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Kondo effect in the presence of spin-orbit coupling
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We study the T = 0 Kondo physics of a spin-1/2 impurity in a noncentrosymmetric metal with spin-orbit
interaction. Within a simple variational approach we compute ground-state properties of the system for an
arbitrary form of spin-orbit coupling consistent with the crystal symmetry. This coupling produces an unscreened
impurity magnetic moment and can lead to a significant change of the Kondo energy. We discuss implications of
this finding both for dilute impurities and for heavy-fermion materials without inversion symmetry.
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Introduction. The Kondo effect, i.e., screening of the
impurity magnetic moment by the Fermi sea of itinerant
electrons, is one of the best-known examples of correlations-
driven phenomena in condensed-matter physics.1 A system
involving a periodic array of such impurities interacting with
conduction electrons (the so-called Kondo lattice) is believed
to provide a minimal model for heavy-fermion compounds.2

Historically the Kondo screening was detected via resistivity
measurements in dilute magnetic alloys, but recent advances
in scanning tunneling spectroscopy allowed observation of
this phenomenon on the atomic scale3–5 and manipulation of
individual Kondo resonances.6

Details of the band structure of the host metal usually do
not qualitatively influence the Kondo ground state, although
they affect characteristic energy scales of the problem, such
as the Kondo temperature TK , below which the impurity spin
is screened. Similarly, in the presence of spin-orbit scattering
when spin is not a good quantum number, classification of the
states by parity still allows mapping of the impurity problem
onto a Kondo model with essentially same parameters but
without the local spin-orbit interaction (SOI),7 in agreement
with experiment.8,9

In noncentrosymmetric materials a distinct nonlocal (de-
pendent on the gradients of the crystal potential) SOI appears.
This interaction is odd in electron momentum and couples
it to the electron spin.10 The influence of this type of
SOI on manifestations of the Kondo effect was discussed
only recently11–14 in quasi-two-dimensional (2D) systems for
specific cases of Rashba or Dresselhaus SOI, and in the context
of topological insulators.15,16

In Ref. 11 it was concluded that, to lowest order, the
Rashba SOI only leads to a rescaling of the electron bandwidth
and leaves the Kondo temperature essentially unchanged. A
similar verdict was reached in Ref. 12 in the framework of
the Anderson model for a half-filled f -band. However, these
results rely heavily on the specific form of the Rashba SOI
term and 2D single-particle density of states. This particular
combination allows reduction of the Kondo Hamiltonian with
SOI (equivalent to a multichannel problem—see below) to
a single-channel model without spin-orbit coupling. What
happens with Kondo screening in more realistic and interesting
cases, e.g., three-dimensional materials without inversion
symmetry or systems with a non-Rashba SOI that do not allow

the above simplification, has not been explored, to the best of
our knowledge.

In this Rapid Communication we consider a single spin-
1/2 impurity interacting with a system of electrons in a
noncentrosymmetric metal at zero temperature. Due to the
explicit inversion symmetry breaking, the single-particle
Hamiltonian that describes the conduction band contains an
odd in momentum spin-orbit term compatible with the crystal
symmetry.17 We determine the ground-state properties of
the resulting Kondo Hamiltonian by generalizing Yosida’s
variational method18 to take into account the spin-orbit
splitting of the Fermi surface (FS), as well as all values of
the total spin of the electrons and the impurity. In contrast
with previous works,11–14 our analysis is valid for any form
of SOI and the electron band structure, and incorporates
the essentially multichannel nature of the problem. We give
general expressions for the Kondo binding energy and show
that the SOI may lead to an enhancement of the Kondo effect
compared to that of a centrosymmetric material with the same
parameters. Because the SOI breaks SU(2) symmetry, the
impurity spin no longer forms a singlet with the Fermi sea
and is only partially screened. This conclusion is qualitatively
similar to the situation in 2D helical metals.15 Since our goal
is to investigate only effects associated with SOI, we ignore
possible spin anisotropy terms analogous to those appearing
in the study of impurities near sample surfaces.19

We first set up the variational framework, and then present
results for the Kondo binding energy, total spin in the ground
state, and the impurity spin susceptibility.

