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Luttinger liquid physics and spin-flip scattering on helical edges
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We investigate electronic correlation effects on edge states of quantum spin Hall insulators within the Kane-
Mele-Hubbard model by means of quantum Monte Carlo simulations. Given the U (1) spin symmetry and
time-reversal invariance, the low-energy theory is the helical Tomanaga-Luttinger model, with forward scattering
only. For weak to intermediate interactions, this model correctly describes equal-time spin and charge correlations,
including their doping dependence. As apparent from the Drude weight, bulk states become relevant in the
presence of electron-electron interactions, rendering the forward-scattering model incomplete. Strong correlations
give rise to slowly decaying transverse spin fluctuations, and inelastic spin-flip scattering strongly modifies the
single-particle spectrum, leading to graphenelike edge state signatures. The helical Tomanaga-Luttinger model
is completely valid only asymptotically in the weak-coupling limit.
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Introduction. A unique feature of quantum spin Hall insula-
tors (QSHIs), or two-dimensional (2D) topological insulators,
are metallic edge states with remarkable properties.1 Contrary
to chiral quantum Hall edge states, QSHI edge states are
helical, so that electrons with opposite spin propagate in
opposite directions. Due to time-reversal invariance (TRI),
the helical edge states are protected against disorder and
single-particle backscattering.1,2 They are also holographic
in the sense that they exist only as edges of 2D systems,2

and can therefore not be completely separated from the bulk.
Finally, the number of pairs of edge states is directly related
to the second Chern number or Z2 invariant.1 For a review of
topological insulators, see Ref. 3.

Quantum fluctuations play a significant role for 2D topolog-
ical insulators. In particular, the one-dimensional (1D) edges
have no well-defined quasiparticle excitations, and are usually
described using the framework of bosonization or Luttinger
liquid (LL) theory, which becomes particularly simple in the
presence of TRI and U (1) spin symmetry. In this case [referred
to in the following as the helical Tomanaga-Luttinger (HTL)
model], only forward scattering is possible.4 A priori, such a
theory is only valid at low energies. Nevertheless, for metallic
1D systems, LL theory provides a complete low-energy
description even for strong interactions. For helical edge
states, the presence of bulk states is intimately connected with
the topological character of the system. Strong interactions
on or beyond the size of the bulk band gap can give rise
to a substantial mixing of the different energy scales, and
may explain deviations of, e.g., the experimentally measured
conductance5 from expectations based on a low-energy de-
scription. Bulk effects fall outside the regime of bosonization,
and require a model which captures all relevant energy scales.
A comparison of the spectral properties of helical, spiral and
standard Luttinger liquids has been given in Ref. 6.

The Kane-Mele (KM) model1 of noninteracting electrons
on the honeycomb lattice with spin-orbit (SO) coupling λ is a
theoretical framework to study Z2 QSHIs. For small enough
Rashba coupling, the ground state for λ > 0 is a topological
band insulator (TBI). The addition of a Hubbard interaction
term (KMH model) permits to study a strongly correlated
TBI,7 although it completely detaches the KM model from

its original motivation by graphene.8 The electron-electron
interaction leads to a complex and rich many-body problem,
which includes a quantum spin liquid phase, and a magnetic
transition at large Hubbard U .7,9–14

In this Rapid Communication, using large-scale quantum
Monte Carlo (QMC) simulations of a previously introduced
effective model,9 we provide a comprehensive assessment of
the validity of the HTL model. While confirming the interac-
tion and doping dependence predicted for a helical liquid in
the weakly interacting limit, we find significant deviations with
increasing correlations which are beyond the usual low-energy
description and had remained unnoticed in previous numerical
work.9,11,13 Additional features in the single-particle spectrum
are explained by inelastic spin-flip scattering arising from
magnetic fluctuations at the edge, driven by strong electronic
correlations. The interaction-driven mixing of multiple energy
scales is more subtle than the invalidation of the HTL model
due to the breaking of TRI, for example, by means of strong
bulk interactions7,9–11 which destroy the topological character,
or by sufficient renormalization of the LL parameter in the
presence of Rashba coupling.2

