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Observations of plasmarons in a two-dimensional system: Tunneling measurements
using time-domain capacitance spectroscopy
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Calculations of the single-particle density of states (SPDOS) of electron liquids have long predicted that there
exist two distinct charged excitations: the usual quasiparticle consisting of an electron or hole, and a plasmaron
consisting of a hole resonantly bound to real plasmons in the Fermi sea. Using tunneling spectroscopy to measure
the SPDOS of a 2D electronic system, we demonstrate the detection of a plasmaron in a 2D system in which
electrons have mass. With the application of a magnetic field we discover unpredicted magnetoplasmarons which
resemble Landau levels with a negative index.
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The “plasmaron” was originally proposed by Hedin and
Lundquist1,2 to exist in three-dimensional (3D) metals. How-
ever, aside from the unusual semimetal bismuth,3 it has not
been unambiguously observed in 3D, and some theories sug-
gest that the 3D plasmaron should not exist.4 In contrast, more
recent theories predict a robust plasmaron in two-dimensional
electronic systems (2DESs).5–9 Indeed, the plasmaron has
recently been observed in graphene, which contains a 2DES
with massless electrons.10 We observe several key differences
between our observation of the plasmaron in a system with
massive electrons and the experimental and theoretical results
for graphene. Whereas in graphene the plasmaron is predicted
to exist both above and below the Fermi energy8 and exhibits
a simple scaling law with electron density, we find that in a
system of massive electrons the plasmaron exhibits a strong
asymmetry about the Fermi energy and exhibits a nonlinear
and unpredicted dependence on electron density.

We perform our tunneling measurements using time-
domain capacitance spectroscopy (TDCS).11–13 This technique
allows the measurement of the SPDOS with precisely cali-
brated energy and density axes and minimal effects of heating.
In TDCS, the 2DES to be studied is grown epitaxially inside
of a capacitor. One plate of the capacitor, the tunnel electrode,
is close enough to allow charge to tunnel to and from the 2D
system. The other plate is distant enough to be electrically
isolated and is used to detect the tunnel current by means
of its image charge. DC voltages can be used to tune the
density of the 2D system continuously, while tunnel voltages
and currents can be induced by applying voltage pulses across
the capacitor. In the present measurements the 2DES is a 230 Å
GaAs quantum well. The plates of the capacitor are 3D doped
regions of GaAs with an electron density of 1 × 1018 cm−3.
The tunnel electrode is separated from the 2DES by a 130 Å
tunnel barrier of x = 0.324 AlxGa1−xAs followed by 300 Å
of undoped GaAs which acts as a spacer layer to reduce
scattering.14 This spacer is thin enough it is populated by
electrons due to the finite Thomas-Fermi screening length.
The electrically isolated electrode is separated from the 2DES
by 600 Å of x = 0.324 AlxGa1−xAs.

Figure 1(a) shows a typical TDCS spectrum acquired at
100 mK with zero magnetic field. The horizontal axis is the
density in the 2DES, which is controlled by the DC bias

across the device. The vertical axis is energy, with E = 0
corresponding to the Fermi energy. The band edge of the
2DES, corresponding to injecting a wave-vector k = 0 hole,
is visible as an abrupt edge that begins near E = 0 at zero
density and moves downward in energy as the 2D system
is populated [solid arrows in Fig. 1(b)]. Tunneling matrix
element effects reduce the tunnel current at high energies and
densities, causing the 2D band to appear as a peak rather than
a step.12,14 Because of the additional energy used to create
the plasmon, creating a plasmaron requires more energy than
creating an ordinary hole. More energetic holes occur at more
negative energies in our spectra. Thus, the plasmaron appears
as a second edge below the 2D band edge in the spectrum
[dashed arrows in Fig. 1(b)]. Both edges can be emphasized
by differentiating the data with respect to tunnel voltage to
provide d2I/dV 2 and smoothing it by convolving with a
σ = 190 μeV Gaussian to remove resulting high-frequency
noise [Fig. 1(d)].

Inelastic tunneling could potentially result in a similar
increase in tunneling current when a new tunneling process
becomes available at the energy required for creating a plas-
mon. However, such inelastic tunneling features are typically
symmetric about the Fermi energy as both electrons and
holes can lose energy through emission of a plasmon. The
asymmetry of the observed feature rules out such an origin.