Variational formalism. The Kondo model describes a
localized magnetic impurity interacting with a single band
of conduction electrons

H =
∑

k

εαβ(k)c†kαckβ + JK Sσ αβc
†
i0α

ci0β.

This Hamiltonian is defined on a lattice with N sites; S
is the impurity spin (S = 1/2) located at site i0, σ αβ are
Pauli matrices, c

†
iα creates a fermion at site i with spin

α = (↑,↓) (c†kα = √
1/N

∑
i e

−ikxi c
†
iα is its momentum space

counterpart), and εαβ(k) is the single-electron dispersion. We
take JK > 0, assume summation over repeated indices, and set
h̄ ≡ 1.
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For a single band with SOI the matrix εαβ(k) can be
written17 as

εαβ(k) = εkδαβ + �kσ αβ.

The scalar εk is the dispersion without SOI. The latter
enters through the real pseudovector �k = −�−k, which is
determined by the point group symmetry of the crystal. It
is convenient to diagonalize εαβ explicitly by introducing the
helicity basis ckα = (Uk)αλdkλ with λ = ±1 and unitary matrix
Uk such that �kU

†
kσUk = σ z|�k|. In this representation the

band energy is diagonal, εkλ = (U †
k)λαεαβ(k)(Uk)βλ = εk +

λ|�k|. Note that �k breaks parity but preserves time-reversal,
hence εkλ = ε−k,λ because of the Kramers theorem. Now we
can rewrite the Kondo Hamiltonian as

H=
∑
k,λ

εkλd
†
kλdkλ + JK

N

∑
k′,k

S(U †
k′σUk)λ′λd

†
k′λ′dkλ. (1)

To understand the influence of SOI on the Kondo screening,
we use the Yosida-like18 trial wavefunction

|ψ〉 =
∑

k,M,λ

AkMλθ (εkλ − εF )|M〉d†
kλ|FS〉, (2)

where AkMλ are variational amplitudes, M = (↑,↓) labels
impurity states, and |FS〉 is the filled Fermi sea

|FS〉 =
∏

εk+<εF

d
†
k+

∏
εk−<εF

d
†
k−|0〉.

The Heaviside function θ (εkλ − εF ) limits summation to the
energies above the Fermi level. The expectation value of the
Hamiltonian Eq. (1) in the state |ψ〉 of Eq. (2) is

〈ψ |H |ψ〉 =
∑

A∗
k′M ′λ′AkMλθ (εk′λ′ − εF )θ (εkλ − εF )

×
[
εkλδλ′λδk′kδM ′M + JK

N
SM ′M (U †

k′σUk)λ′λ

]
,

with the implicit summation over all indices on the right-hand
side. In this expression we omitted the A-independent ground-
state energy of the Fermi sea, E0 = 〈FS|H |FS〉. Computing the
expectation value of the Kondo interaction requires decoupling
of the product

〈FS|d p′λ′d
†
k′αdkβd

†
pλ|FS〉

= θ (ε p′λ′ − εF )[δαβδkk′δ p p′δλλ′θ (εF − εkα)

+δk pδk′ p′δβλδαλ′θ (ε pλ − εF )].

In this equation the first term has the form
∑

k,α θ (εF −
εkα)(U †

kσUk)αα = 2〈FS|Se|FS〉, where Se = (1/2)
∑

k σ αβ

c
†
kαckβ is the total electron spin; 〈FS|Se|FS〉 = 0 due to the

time-reversal symmetry.
Minimizing 〈ψ |H |ψ〉 with respect to AkMλ, one obtains an

eigenvalue equation

(εkλ − E)AkMλθ (εkλ − εF )

= −JK SMM ′θ (εkλ − εF )
1

N

∑
p,η

θ (ε pη − εF )

× (U †
kσU p)ληA pM ′η, (3)

where again the summation over doubly repeated indices is
assumed. To proceed further, we introduce

BkMλ =
∑

η

(Uk)ληθ (εkη − εF )AkMη,

which allows us to rewrite Eq. (3) in the form

BkMα = −JK SMR

[ ∑
λ

(Uk)αλ

θ (εkλ − εF )

εkλ − E
(U †

k)λβ

]
σ βγ

×
(

1

N

∑
p

B pRγ

)
. (4)

This object plays the role of the ground-state wavefunction for
the system. Due to the θ function in the definition of BkMα all
k-summations are over the entire Brillouin zone.