Model. The phase diagram of the KMH model in the
λ-U plane is known from exact QMC simulations;9–11 many
of its overall features are also captured by approximate
methods.7,12–14 For U/t � 3 (t being the hopping integral), the
ground state is a TBI with helical edges for any λ > 0. The TBI
with repulsive U > 0 is adiabatically connected to U = 0,9,10

suggesting that bulk interactions are of minor importance in the
TBI phase. Based on this result and the fact that the edge states
are exponentially localized at the edge,9 we have previously
proposed an effective model for the helical edge states (which
exist throughout the TBI phase) with Hubbard interaction only
at one zigzag edge of a semi-infinite honeycomb ribbon. It is
defined by the action9

S = −
∑
σ,r,r ′

∫ ∫ β

0
dτdτ ′c†rσ (τ )Gσ

0
−1(r − r ′,τ − τ ′)cr ′σ (τ ′)

+U
∑

r

∫ β

0
dτ

[
nr↑(τ ) − 1

2

] [
nr↓(τ ) − 1

2

]
, (1)
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where r numbers sites on the zigzag edge, and Gσ
0 is

the Green’s function of the KM model through which the
noninteracting bulk is taken into account.

Method. Equation (1) corresponds to a 1D problem with a
bath that can be solved exactly using the continuous-time QMC
(CTQMC) method9,15 on large systems at low temperatures.
Two crucial methodological developments compared to Ref. 9
are the extension to a projective zero-temperature scheme with
projection parameter θ , and to grand-canonical simulations
away from half filling (n = 1). These advances allow for a
quantitative test of LL theory. We use the ribbon geometry
of Ref. 9, with dimensions L × L′ (L′ = 64), and periodic
(open) boundaries in the x (y) direction. The hopping integral
and lattice constant are set to 1. The ratio U/λ of the remaining
two parameters controls the degree of correlations. To study
strong interactions inside the TBI phase of the KMH model,
we take U = 2 and vary λ.9,10

Results. For a zigzag ribbon, the spectral function
Aσ (k,ω) = −π−1 Im Gσ

0 (k,ω) of the U = 0 KM model fea-
tures a bulk energy gap 	SO ∼ 3

√
3λ at the Dirac points,

and a pair of helical edge states with Fermi velocity vF ∼ 2λ

crossing at kF = π (for half filling)1 [see also Fig. 3(a)]. The
right (left) movers have spin up (down), and TRI implies
A↑(k,ω) = A↓(−k,ω). The degeneracy at k = π is protected
by Kramers’ theorem.

Correlation effects on energy scales much smaller than
the bulk gap can be studied using bosonization. In the
continuum limit, the fermion operator becomes 
σ (r) =
eikFxRσ (x)δσ,↑ + e−ikFxLσ (r)δσ,↓. For a Hubbard interaction,
the bosonized Hamiltonian (the HTL model) reads2,16,17

H = v

8π

∫ L

0
dx

{
1

K
[∂xθ+(x)]2 + K[∂xθ−(x)]2

}
. (2)

Here −∂xθ±(x)/2π = ρR(x) ± ρL(x), with ρR(x) and ρL(x)
being the density of right and left movers, respectively, v =√

v2
F − (U/2π )2, and K = √

(vF − U/2π )/(vF + U/2π ).
Single-particle spin-flip scattering between Kramers degen-
erate states is blocked by TRI.1,2,17 Umklapp processes such
as ei4kFxR†(x)R†(x + a)L(x)L(x + a) are generally allowed
at half filling since 4kF = 4π , but are forbidden here due to
spin-z conservation reflected in the U (1) spin symmetry of
the KMH model. Hence, only forward scattering is left. The
quadratic Hamiltonian (2) gives

Sxx(x) = 〈Sx(x)Sx(0)〉 ∼ 1

x2K
cos(2kFx),

Szz(x) = 〈Sz(x)Sz(0)〉 ∼ 1

x2
, (3)

N (x) = 〈n(x)n(0)〉 ∼ 1

x2
.

The transverse correlator Sxx(x) involves spin-flip scat-
tering and hence picks up 2kF oscillations in addition to an
interaction-dependent power-law exponent. N (x) and Szz(x)
involve scattering processes only within the left or right
movers, and retain their Fermi-liquid form. For K < 1,
transverse spin correlations dominate.

