ1 = ε ⊗ σ z ⊗ σ 0 ⊗ ε, θ2 = ε ⊗ σ z ⊗ ε ⊗ σx,

θ3 = ε ⊗ σ z ⊗ ε ⊗ σ z, θ4 = ε ⊗ σx ⊗ ε ⊗ σ 0,
(67)

θ5 = ε ⊗ σx ⊗ σx ⊗ ε, θ6 = ε ⊗ σx ⊗ σ z ⊗ ε,

θ7 = ε ⊗ ε ⊗ σ 0 ⊗ σ 0, θ8 = σx ⊗ σ 0 ⊗ σ 0 ⊗ σ 0,

which satisfy

θiθj + θj θi = |i �=j 0, θ2
i = |i=0,...,8 1. (68)

We find that θ = θ1θ2θ3θ4θ5θ6θ7θ8 = σ z ⊗ σ 0 ⊗ σ 0 ⊗ σ 0 an-
ticommutes with θi . From Ã ∈ R

q
p that satisfies Eq. (58), we

can define

ρi = |i=1,...,pρ̃i ⊗ θ, ρp+i = |i=1,...,8I ⊗ θi,
(69)

ρi = |i=p+9,...,p+q+9ρ̃i−8 ⊗ σ z.

We can check that such ρi satisfy

ρjρi + ρiρj = |i �=j 0, ρ2
i = |i=1,...,p+81,

ρ2
i = |i=p+9,...,p+q+9 − 1. (70)

If we fix ρi , i �= p + q + 9, then the space formed by A =
ρp+q+9 satisfying the above condition is given by R

q

p+8. The
above construction gives rise to a map from R

q
p → R

q

p+8. On
the other hand, the matrix that anticommutes with all θi’s must
be proportional to θ . Thus, A = ρp+q+9 satisfying Eq. (70)
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TABLE V. The spaces Rp and their homotopy groups πd (Rp).

p mod 8 0 1 2 3 4 5 6 7

Rp
O(l+m)

O(l)×O(m) × Z O(n) O(2n)
U (n)

U (2n)
Sp(n)

Sp(l+m)
Sp(l)×Sp(m) × Z Sp(n) Sp(n)

U (n)
U (n)
O(n)

π0(Rp) Z Z2 Z2 0 Z 0 0 0
π1(Rp) Z2 Z2 0 Z 0 0 0 Z

π2(Rp) Z2 0 Z 0 0 0 Z Z2

π3(Rp) 0 Z 0 0 0 Z Z2 Z2

π4(Rp) Z 0 0 0 Z Z2 Z2 0
π5(Rp) 0 0 0 Z Z2 Z2 0 Z

π6(Rp) 0 0 Z Z2 Z2 0 Z 0
π7(Rp) 0 Z Z2 Z2 0 Z 0 0

must have the form Ã ⊗ θ , with Ã satisfying Eq. (58). This
gives us a map R

q

p+8 → R
q
p. Thus, Rq

p+8 = R
q
p. Using a similar

approach, we can show Rp = Rp+8. Equations (57), (62), and
(66) allow us show

Rq
p = Rq−p+2 mod 8. (71)

So we can study the space R
q
p via the space Rq−p+2 mod 8.

Let us construct some of the Rp spaces. R0 is formed by
real symmetric matrices A that satisfy A2 = 1. Thus, A has
the form O(Il×l 0

0 −Im×m
)O−1, O ∈ O(l + m). We see that R0 =

∪mO(l + m)/O(l) × O(m) = O(l+m)
O(l)×O(m) × Z.

R1 is formed by real symmetric matrices A that satisfy
A2 = 1 and Aρ1 = −ρ1A with ρ1 = σ z ⊗ In×n. Thus, A has
the form

A = eσz⊗Mn×neσ 0⊗Ln×n[σx ⊗ In×n]e−σ 0⊗Ln×ne−σ z⊗Mn×n

= eσz⊗Mn×n[σx ⊗ In×n]e−σ z⊗Mn×n , (72)

where eσ 0⊗Ln×n ∈ O(n) and eσz⊗Mn×n ∈ O(n) are the transfor-
mations that leave ρ1 unchanged. We see that R1 = O(n).
The other spaces Rp and π0(Rp) are listed in Table V. Note
that for space S × Z, we have π0(S × Z) = π0(S) × Z. Also
O(n) in the dividend usually leads to Z2 in π0. Otherwise,
π0 = {0}. O(n) in the dividend can give rise toZ2 because O ∈
O(n) with det(O) = 1 and det(O) = −1 cannot be smoothly
connected. O(l + m) in O(l+m)

O(l)×O(m) does not lead to Z2 because
for O ∈ O(l + m) we can change the sign of det(O) by
multiplying O with an element in O(l) [or O(m)].