We identify the edges of the 2D and plasmaron bands by
the location of the peak in d2I/dV 2 [Fig. 1(c)]. At densities
above 5 × 1010, the 2D band edge lies at E2D = (−0.379 ±
0.003) meV × N2D/(1010cm−2) + (0.19 ± 0.01) meV, where
N2D is the electron density of the 2DES and the energy scale
is calibrated using the cyclotron energy of the empty well
assuming m∗ = 0.067.12 The offset is due to our choice of
the peak in the derivative of the TDOS as our band edge. For
a noninteracting system, this bandwidth would be expected
to be 0.362 meV × N2D/(1010cm−2). Note this bandwidth is
the energy difference between suddenly creating a hole at
the bottom of the band and suddenly creating one at the
Fermi energy, and it is not in general equal to the chemical
potential. While the details giving rise to this larger bandwidth
are complex, we note that both band-nonparabolicity15 and
interaction effects6 are expected to increase this bandwidth
slightly.
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FIG. 1. (Color online) TDCS spectra acquired at zero magnetic
field (a) shows the 2D band edge as a sharp peak due to tunneling
matrix element effects. The plasmaron is visible as a faint second
step at more negative energies. A small cartoon shows the measured
energy of the plasmaron is negative and roughly equal to the sum of
the energy of the required hole, the required plasmon, and a coupling
energy. The two edges are indicated in the line cuts in (b) (offset
vertically for clarity), with the band edge indicated with a solid arrow,
and the plasmaron edge indicated with a dotted arrow. In (d), the band
edges can be emphasized by taking an extra derivative of the data
along the energy axis (d2I/dV 2). This allows the energies of the 2D
band edge (dashed, red line) and plasmaron band edge (solid, blue
line) to be extracted, as shown in (c). Note the extreme asymmetry
of the plasmaron band about the Fermi energy, ruling out inelastic
scattering as a possible origin.

We find a good empirical fit for the location of the
plasmaron edge to be Epl = E2D − (1.44 ± 0.02 meV) ×√

N2D/(1010 cm−2) − 0.19 ± 0.01 meV. While this density
dependence has not been predicted in the literature, we note
the overall

√
N2D is suggestive of the density dependence

of the plasmon component of the plasmaron, with h̄ωp(k) =√
nek/(2mε).
While detailed calculations of the plasmaron energy and

lifetime exist elsewhere,1,2,4–7,16 a simple “cartoon” model
aids in developing intuition and in understanding how the
heterostructure can modify the plasmaron structure. The
plasmaron exists because for a small range of energies and
wave vectors, it is possible to create a composite excitation
with wave vector k consisting of resonantly bound holes of
wave vector k − q and plasmons of wave vector q. To create
a plasmaron with energy Epl(k), this resonance condition is
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FIG. 2. (Color online) A simple cartoon model for the plasmaron
can be developed by considering the resonance condition for the
dispersion curves. In (a), the tangency between the hole (thick, blue
line) and plasmon (thin, green line) dispersion results in a large phase-
space enhancement for hole-plasmon coupling (red circles), forming
the the long-lived plasmaron (dark, black line). The y axis has been
drawn with the most energetic holes downward to match the sign
convention in our spectrum. A more accurate RPA calculation of the
spectral function A(k,ω), roughly the momentum resolved SPDOS, is
shown as a color-scale plot in (b). Dark (blue) peaks corresponding to
the normal electron or hole and the plasmaron are visible. The general
behavior is consistent with the cartoon model (dashed, green lines) if
a fixed coupling energy EC of about 5 meV is included (solid lines). If
this argument is repeated for electrons as in (c), the dispersions cross
at a sharp angle rather than tangentially, and there is no phase-space
enhancement. In (c), more energetic electrons are plotted upward to
match the sign convention in our spectrum.

given by

Epl(k) = h̄2
[
k2
f − (k − q)2

]

2m∗ + h̄ωp(q) + Ec(q,k).

