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Absence of static stripes in the two-dimensional t − J model determined using an accurate and
systematic quantum Monte Carlo approach
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We examine the two-dimensional t−J model by using variational approach combined with well established
quantum Monte Carlo techniques [S. Sorella et al., Phys. Rev. Lett. 88, 117002 (2002)] that are used to improve
systematically the accuracy of the variational ansatz. Contrary to recent density-matrix renormalization group
and projected entangled-pair state calculations [P. Corboz et al., Phys. Rev. B 84, 041108(R) (2011)], a uniform
phase is found for J/t = 0.4, even when the calculation is biased with an ansatz that explicitly contains stripe
order. Moreover, in the small hole doping regime, that is, δ � 0.1, our results support the coexistence of
antiferromagnetism and superconductivity.
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Introduction. The comprehension of the low-energy prop-
erties of strongly correlated systems remains one of the biggest
challenges in modern condensed matter physics. Indeed,
although a fairly good understanding has been achieved in
some limiting cases (especially for large spatial dimensions,
thanks to dynamical mean-field theory1,2), many important
questions remain wide open in the two-dimensional case,
where the competition between charge/spin ordering and
superconductivity is very strong. Unfortunately, in this case,
there are not unbiased techniques that may be used to obtain
accurate results for low temperatures and large system sizes.
Therefore, several approximate methods have been developed
and applied in the last few years, like for example variational
(VMC)3 and fixed-node (FN) Monte Carlo,4 density-matrix
renormalization group (DMRG)5 or its developments based
upon the so-called tensor network states, including mul-
tiscale entanglement renormalization ansatz (MERA)6 and
projected entangled-pair states (PEPS),7 which has been
recently generalized to fermionic systems8 and infinite lattices
(iPEPS).9

Different calculations on the t−J model have shown
contradicting outcomes,10–18 and the whole phase diagram of
this model is still highly debated. One important issue, related
to the mechanism of pairing in the cuprate materials, is whether
some charge instability may take place (at q = 0, leading
to phase separation, or at finite q, leading to the so-called
stripes) or instead the homogeneous ground state is stable.19

In the latter case, the residual attraction among quasiparticles
may lead to a superconducting state. Previous FN calculations
emphasized the existence of a stable superconducting ground
state,20 while DMRG and iPEPS results suggested a stripe
order.21

The competition between superconductivity and stripes
have been studied in several papers and different aspects have
been addressed in the recent past.22–24 For example, two of us
showed that a relatively small anisotropy in the superexchange
(and hopping) parameters may lead to a striped order.25 In
this regard it is crucial to have a controlled method that may
give variational results in order to make a direct comparison
of energies (and other correlation functions) among different
methods and reach a final consensus.

In this Rapid Communication we adopt the same method
used in Ref. 20 by applying a few Lanczos steps to the
variational wave function and by filtering out its high-energy
components (by means of the Green’s function Monte Carlo
with the FN approximation), the accuracy of the calculations
may be highly improved. This approach is particularly ef-
fective at low doping and is actually unbiased at half-filling.
Moreover, an estimation of the exact energy may be given by
the variance extrapolation: besides the energy, the variance
of the state can also be calculated, and the energy with zero
variance can be extracted. From our finding, the existence
of a striped phase for δ ≈ 1/8 is rather unlikely: even
the best approximation to the ground state does not show
any evidence toward charge inhomogeneity. Although the
present calculations cannot rule out the possibility of having
small static stripes, our Monte Carlo approach is expected
to reproduce qualitatively correct ground-state properties; in
particular, it is reliable for determining the spatial dependent
hole density. Whenever an external modulated potential is
added to the t−J Hamiltonian, the FN approximation gives
rise to stripes, even when the initial state is chosen to be
homogeneous.