For free-fermion systems in zero dimensions with no sym-
metry and no fermion number conservation, the classifying
space is R0

0. Since π0(R0
0) = π0(R2) = Z2, such free-fermion

systems have two possible gapped phases. One phase has even
numbers of fermions in the ground state and the other phase
has odd numbers of fermions in the ground state. (Note that
the fermion number mod 2 is still conserved even without any
symmetry.)

For free-electron systems in zero dimensions with time-
reversal symmetry and electron number conservation [the
symmetry group G−

−(U,T )], the classifying space is R2
0. Since

π0(R2
0) = π0(R4) = Z, the possible gapped phases are labeled

by an integer n. The ground state has 2n fermions. The electron
number in the ground state is always even due to the Kramer
degeneracy.

If we drop the electron number conservation [the symmetry
group becomes G−(T )], then the ground state will have
uncertain but even numbers of electrons. The ground state
cannot have odd numbers of electrons. This implies that free-
electron systems with only time-reversal symmetry in zero
dimensions have only one possible gapped phase. This agrees
with π0(R1

0) = π0(R3) = {0}, where R1
0 is the classifying space

for symmetry group G−(T ).

D. The d �= 0 cases

Now let us consider the d �= 0 cases. Again, let us
first assume that the fermion system described by Ĥ =
i
4

∑
IJ AIJ η̂I η̂J has translation symmetry, as well as time-

reversal symmetry and fermion number conservation. We also
assume that the single-body energy bands of antisymmetric
Hermitian matrix iA have some Dirac points at zero energy
and there are no other zero-energy states in the Brillouin zone.
The gapless single-body excitations in the system are described
by the continuum limit of iA:

iA = i
d∑

i=1

γi∂i, (73)

where we have folded all the Dirac points to the k = 0 point.
Without losing generality, we have also assumed that all the
Dirac points have the same velocity. Since ∂i is real and
antisymmetric, γi , i = 1, . . . ,d, are real symmetric γ matrices
(of infinite dimension) that satisfy

γiγj + γjγi = 2δij , γ ∗
i = γi. (74)

Again, the allowed γi’s always satisfy the condition that M2 =
−1 and γiM + Mγi = 0 has a solution for M . Since the time
reversal and the U (1) transformations do not affect ∂i , the
symmetry conditions on A, AT + T A = 0 and AQ − QA =
0, become the symmetry conditions on the γ matrices:

γiT + T γi = 0, γiQ − Qγi = 0. (75)

Now we add perturbations that may break the translation,
time-reversal, and U (1) symmetries, and we ask: how many
different ways are there to gap the Dirac points? The Dirac
points can be fully gapped by real antisymmetric mass matrices
M that satisfy

γiM + Mγi = 0. (76)
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The resulting single-body Hamiltonian becomes iA =
i
∑d

i=1[γi∂i + M].
If there is no symmetry, we only require the real antisym-

metric mass matrix M to be invertible [in addition to Eq. (76)].
Without losing generality, we can choose the mass matrix to
also satisfy

M2 = −1. (77)

The space of those mass matrices is given by R0
d .

If there are some symmetries, the real antisymmetric mass
matrix M also satisfies some additional condition, as discussed
before: M anticommutes with a set of p + q matrices ρi that
anticommute among themselves with p of them square to 1
and q of them square to −1. The number of p,q depends on full
symmetry group Gf . Since γi do not break the symmetry, just
like M , γi also anticommutes ρi . So, in total, M anticommutes
with a set of p + q + d matrices ρi and γi that anticommute
among themselves with p + d of them square to 1 and q of
them square to −1. Those mass matrices form a space R

q

p+d .
The different disconnected components of R

q

p+d represent
different “bulk” gapped phases of the free fermions. Thus,
the bulk gapped phases of the free fermions in d dimensions
are classified by π0(Rq

p+d ) = π0(Rq−p−d+2 mod 8), with (p,q)
depending on the symmetry. The results are summarized in
Table III.