We shall now use Eqs. (2)–(4) to compute the Kondo energy,
total spin of the system, and impurity magnetic susceptibility
in the most general form. Then we apply obtained expressions
to several instructive examples: (i) quasi-2D systems with
symmetry C4v (with Rashba or Dresselhaus SOI), and (ii)
cubic crystals with symmetry T or O.

Kondo energy. The energy eigenvalue E in Eq. (3) is
obtained by summing Eq. (4) over k:

XMα = −JK

N
SMR

∑
k,λ

[
(Uk)αλ

θ (εkλ − εF )

εkλ − E
(U †

k)λβ

]
σ βγ XRγ ,

with XMα = (1/N )
∑

k BkMα . The λ-dependent terms be-
tween two U matrices can be decomposed as

θ (εkλ − εF )δλ′λ/(εkλ − E) = δλ′λκ+ + σ z
λ′λκ−,

where

κ±(k) = 1

2

(
θ (εk+ − εF )

εk+ − E
± θ (εk− − εF )

εk− − E

)
. (5)

Because Ukσ
zU

†
k = �kσ/|�k| and �k is odd, while εkλ(k) is

even in k, the term containing σ zκ− does not contribute to the
sum, and we find

XMα = −JK

N
SMRσ αβ

∑
k

κ+XRβ. (6)

Clearly, the lowest-energy solution has the “singlet” structure
in the helicity space: XMα = (δM↑δα− − δM↓δα+)/

√
2. Then

the sum is computed as

1

N

∑
k

κ+ = 1

2

∑
λ

∫ εF +W

εF

dε gλ(ε)

ε − E
≈ g+

F + g−
F

2
ln

W

δE
,

where W and εF ∼ W are the half-bandwidth and Fermi en-
ergy, respectively, δE = εF − E � W , and gλ

F is the density
of states (DOS) in the λ-branch at the Fermi level. From this
expression we finally obtain the energy of the Kondo bound
state

δE = We−4/3JK (g+
F +g−

F ). (7)

When the SOI is absent, g+
F = g−

F = g
(0)
F and Eq. (7)

reduces to the well-known result for the usual Kondo effect:1

δE(0) = W exp[−2/3JKg
(0)
F ]. If the characteristic SOI energy

for electrons near the FS is �SO � εF , we expand the
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DOS at the Fermi level up to the second order gλ
F  g

(0)
F +

�SO∂gλ
F /∂�SO + �2

SO∂2gλ
F /2∂�2

SO, where the derivatives are
evaluated at �SO = 0. We estimate in a metal ∂gλ

F /∂�SO ∼
−λg

(0)
F /εF , and ∂2gλ

F /∂�2
SO ∼ ±g

(0)
F /ε2

F with the sign depend-
ing on the curvature of the DOS around the FS. Therefore,
(g+

F + g−
F )/2 ∼ g

(0)
F (1 ± �2

SO/ε2
F ). While in typical materials

�SO/εF ∼ 0.1 and the above correction is only ∼1%, the
exponential form of the Kondo energy, Eq. (7), makes the
effect non-negligible:

δE/δE(0) = e±�2
SO/ε2

F JKg
(0)
F  e±�2

SO/εF JK . (8)

Assuming �SO ∼ JK , this gives a ∼10% change in the Kondo
energy relative to its value δE(0) without the SOI.

It is instructive to apply the general expressions (7) and (8)
to two examples with parabolic bands (with an effective mass
m) and a linear in k SOI: (i) quasi-2D tetragonal systems
characterized by Rashba (Dresselhaus) spin-orbit coupling
with �k = �SO[k × ez] (�k = �SOk) and a tetragonal axis
pointing in the z direction, and (ii) noncentrosymmetric cubic
crystals17 with �k = �SOk. The coupling constant �SO, which
has units of velocity, introduces a natural energy scale εSO =
m�2

SO/2, and is related to �SO via �SO ∼ �SO/kF , where
kF is the helicity-averaged Fermi momentum. Consequently,
εSO ∼ �2

SO/εF .
In case (i) the DOS per helicity λ and for positive energies is

given by gλ(ε > 0) = g
(0)
F [1 − λ

√
εSO/(εSO + ε)] with g

(0)
F =

m/2π . Consequently g+
F + g−

F = 2g
(0)
F and Eq. (7) yields

no correction to the Kondo energy:11,12 δE = δE(0). This
conclusion is specific solely to 2D systems with parabolic
bands and linear SOI. Of course, cubic in momentum SOI
terms will introduce corrections of the form (8). In contrast,
for case (ii) we have

gλ(ε > 0) = m2�SO

π2

(
1 + ε/2εSO√

1 + ε/εSO
− λ

)
.