Here h̄ωp(q) is the energy to create a plasmon of wave vector
q [proportional to

√
N2Dq at small q (Ref. 17)] and Ec is

a coupling energy. If we momentarily neglect the coupling
energy we can graphically solve for resonance by rearranging

this as Epl(k) − h̄ωp(q) = h̄2[k2
f −(k−q)2]

2m∗ [Fig. 2(a); note the
energy axis is inverted to match the sign convention in our
experimental data]. On doing so, it becomes clear that for some
values of Epl(k), a resonance occurs not for a single value of
q but instead across a range of q vectors where the hole (thick
blue line) and plasmon (thin green lines) dispersions become
tangent (red circles); the hole-plasmon coupling is strongest
when the hole and plasmon group velocities match. This
results in a strong resonance that allows the coherent screening
of the injected quasiparticle by a cloud of real plasmons,
creating a long-lived excitation at Epl. As the momentum
of the plasmaron k is increased (black upside-down U near
bottom of plot), Epl must increase to keep the plasmon and hole
dispersion curves tangent (dotted green line). At the same time,
the relevant plasmon q vector increases. Because the coupling
of the hole to the plasmon is through the Coulomb interaction,
it dies away as 1/q. This weakening of the hole-plasmon
coupling together with a decrease in the resonant phase space
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destroys the plasmaron at large k. For typical densities in
our device, this is predicted to occur at k ∼ 0.15kf .6 The
plasmaron dispersion curve and its range are pictured in black
as the small upside-down U near the bottom of Fig. 2(a).

Because the plasmon dispersion curve becomes steeper as√
N2D, the plasmaron becomes more widely separated from

the 2D band as the density is increased. At the same time,
the relevant q vector increases, weakening and ultimately
destroying the plasmaron as the 2DES density is increased.

The plasmaron, then, is a long-lived excitation that only
exists at small wave vectors and small electron densities. It is
made up of resonantly coupled holes and plasmons of equal
but opposite wave vectors centered about the k vector of the
plasmaron. The wave vector of the plasmon and hole involved
is large: ∼0.6kf for a GaAs 2DES at N2D = 1 × 1011. A
comparison of the general form of the plasmaron dispersion
from this argument to the random-phase approximation (RPA)
spectral function A(k,ω) (essentially the momentum resolved
SPDOS) calculated as per Ref. 6 is included in Fig. 2(b).

In the case of injecting electrons into the quantum well,
larger momenta k − q give higher energy excitations rather
than lower. When repeating the above discussion the parabolic
electron dispersion is flipped with respect to the plasmon
dispersion. The plasmon and electron curve then cross at
a sharp angle rather than touching tangentially [Fig. 2(c)].
Accordingly, there is no broad region of resonance, and no
long-lived plasmaron above the Fermi energy. This is in
marked contrast to the case in graphene, where no electron-
hole asymmetry exists.8,9

At any given wave vector the plasmaron is sharply peaked at
a particular energy; however, when this spectrum is averaged
across all wave vectors, the added structure due to the
plasmaron is expected to appear as a step, possibly with a
peak at the low-energy edge depending on the lifetime of
the plasmaron. For an isolated quantum well of infinitesimal
thickness, this edge is predicted to lie from two to six times
the 2D Fermi energy below the 2D band edge at a density
of 1 × 1011 cm−2, depending on what approximation scheme
is used in calculating the spectral function. The plasmaron
step appears much closer to the Fermi energy in our data,
separated from the band edge by only roughly 1.3 × EF at
1 × 1011 cm−2. The SPDOS calculated using RPA (as in
Ref. 6) for an isolated infinitely thin well is superimposed
on measured spectra in Fig. 3 at a variety of densities,
showing this discrepancy. However, because the energy of
the plasmaron is extremely sensitive to both the plasmon
dispersion and the Coulomb interaction, a number of features
in our structure not present in the simplest calculations tend
to considerably reduce the distance between the 2D band
edge and the plasmaron. The 230 Å wide square quantum
well reduces the effective electron-electron interaction at short
distances, and can be accounted for by the addition of a
“form factor” to the Coulomb potential. Doing so moves the
plasmaron edge somewhat closer to the band edge (Fig. 3).
In addition, the nearby metallic tunnel electrode screens the
Coulomb interaction at large distances and also tends to reduce
the plasmon energy at large wave vector;18,19 this can also
be incorporated into the form factor. This further reduces the
discrepancy as well as smoothing the plasmaron peak into
more of a step. Finally, coupling to optical phonons modifies
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FIG. 3. (Color online) Up to an arbitrary scale factor in the
TDOS axis and smooth distortions due to matrix element effects,
the measured TDCS spectra can be quantitatively compared to RPA
calculations. Here, comparisons are made to a calculation with the
bare Coulomb potential (Bare), a calculation in a 230 Å square
quantum well (Wide Well), a calculation in a 230 Å well including
screening from a nearby metallic electrode (Wide Well + Screening),
and a calculation that also includes phonon coupling (Wide Well +
Screening + Phonon). All of these overestimate the coupling energy
of the plasmaron and the size of the peak at the plasmaron edge, but
as the Coulomb interaction is softened, the agreement between the
calculation and the experiment becomes better.