E. A general discussion

Now, let us give a general discussion of the classifying
problem of free-fermion systems. To classify the gapped
phases of the free-fermion Hamiltonian we need to construct
the space of antisymmetric mass matrix M that satisfies

M2 = −1. (78)

The mass matrices A always anticommute with γ matrices
γi , i = 1,2, . . . ,d. When the mass matrices M have some
symmetries, then the mass matrices satisfy more linear
conditions. Let us assume that all those conditions can be
expressed in the following form:

Mρi = −ρiM, ρiρj = −ρjρi,
(79)

MUI = UIM, UIρi = ρiUI ,

where ρi and UI are real matrices labeled by i and I ,
and γ1, . . . ,γd are included in the ρi’s. If we have another
symmetry condition W such that MW = −WM and Wρi0 =
ρi0W for a particular i0, then U = Wρi0 will commute with M

and ρi and will be part of UI .
UI will form some algebra. Let us use α to label the

irreducible representations of the algebra. Then the one-
fermion Hilbert space has the form H = ⊕αHα ⊗ H0

α , where
the space H0

α forms the αth irreducible representations of the
algebra. For such a decomposition of the Hilbert space, M has
the following block-diagonal form:

M = ⊕α(Mα ⊗ Iα), (80)

where Iα acts within H0
α as an identity operator, and Mα acts

within Hα . The ρi’s have a similar form,

ρi = ⊕α

(
ρα

i ⊗ Iα

)
, (81)

where ρα
i acts within Hα . So within the Hilbert space Hα , we

have

Mαρα
i = −ρα

i Mα, ρα
i ρα

j = −ρα
j ρα

i . (82)

What we are trying to do in this paper is actually to construct
the space of Mα matrices that satisfy the condition of Eq. (82).

If fermions only form one irreducible representation of the
UI algebra, then the classifying space of Mα and M will be
the same. The results of this paper (such as Tables II and III)
are obtained under such an assumption.

If fermions form n distinct irreducible representations of the
UI algebra, then the classifying space of M will be Rn, where R

is the classifying space of Mα constructed in this paper. Note
that the classifying spaces of Mα are the same for different
irreducible representations and hence R is independent of α.
So if Mα’s are classified by Zk , k = 1,2, or ∞, then M’s are
classified by Zn

k .
To illustrate the above result, let us use the symmetry

G+(C) = ZC
2 × Z

f

2 as an example. If the fermions form one
irreducible representation of ZC

2 , for example, ĈciĈ
−1 = −ci ,

then the noninteracting symmetric gapped phases are classified
by

d : 0 1 2 3 4 5 6 7,

gapped phases : Z2 Z2 Z 0 0 0 Z 0,
(83)

which is the result in Table III. If the fermions form both
the irreducible representations of ZC

2 , Ĉci+Ĉ−1 = +ci+ and
Ĉci−Ĉ−1 = −ci− (i.e., one type of fermions carries ZC

2 charge
0 and another type of fermions carries ZC

2 charge 1), then the
noninteracting symmetric gapped phases are classified by

d : 0 1 2 3 4 5 6 7,

gapped phases : Z2
2 Z2

2 Z2 0 0 0 Z2 0.
(84)

The four d = 0 phases correspond to the ground state with even
or odd Z2-charge-0 fermions and even or odd Z2-charge-1
fermions. The four d = 1 phases correspond to the phases
where the Z2-charge-0 fermions are in the trivial or nontrivial
phases of the Majorana chain and the Z2-charge-1 fermions are
in the trivial or nontrivial phases of the Majorana chain. The
d = 2 phase labeled by two integers (m,n) ∈ Z2 corresponds
to the phase where the Z2-charge-0 fermions have m right-
moving Majorana chiral modes and the Z2-charge-1 fermions
have n right-moving Majorana chiral modes. (If m and/or n

are negative, we then have the corresponding number of left-
moving Majorana chiral modes.)

Some of the above gapped phases have intrinsic fermionic
topological orders. So only a subset of them are noninteracting
fermionic SPT phases:

dsp : 0 1 2 3 4 5 6 7,

SPT phases : Z2 Z2 Z 0 0 0 Z 0.
(85)

The two dsp = 0 phases correspond to the ground states
with even numbers of fermions and 0 or 1 Z2 charges.
The two dsp = 1 phases correspond to the phases where the
Z2-charge-0 fermions and the Z2-charge-1 fermions are both
in the trivial or nontrivial phases of the Majorana chain. The
dsp = 2 phase labeled by one integer n ∈ Z corresponds to the
phase where the Z2-charge-0 fermions have n right-moving
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Majorana chiral modes and the Z2-charge-1 fermions have n

left-moving Majorana chiral modes.