When εSO � εF , this DOS leads to an enhancement of the
Kondo energy δE/δE(0) = eεSO/εF JKg

(0)
F , in agreement with

Eq. (8).
It is important to emphasize that Eqs. (7) and (8) correspond

to a generally infinite channel Kondo problem even in the
parabolic band approximation. Indeed, without SOI the Kondo
Hamiltonian (1) can be reduced to a one-dimensional form
which simply reflects the fact that only electrons with zero
orbital angular momentum couple to the impurity.20 When
the SOI is taken into account, such a reduction is not always
possible because of the Uk matrices in Eq. (1) which entangle
different orbital harmonics. While in systems with Rashba SOI
one can still decouple orbital channels by introducing suitable
linear combinations of c-operators and show that only one
of them enters the Kondo term,11 other forms of SOI, e.g.,
case (ii) considered above, do not allow such simplification.
Thus the validity of Eq. (7) is only restricted by the variational
ansatz (2).

Total spin in the ground state. In the standard Kondo
problem1 at zero temperature the impurity is fully screened
by the Fermi sea and the net spin of the system vanishes.
This is not the case in the presence of a SOI. Because of
the latter, even without the impurity the electron system has

a nonzero spin, 〈FS|S2
e |FS〉 = (1/4)

∑ |(U †
kσUk)μν |2θ (εF −

εkμ)θ (εkν − εF ). This expression is finite due to the mismatch
between Fermi surfaces for different helicities. Therefore, our
goal here is to compute the difference between net spins in the
Kondo and normal metal phases, 〈ψ |(S + Se)2|ψ〉/〈ψ |ψ〉 −
〈FS|S2

e |FS〉. Note that due to time-reversal symmetry of the
problem, the total spin polarization along any direction still
vanishes.

Using Eq. (5) and the singlet structure of XMα [see
discussion after Eq. (6)], we can rewrite Eq. (4) as

BkMα = 3
2JKκ+XMα − JKκ−SMR[Ukσ

zU
†
kσ ]αγ XRγ ,

so that the norm of the state (2) becomes

〈ψ |ψ〉 =
∑
kMα

|AkMα|2θ (εkλ − εF )

=
∑
kMα

|BkMα|2 =
(

3JK

2

)2 ∑
k

(κ2
+ + κ2

−).

The cross-terms ∼κ+κ− vanish due to the same argument as
that used in deriving Eq. (6). Next, we consider the expectation
value of SSe:

〈ψ |SSe|ψ〉 = 1

2

∑
k

B∗
kM ′α′ SM ′Mσ α′αBkMα

≡ −3

4

(
3JK

2

)2∑
k

κ2
++J 2

K

2

∑
k

κ2
−X∗

R′γ ′T
R′γ ′
Rγ XRγ ,

where again there are no cross terms and T
R′γ ′
Rγ =

(SiSlSj )R′R(σ iUkσ
zU

†
kσ

lUkσ
zU

†
kσ

j )γ ′γ . Since S is a spin-
1/2 operator, we can evaluate T using the relations
X∗

R′γ ′σ
a
R′Rσ b

γ ′γ XRγ = −δab and σ iσ lσ j = iεilj + (δilδsj +
δjlδis − δlsδij )σ s , where εilj is the fully antisymmetric tensor:

T
R′γ ′
Rγ = 1

8

[
(2δR′Rδγ ′γ − 3σR′Rσ γ ′γ ) + 2σa

R′R
�a

k�
b
k

|�k|2 σb
γ ′γ

]
.