Model and methods. The t−J model on the two-
dimensional square lattice is defined by

H = −t
∑
〈i,j〉σ

c
†
i,σ cjσ + H.c. + J

∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
,

(1)

where 〈· · ·〉 indicates nearest-neighbor sites, c
†
i,σ (ci,σ ) creates

(destroys) an electron with spin σ on the site i; Si and ni

are the spin and density operators on the site i, respectively.
The t−J Hamiltonian is defined in the subspace without
doubly occupied sites. In the following, we will take the
amplitude for nearest-neighbor hopping t = 1, and consider
the superexchange J/t = 0.4. The hole doping will be denoted
by δ = 1 − N/L, where N and L are the number of electrons
and sites, respectively. Periodic boundary conditions are taken
in both directions and L × L or 45-degree tilted lattices (with
L = 2l2, l being an odd integer, so that the noninteracting
ground state is nondegenerate at half-filling) are considered.
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Our starting variational wave function is defined as

|�v〉 = PNPGJdJs |�MF〉, (2)

where PN is the projector onto the subspace with N electrons,
PG is the Gutzwiller projector, which enforces no double
occupation on each site; and Jd = exp(1/2

∑
i,j uijninj ) and

Js = exp(1/2
∑

i,j vij S
z
i S

z
j ) are density-density and spin-spin

Jastrow factors, respectively. Finally, |�MF〉 is a mean-field
state that may contain BCS pairing, antiferromagnetic order,
or both. In our recent papers17,18 we have shown that very good
variational energies can be obtained by orienting the magnetic
order parameter in the x-y plane, so that quantum fluctuations
may be included thanks to the Jastrow term Js . In this case,
however, the wave function takes the form of a Pfaffian.17,18

Conversely, whenever the antiferromagnetic order is taken
along the z direction, we deal with a determinant.3 The
variational parameters are the uij and vij (for all independent
distances in the lattice) and few parameters that describe the
mean-field state |�MF〉 (i.e., the pairing amplitude �BCS, the
antiferromagnetic parameter �AF, as well as the chemical
potential and the next-nearest-neighbor hopping describing the
variational electron dispersion). Due to the presence of strong
correlations (i.e., the Gutzwiller projector and the Jastrow
factors), a variational Monte Carlo approach is required to
compute the energy and all physical observables.

The accuracy of the wave function (2) may be improved in
different ways. The first one is by applying Lanczos steps:

|�p〉 =
(

1 +
p∑

k=1

αkH
k

)
|�v〉, (3)

where the αk are additional variational parameters. Clearly,
whenever |�v〉 is not orthogonal to the exact ground state,
|�p〉 converges to it for large p. However, on large sizes,
only a few steps can be efficiently performed: here we
consider the case with p = 1 and p = 2 (p = 0 corresponds
to the original variational wave function). Moreover, an
estimation of the true ground-state energy may be achieved
by the variance extrapolation: for sufficiently accurate states
we have that E ≈ Eex + const × σ 2, where E = 〈H〉/L and
σ 2 = (〈H2〉 − 〈H〉2)/L are the energy and variance per site,
respectively. Therefore, the exact ground-state energy Eex may
be assessed by fitting E vs σ 2 for p = 0, 1, and 2.

Another way to improve the VMC calculations is through
the FN approach,4 where the ground state of an auxiliary FN
Hamiltonian is obtained. In this case, the main approximation
relies on the fact that the nodal surface is assigned a priori,
by taking a given guiding function that is usually the best
variational state. Most importantly, the resulting energies are
still variational, so to have a totally controlled approximation
of the original problem.4

In this paper the guiding function is obtained by optimizing
the Jastrow and the mean-field state, with the method described
in Ref. 26. Then, we find the best Lanczos parameters αp for
|�p〉; finally, we perform the FN calculations with p = 0, 1,
and 2.

Results. Before showing the results on large systems, we
would like to mention that a very good accuracy on small
lattices (where Lanczos diagonalizations can be performed) is
obtained. We compared our results with the exact ones on the

FIG. 1. (Color online) Energy per hole as a function of the doping
for J/t = 0.4. Variational (left) and fixed-node (right) results are
reported for p = 0 and 1 (p = 0,1 and 2) Lanczos steps for the wave
function with (without) antiferromagnetism. The best variational
DMRG and iPEPS energies21 and the fixed-node with p = 2 are
connected by dashed lines for a better comparison.

26-site lattice for two and four holes, and different values of
J/t (see Supplementary Material27). Both the Lanczos and the
FN techniques largely improve the variational wave function
and the best FN calculations (with two Lanczos steps) reaches
an accuracy of (Eex − E)/Eex ≈ 0.002 and ≈ 0.003 for two
and four holes, respectively (for J/t = 0.4).