For U = 0 (K = 1), Eq. (3) can be verified by explicitly
solving the effective model of Eq. (1). For U > 0, we calculate
the correlation functions (3) exactly using QMC, and we
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FIG. 1. (Color online) Projective CTQMC results for the effective
model (1). (a) Real-space correlations Sxx(r = L/2) as a function
of system size L at different U/λ, normalized to 1 at r = 1 for
comparison. The log-log plot reveals a power law with an interaction-
dependent exponent η = 2K . (b) Sxx(q = 0)/L as a function of 1/L,
demonstrating the absence of long-range order. Lines are fits to the
form Sxx(q = 0)/L = b/L + c/Lη, with η taken from (a). Data in
(a) and (b) are extrapolated to θ = ∞. (c) Luttinger liquid parameters
K and v. K is extracted from fits to the form Sxx(r) = a/rη shown
as lines in (a). v is estimated from the density structure factor N (q =
2π/L,τ ) and finite-size extrapolation; vF = 2λ.

show Sxx(r) at half filling in Fig. 1(a). With increasing U/λ,
we observe a progressively slower decay, corresponding to a
reduction of the exponent 2K [see Eq. (3)]. Similar behavior
was observed in numerical work.9–11 The finite-size scaling of
the structure factor Sxx(q = 0) shown in Fig. 1(b) confirms the
absence of long-range ferromagnetic order even for U/λ = 40.
This conclusion is based on simulations of very large systems
(up to 24 × 64), whereas smaller sizes would incorrectly
suggest long-range order.11,18 True (Ising) long-range order
becomes possible (at T = 0) if the U (1) symmetry of the
KMH model is further reduced to Z2 by Rashba coupling. On
the mean-field level, symmetry breaking occurs for any U > 0
due to a logarithmic instability.

Figure 1(c) shows the LL parameter K , as obtained from
η = 2K [Eq. (3)], and the renormalized velocity v calculated
from N (q,τ ) (see below). v closely follows the Fermi velocity
vF, with a small offset independent of λ. This result, consistent
with v being inherited from the bulk and slightly renormalized
by U , conflicts with Eq. (2). We find K < 1/2 for the values
of U/λ considered, far from the noninteracting limit K = 1
and in the regime where umklapp scattering is relevant.2,11,18
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FIG. 2. (Color online) Doping dependence of spin and charge
structure factors for U/λ = 8 from grand-canonical CTQMC simu-
lations (L = 32, β = 60). The q = 0 points in (b) and (c) are linear
extrapolations.

However, for translationally invariant systems, this term is
allowed only for the special case of exactly half filling and in
the presence of Rashba coupling.

The cos(2kFr) contribution to Sxx(r) becomes apparent
upon doping the system by varying the chemical potential
inside the bulk gap. As shown in Fig. 2(a) for U/λ = 8,
the peak in the structure factor Sxx(q) moves from q = 0 to
finite q with increasing doping, reflecting the change of kF.
In contrast, the spin-z and charge structure factors retain their
cusp structure in the long-wavelength limit related to the 1/r2

decay in real space. Deviations from Eq. (3) are observed for
Szz(q) outside the long-wavelength limit for large U/λ � 10,
and can be related to the strong-coupling effects discussed
below.

Figure 3 shows the spectral function A↑(k,ω). For weak
coupling [U/λ = 8, Fig. 3(a)], we see a dominant linear mode
crossing the Fermi level, and the spectrum closely resembles
the case U = 0.1 With increasing correlations [U/λ = 40,
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FIG. 3. (Color online) Single-particle spectral function A↑(k,ω)
from projector-CTQMC simulations for L = 24, θ = 80, and (a)
U/λ = 8, (b) U/λ = 40.