the dielectric function somewhat at energies and wave vectors
relevant to the plasmaron, further reducing the plasmaron
energy and completing the transformation of the plasmaron
contribution to the SPDOS to a step rather than peak.

The calculated energy spectrum is still substantially dif-
ferent from the measured spectrum. RPA underestimates the
screening of the Coulomb interaction by the correlation hole
around injected quasiparticles; more accurate calculations
would be expected to further reduce the energy of the
plasmaron. The exquisite sensitivity of the plasmaron feature
to the electron-electron interactions make it an excellent
benchmark for testing approximate methods in many-body
theories.

On applying a quantizing magnetic field, we find the
plasmaron step breaks up into a series of faint “ghost” Landau
levels below the 2D band edge [Fig. 4(a)]. We note that the 2D
density is measured independently using magnetocapacitance
in this measurement, confirming that there is no offset on
the density axis of this spectrum and thus confirming our
identification of the N = 0 Landau level. On applying a quan-
tizing magnetic field, the energy of creating a hole becomes
nondispersive, discretized by Landau quantization into flat
bands separated by h̄ωc. At the same time, the dispersion
curve of magnetoplasmons is gapped by the cyclotron energy,
is rather flat, and has one or more magnetoroton extrema at
long wavelengths.20,21 Thus, repeating the cartoon arguments
applied to the zero-field plasmon, it seems reasonable for the
band of plasmarons responsible for the plateau in our data
to sharpen into one or more ghost Landau levels lying below
N = 0, which we label “magnetoplasmarons” by analogy to
magnetoplasmons. This is indeed observed [Fig. 4(b)]; on
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FIG. 4. (Color online) TDCS spectra showing the development of
a magnetoplasmaron. Sweeping density at a fixed field of 1 Tesla (a),
the magnetoplasmaron appears as a series of “ghost” Landau levels
h̄ωc below the N = 0 Landau level. On holding the density fixed and
sweeping the magnetic field (b), the separation between the magne-
toplasmaron and the N = 0 Landau level is seen to vary linearly with
B as h̄ωc, and can be seen to merge into the B = 0 plasmaron band.
The contrast has been enhanced below the black line just below the
2D band edge to show the plasmaron feature more clearly.

varying the magnetic field while holding the bias voltage
fixed (roughly fixing the density), a number of ghost Landau
levels can be observed, with separations that scale with the

cyclotron energy. In particular, at ν = 4 at 1 Tesla, two
magnetoplasmaron peaks are visible below the N = 0 Landau
level with an interpeak splitting of 1.8 ± 0.1 meV, similar to
the cyclotron energy h̄ωc of 1.6 meV at this field. The splitting
between the N = 0 Landau level and the first plasmaron peak
is complicated by the exchange splitting of the bottom Landau
level; however, taking the energy of the N = 0 level to be
the mean energy of the spin-up and spin-down peaks, the
measured splitting is 2.3 ± 0.1 meV, significantly larger than
the cyclotron energy.

Once the magnetic field is applied, we chiefly observe mag-
netoplasmaron features within the band of energies occupied
by the plasmaron plateau at zero field. The magnetoplasmaron
peaks sharpen and move away from the N = 0 Landau level
as the cyclotron energy grows, but they largely vanish as they
fall below the energy of the plasmaron edge at zero magnetic
field. The exact mechanism of this cutoff at high magnetic
fields is currently unknown. However, the polarizability of the
2DES at high magnetic field has a similar overall envelope
to that at zero magnetic field;22 this may be responsible for
the similar cutoff energies and densities. These sharp features,
corresponding to long-lived quasiparticles, appear at high ener-
gies where lifetimes are usually short due to electron-electron
interactions.
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