Collecting the above expressions we have

〈ψ |SSe|ψ〉 = −3/4
∑

k κ2
+ + 1/4

∑
k κ2

−∑
k(κ2+ + κ2−)

and

〈ψ |(S + Se)2|ψ〉 − 〈FS|S2
e |FS〉

= 2
∑

k κ2
−∑

k(κ2+ + κ2−)
−

∑
k,λ θ (εF − εkλ)(κ2

++κ2
− − 6λκ+κ−)

4
∑

k(κ2+ + κ2−)
,

with the second term on the right-hand side coming from
〈ψ |S2

e |ψ〉. In the absence of spin-orbit band splitting, κ− ≡ 0,
and the above expression implies complete screening. In
the presence of SOI the change in the total spin is also
finite and for cases (i) and (ii) considered above, 〈ψ |(S +
Se)2|ψ〉 − 〈FS|S2

e |FS〉 ∼ �2
SO. In principle, this change can

be determined from local magnetic measurements, but more
precise methods than the one used here may be needed to
determine the spatial dependence of the spin-spin correlations.

Impurity spin susceptibility. Finally, we consider the linear
susceptibility of the system. Since our focus is on the effect
of SOI, we shall make a simplifying assumption that the
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system is either cubic or tetragonal with the magnetic field
pointing along the c-axis, and that the dominant effect of the
field is on the impurity spin. In both cases the Hamiltonian,
Eq. (1), acquires a perturbation δH = −μBSz, where μ =
gμB , μB is the Bohr magneton, and g is the appropriate Landé
factor.

In order to account for δH , we need to change E →
E + hM in Eqs. (4) and (6) with h ≡ μB/2 and M = ±1.
A solution is sought in the form XMα = xsY

s
Mα + xtY

t
Mα , with

Y s (Y t ) the normalized singlet (triplet with zero total spin
z-projection) basis states:(

1 − 3P Q

−3Q 1 + P

)(
xs

xt

)
= 0,

where P = (JK/4N )
∑

k,M κ+(E + hM) and Q = (JK/4N )∑
k,M Mκ+(E + hM). To lowest order in μB/δE, the ground-

state energy becomes E = εF − δE − μ2B2/8δE. Therefore,
changes in the Kondo energy (7) are straightforwardly reflected
in the spin susceptibility

χ = −∂2E/2∂B2 = μ2/8δE.

Discussion. Stimulated by the interest in noncentrosymmet-
ric f -electron materials,2,21 we investigated the influence of the
lack of inversion symmetry on interaction between conduction
and localized electrons by studying a single-impurity Kondo
model with a SOI in the conduction band. Using a simple
variational framework1,18 we presented results for the ground-
state properties of the system, valid for any form of SOI
and band structure of the host metal, even in cases when
one cannot reduce the problem to a single-channel Kondo
Hamiltonian. It is the variational nature of our approach, what
allows us to deal with a multichannel model. In particular,
we demonstrated that (1) the SOI can lead to an exponential

change of the Kondo temperature, and (2) as the SOI explicitly
breaks SU(2) symmetry the Fermi sea does not completely
screen the impurity spin, allowing an extra magnetic degree of
freedom in the Kondo phase.

Although a similar exponential enhancement of the Kondo
temperature was found in Ref. 12, we note that their result is
physically different from ours. The reason for this distinction
is the fact that in Ref. 12 the authors started from an Anderson
model and used a Schrieffer-Wolff transformation.22 Although
this is the usual way to “freeze” charge fluctuations at the
impurity, in the presence of SOI it can lead to unexpected
results, such as the Dzyaloshinky-Moriya coupling between
impurity and conduction electrons spins, which appears
because of virtual transitions of localized electrons into the
conduction band where they accumulate a phase due to SOI.
On the contrary we started with a Kondo model that includes
only spin fluctuations. Thus modifications to the Kondo energy,
Eq. (7), compared to its value in a centrosymmetric material
originates purely from SOI.

Our findings lead to an intriguing question regarding the
influence of SOI on the physics of the spin-1/2 Kondo
lattice model. It is known2,23 that the heavy-fermion (Kondo-
screened) state competes with magnetic phases. In the presence
of a SOI impurity spins are not completely screened24 and may
order, thus leading to a coexistence of the heavy-fermion state
and magnetism. We leave investigation of this problem for a
future work.
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