Fig. 3(b)], spectral weight is suppressed at low energies in favor
of additional high-energy features. The spectral function in
Fig. 3(b) is fundamentally different from Fig. 3(a) and previous
results.9,10 The latter were qualitatively fully captured by the
HTL model, which gives a branch cut 〈R†(x,t)R(0,0)〉 ∼
(x − vt)−

1
2 (K+1/K). The additional features arise only in the

limit of small spin-orbit coupling (large U/λ 
 1).
The HTL model (2) does not account for the single-particle

spectrum in Fig. 3(b). Except for the bulk gap at the Dirac
points, the locus of spectral weight at high energies near kF

bears remarkable resemblance to the zigzag edge states of
graphene ribbons with U > 0.19 The physics of the latter is
dominated by quasi-long-range transverse spin fluctuations
at the edge. Similarly, a very slow decay of transverse spin
fluctuations at large U/λ [Fig. 1(a)] is a generic signature of
the strong-coupling regime of the KMH model (see also Refs. 9
and 11).

To identify spin-flip scattering as the physical origin of the
high-energy features of Fig. 3(b), we complement our numeri-
cal results by a simple yet sufficient analytical approximation.
Rewriting the Hubbard term as HU = − 1

2U
∑

q(S+
q S−

q +
S−

q S+
q ) with S+

q = L−1/2 ∑
k c

†
k↑ck+q↓, perturbation theory to

order U 2 gives the self-energy

�↑(k,iωm) = U 2

βL

∑
q,i�m

χ±
0 (q,i�m)G↓

0 (k − q,iωm − i�m),

with inelastic spin-flip scattering off q = 2kF transverse spin
fluctuations described by the susceptibility χ±

0 (q,i�m) =
−(βL)−1 ∑

k,iωm
G

↑
0 (k + q,iωm + i�m) G

↓
0 (k,iωm). The re-

sults for A↑(k,ω) shown in Fig. 4 qualitatively reproduce the
numerical data in Fig. 3. For U/λ = 40, the linear low-energy
mode is better visible than in the numerical spectrum whose
calculation involves analytical continuation. The emergence of
high-energy features predominantly above the bulk gap with
increasing U/λ causes, via the sum rule

∫
dωAσ (k,ω) = 1,

a depletion of spectral weight at low energies. Spin-flip
scattering is present for any U > 0, but its effects become
apparent in A↑(k,ω) when U/λ 
 1.

The deviations from the HTL model and their effect on
edge transport may be quantified by measuring the spectral
weight Z of low-energy particle-hole excitations using the
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FIG. 4. (Color online) Single-particle spectral function A↑(k,ω)
from second-order perturbation theory. U/t = 2.
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FIG. 5. (Color online) Luttinger parameter K (from Fig. 1) and
spectral weight Z from fits to the density structure factor N (q,τ ) at
θ = 80 and finite-size scaling. The Luttinger liquid result K = Z is
violated for a wide range of parameters.

dynamic charge structure factor N (q,ω). Fitting the linear
mode to the form N (q,ω) = 1

2Zqδ(ω − vq), with weight Z

and velocity v estimated from N (q = 2π/L,τ ), we can use
the continuity equation to obtain the Drude weight D = Zv.
This result can be compared to the relation D = Kv following
from Eq. (2), implying Z = K for the HTL in accordance with
results at U = 0 (not shown). However, as apparent from the
QMC results in Fig. 5, Z �= K over a wide range of λ/U ,
and Z = K holds only asymptotically in the weak-coupling
limit. Hence, irrespective of the interaction strength, inelastic
spin-flip scattering mediated by bulk states leads to deviations
from the predictions of the HTL model (2). This effect gains in

magnitude with increasing magnetic correlations (increasing
U/λ). The suppression of Z (but with Z = K) with increasing
U/λ (see also Ref. 9) can be understood in the framework
of LL theory. Interaction effects beyond the model (2) are
reflected in the pronounced quantitative difference between Z

and K .
Conclusions. Using quantum Monte Carlo simulations, we

have investigated the validity of the low-energy Tomanaga-
Luttinger model for edge states of a Z2 topological insulator.
We found the expected interaction and doping dependence of
spin and charge correlations, with dominant transverse spin
fluctuations but no long-range order. However, the fact that
helical edge modes cannot strictly be energetically separated
from the insulating bulk has important consequences. The bulk
states provide phase space for inelastic spin-flip scattering. In
the weak-coupling limit, this leads to minor but quantifiable
violations from bosonization predictions. For strong coupling,
these scattering processes transfer spectral weight from low
to high energies in the single-particle spectral function, and
thereby give rise to features reminiscent of graphene zigzag
ribbons.
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