Let us now move to larger sizes and first analyze the
tendency toward phase separation. In Fig. 1 we show our
results of the energy per hole e(δ) = [E(δ) − E(0)]/δ for
various cluster sizes.28 e(δ) is a powerful detector for phase
separation: a monotonic behavior of e(δ) vs δ indicates
a finite compressibility and a stable uniform phase, while
a minimum, on finite systems, or a flat behavior in the
thermodynamic limit, indicate an instability.10 Close to half-
filling, the Pfaffian wave function is considerably better
than the simple superconducting state, clearly indicating a
coexistence of pairing and antiferromagnetic order.17,18 As the
doping increases, the antiferromagnetic parameter decreases
and eventually vanishes for δ ≈ 0.1. The general trend is
clear: the increased accuracy of the calculation favors the
homogeneous state, marked by a monotonic behavior of the
energy per hole vs the doping. In particular, one Lanczos
step strongly improves the quality of the results, the gain
in the FN energy being approximately 0.05t , independently
of δ. Even the second Lanczos step is efficient for these
large sizes, providing a further energy gain of about 0.02t .
We also mention that the results obtained with the variance
extrapolation are consistent with the DMRG and iPEPS ones21;
indeed, we have that e(δ) = −1.61(1) for 0.03 � δ � 0.12.
Remarkably, we have obtained the same extrapolated values
(within three error bars) by using the two wave functions with
or without antiferromagnetic order, see Fig. 2. However, the
extrapolated values have too large error bars and cannot be
used to study the issue of phase separation.

The application of few Lanczos steps on a given wave
function is not size consistent; nevertheless, an estimation
of the thermodynamic limit can be attempted by considering
the largest size, where the p = 0 calculations do not show
significant size effects. Therefore we have considered p = 2
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FIG. 2. (Color online) Variational results for the variance ex-
trapolation on a 162-site cluster for different numbers of holes:
p = 0 and 1 (p = 0,1 and 2) Lanczos steps have been performed
on the wave function with (without) antiferromagnetism. The best
fixed-node results are also marked by arrows.

FN calculations for L = 162 (or even 98 for δ � 0.17), which
compare well with the best energies obtained by DMRG and
iPEPS. The latter ones provide slightly more accurate energies
for δ � 0.1. However, considering that all these methods
are significantly away from the estimated exact energy per
hole obtained by DMRG and variance extrapolations [i.e.,
e(δ) � −1.61], this difference looks essentially irrelevant. In
contrast with DMRG and iPEPS that find a minimum in the
energy per hole,21 our best FN approximations do not show any
tendency to phase separation for any doping, and, therefore,
represent a thermodynamically stable phase corresponding to
a well defined variational state.

Let us now consider the more subtle issue of stripes.
Recently, DMRG and iPEPS calculations suggested that the
ground state has charge (and spin) modulations, at least close
to δ = 1/8.21 Up to now we have considered a uniform mean-
field state |�MF〉, clearly biasing the VMC results towards a
homogeneous state. Despite the fact that the FN method can in
principle remove this bias and give rise to nonuniform results,
we have not found any evidence in favor of stripes with this
variational ansatz.

In order to gain some evidence that a charge inhomogeneity
is not stabilized in the low-doping regime, we add a site-
dependent chemical potential in the mean-field Hamiltonian

μRi
= μ0 + δμ cos

(
4π

ls
xi

)
, (4)

where Ri = (xi,yi) is the coordinate of the site i and ls is equal
to 8 or 12. By starting from a finite δμ, the VMC optimization
leads to a perfectly uniform state with δμ = 0; moreover, FN
calculation strongly reduces the density modulation present in
the original variational wave function, see Fig. 3. Although
a small inhomogeneity remains in the density profile, the FN
energy is always higher than the one with δμ = 0. For these
calculations we considered 12 × 12, 16 × 16, and 24 × 24
lattices and δ = 1/8. Similar results have been obtained also
for δ = 1/12 on a 12 × 12 lattice (not shown).