IV. CLASSIFICATION WITH TRANSLATION SYMMETRY

For the free-fermion systems with certain internal symme-
try Gf , we have shown that their gapped phases are classified
by π0(RpG−d ) or π0(CpG−d ) in d dimensions, where the value
of pG is determined from the full symmetry group Gf . We
know that π0 is an Abelian group with commuting group
multiplication “+”: a,b ∈ π0 implies that a + b ∈ π0. The
+ operation has a physical meaning. If two “bulk” gapped
fermion systems are labeled by a and b in π0, then stacking the
two systems together will give us a new bulk gapped fermion
system labeled by a + b ∈ π0.

We note that the classification by π0(RpG−d ) or π0(CpG−d )
is obtained by assuming there is no translation symmetry. In
the presence of translation symmetry, the gapped phases are
classified differently.32–34,43 However, the new classification
can be obtained from π0(RpG−d ). For the free-fermion systems
with internal symmetry Gf and translation symmetry, their
gapped phases are classified by25

d∏
k=0

[π0(RpG−d+k)](
d

k), (86)

where ( d
k

) is the binomial coefficient. The above is for the

real classes. For the complex classes, we have a similar
classification:

d∏
k=0

[π0(CpG−d+k)](
d

k). (87)

Such a result is obtained by stacking the lower-dimensional
topological phases to obtain higher-dimensional ones. For
one-dimensional free-fermion systems with internal symmetry
Gf , their gapped phases are classified by π0(RpG−1). We can
also have a zero-dimensional gapped phase on each unit cell of
the one-dimensional system if there is a translation symmetry.
The zero-dimensional gapped phases are classified by
π0(RpG

). Thus, the combined gapped phases (with translation
symmetry) are classified by π0(RpG−1) × π0(RpG

). In two di-
mensions, the gapped phases are classified by π0(RpG−2). The
gapped phases on each unit cell are classified by π0(RpG

). Now
we can also have one-dimensional gapped phases on the lines

in the x direction, which are classified by π0(RpG−1). We have
the same thing for the lines in the y direction. So the combined
gapped phases (with translation symmetry) are classified by
π0(RpG−2) × [π0(RpG−1)]2 × π0(RpG

). In three dimensions,
the translation-symmetric gapped phases are classified by
π0(RpG−3) × [π0(RpG−2)]3 × [π0(RpG−1)]3 × π0(RpG

).

V. DEFECTS IN d-DIMENSIONAL GAPPED
FREE-FERMION PHASES WITH SYMMETRY G f

For the d-dimensional free-fermion systems with internal
symmetry Gf , we have shown that their bulk gapped Hamil-
tonians (or the mass matrices) form a space RpG−d or CpG−d .
(More precisely, the gapped Hamiltonians or the mass matrices
form a space that is homotopically equivalent to RpG−d or
CpG−d .) From the space RpG−d or CpG−d , we find that the point
defects that have symmetry Gf are classified by πd−1(RpG−d )
or πd−1(CpG−d ).

Physically, there is another way to classify point defects:
we can simply add a segment of the 1D bulk gapped free-
fermion hopping system with the same symmetry to the
d-dimensional system. Since the translation symmetry is
not required, the new d-dimensional system still belongs to
the same symmetry class. There are finite bulk gaps away
from the two ends of the added 1D segment. So the new
d-dimensional system may contain two nontrivial defects.
The defects are classified by the classes of the added 1D
bulk gapped free-fermion hopping system. So we find that
the point defects that have the symmetry Gf are also classified
by π0(RpG−1) or π0(CpG−1).

Similarly, the line defects that have the symmetry Gf are
classified by πd−2(RpG−d ) or πd−2(CpG−d ). Again, we can also
create line defects by adding a disk of the 2D bulk gapped
free-fermion hopping system to the original d-dimensional
system. This way, we find that the line defects that have the
symmetry Gf are also classified by π0(RpG−2) or π0(CpG−2).