FIG. 3. (Color online) Upper panels: local density ni when a site-
dependent chemical potential with δμ = 1.6 [see Eq. (4)] is added
to the variational wave function; the cases with ls = 12 (a) and 8 (b)
are reported. Lower panels: local density ni when a site-dependent
potential [see Eq. (5)] is added to the t−J Hamiltonian, with ls = 12
and V = 0.2 (c) and ls = 8 and V = 0.4 (d). Variational and fixed-
node results are reported for a 12 × 12 cluster and δ = 1/8. Insets:
the difference between the largest and the smallest local density (at
the fixed-node level) as a function of V .

In order to show the effectiveness and the reliability of
the FN method to detect charge inhomogeneities, we add a
modulated potential directly in the t−J Hamiltonian:

VRi
= V cos

(
4π

ls
xi

)
. (5)

Then we consider a uniform mean-field wave function and
compute the local density for 12 × 12 and 24 × 24 lattices
and δ = 1/8. The results are also reported in Fig. 3. Clearly
the VMC results show a completely flat behavior of the density
in different sites; by contrast, the FN simulations are able to
recover a strongly modulated density. This fact demonstrates
that the presence of charge order could be detected by using
this approach, even when a uniform guiding function is used
in the FN technique.

Finally, we can also add a spin structure to the charge
modulation, so as to have

〈
nRi

〉 = (1 − δ) − δn cos

(
4π

ls
xi

)
, (6)

〈
Sz

Ri

〉 = δs(−1)Ri sin

(
2π

ls
xi

)
. (7)

The above structure implies a 2 × ls unit cell and contains the
so-called π shift, namely antiparallel spins across the hole-rich
sites at xi = 0 and ls/2. In the following we consider suitable
variational parameters inside the mean-field Hamiltonian that
defines the uncorrelated state (i.e., local chemical potentials
and local magnetic fields), such to reproduce a stripe with
ls = 8 and take δ = 1/8 on a 16 × 16 lattice. Then we optimize
all parameters (for each site independently) and observe that
the initial stripe melts and a perfect uniform state is finally
recovered. Moreover, by performing the FN approach starting
from a variational state with stripe order, we always obtain that
the charge and spin modulations are reduced and a much more
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FIG. 4. (Color online) Initial variational ansatz with stripe order
(a) and fixed-node calculation (b) for charge and spin distributions
in the 2 × 8 unit cell of a 16 × 16 lattice. The size of the circles
and arrows is proportional to the electron density and spin along z,
respectively. Largest symbols in the variational calculations: 〈nRi

〉 =
0.92, 〈Sz

Ri
〉 = ±0.09.

uniform state is found (see Fig. 4); we also notice that the π

shift is replaced by a small defect in a weak antiferromagnetic
background.

Conclusions. In this work we have shown that the FN
approach is particularly reliable, not only to improve the
energy of a given variational ansatz, but also to determine
the density profile of the ground state, in a way that is rather
independent of the original ansatz. Indeed, the approximate

FN ground state |�FN〉 is not a “brute force” variational
ansatz, but it represents the ground state of a physical
Hamiltonian that is different from the exact one only in
the region where the variational wave function is close to
zero (namely within the so-called nodal region). Operators
O that are diagonal in configuration space |x〉 (e.g., related
to stripes or antiferromagnetic order) are weakly affected by
this nodal error. Indeed, in the expectation value of O, which
takes the form of

∑
x �2

FN(x)Ox , the nodal region, where
�FN(x) � 0, provides a very little contribution, thus explaining
the reliability of the FN approach.

We have shown that the FN Monte Carlo, when combined
with few Lanczos steps, is competitive with recent DMRG
and iPEPS calculations, as far as the variational energy is
concerned. The main outcome is that the ground state is
homogeneous. No evidence of stripes are detected around
δ = 1/8: at low doping, a uniform state is stabilized, containing
both superconductivity and antiferromagnetism. Despite our
findings, we have to conclude honestly that the low-doping
phase diagram of the t−J model is not settled yet since very
accurate methods provide very different phases with almost
comparable energies. We believe that future calculations that
employ the FN approach on top of iPEPS or DMRG may be
helpful for the final understanding.29
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