In general, the defects with dimension d0 are classified
by πd−d0−1(RpG−d ) or πd−d0−1(CpG−d ), or equivalently by
π0(RpG−d0−1) or π0(CpG−d0−1). In order for the above physical
picture to be consistent, we require that

πn(RpG
) = π0(RpG+n), πn(CpG

) = π0(CpG+n). (88)

The classifying spaces indeed satisfy the above highly non-
trivial relation. This is the Bott periodicity theorem. The
theorem is obtained by the following observation: the space

TABLE VI. Classification of point defects and line defects that have some symmetries in gapped phases of noninteracting fermions. “0”
means that there is no nontrivial topological defects. Z means that topological nontrivial defects plus the topological trivial defect are labeled
by the elements in Z. Nontrivial topological defects have protected gapless excitations, while trivial topological defects have no protected
gapless excitations.

Symmetry CpG
pG Point defect Line defect Example phases

U (1)
G−(C)

U (l+m)
U (l)×U (m) × Z 0 0 Z

(Chern)
insulator

Superconductor
with collinear
spin order

G+
±(U,T )

G+
−−(T ,C)

G+
+−(T ,C)

U (n) 1 Z 0
Superconductor with real pairing
and Sz conserving
spin-orbital coupling
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TABLE VII. Classification of point defects and line defects that have some symmetries in gapped phases of noninteracting fermions. “0”
means that there is no nontrivial topological defects. Zn means that topological nontrivial defects plus the topological trivial defect are labeled
by the elements in Zn. Nontrivial defects have protected gapless excitations in them.

Symm.
G−

+(U,T )
G−

+−(T ,C)

G+(T )
G+

++(T ,C)
G−−

++(U,T ,C)
G−+

++(U,T ,C)
G+−

−+(U,T ,C)
G++

++(U,T ,C)

None
G+(C)

G−
++(T ,C)

G−
−+(T ,C)
G+(C)

G+(U,C)

G−(T )
G+

−+(T ,C)
G−−

−+(U,T ,C)
G−+

−+(U,T ,C)
G+−

++(U,T ,C)
G++

−+(U,T ,C)

G−
−(U,T )

G−
−−(T ,C)

G−−
−−(U,T ,C)

G−+
−−(U,T ,C)

G+−
−−(U,T ,C)

G++
+−(U,T ,C)

G−(U,C)
SU (2)

G−−
+−(U,T ,C)

G−+
+−(U,T ,C)

G+−
+−(U,T ,C)

G++
−−(U,T ,C)

G[SU (2),T ]

RpG

O(l+m)
O(l)×O(m) × Z O(n) O(2n)

U (n)
U (2n)
Sp(n)

Sp(l+m)
Sp(l)×Sp(m) × Z Sp(n) Sp(n)

U (n)
U (n)
O(n)

pG: 0 1 2 3 4 5 6 7

Point
defect

0 Z Z2 Z2 0 Z 0 0

Line
defect

0 0 Z Z2 Z2 0 Z 0

Example
phases

Insulator
with co-
planar
spin order

Superconductor
with co-
planar
spin order

Superconductor
Superconductor
with time
reversal

Insulator
with time
reversal

Insulator
with time
reversal and
intersublattice
hopping

Spin
singlet
superconductor

Spin
singlet
superconductor
withtime
reversal

Cp+1 can be viewed (in a homotopic sense) as �Cp—the
space of loops in Cp. So we have π1(Cp) = π0(�Cp) =
π0(Cp+1). Similarly, the space Rp+1 can be viewed (in a
homotopic sense) as �Rp—the space of loops in Rp. So we
have π1(Rp) = π0(�Rp) = π0(Rp+1). As a result of the Bott
periodicity theorem, the classification of defects is independent
of spatial dimensions. It only depends on the dimension and
the symmetry of the defects. If the defects lower the symmetry,
then we should use the reduced symmetry to classify the
defects. In Tables VI and VII, we list the classifications of
those symmetric point and line defects for gapped free-fermion
systems with various symmetries. We would like to point
out that the line defects classified by Z in superconductors
without symmetry do not correspond to the vortex lines (which
usually belong to the trivial class under our classification).
The nontrivial line defect here should carry chiral modes that
only move in one direction along the defect line. In general,
nontrivial defects have protected gapless excitations in them.

VI. SUMMARY

In this paper, we study different possible full symmetry
groups Gf of fermion systems that contain U (1), time-reversal
(T ), and/or charge-conjugation (C) symmetry. We show that
each symmetry group Gf is associated with a classifying space
CpG

or RpG
(see Tables II and III). We classify d-dimensional

gapped phases of free-fermion systems that have those full
symmetry groups. We find that the different gapped phases are
described by π0(CpG−d ) or π0(RpG−d ). Those results, obtained
using the K-theory approach, generalize the results in Refs. 25
and 28.
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