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We present an approach to evaluate quasiparticle energies within many-body perturbation theory that
substantially improves both the computational efficiency and numerical accuracy of existing techniques. We use
the eigenvectors of the static dielectric matrix as a basis for the frequency-dependent density-density response
function, and density functional perturbation theory to avoid the explicit calculation of empty electronic states,
and storage and inversion of large dielectric matrices. The numerical accuracy of our approach is controlled by a
single parameter that can be systematically varied to test the convergence of the computed quasiparticle energies.
We discuss the advantages of the technique by presenting the calculations of the vertical ionization potential and
electron affinity of several molecules and clusters, including benzene and diamondoids.
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The calculation of photoemission spectra from first prin-
ciples theory, and with controllable accuracy, has been a
challenging problem in condensed-matter physics for several
decades. Many-body perturbation theory, and in particular
the GW approach,1–3 has been the framework of choice in
many investigations for the past 25 years. However, the GW
technique is computationally intensive, as in principle it in-
volves summations over occupied and empty electronic states,
to evaluate both the Green’s function (G) and the dielectric
matrix (DM) entering the expression of the screened Coulomb
interaction (W). Indeed, two decades passed after Hedin’s
seminal paper1 before GW calculations were performed for
realistic systems,3 yielding results directly comparable with
experiment.

Convergence difficulties involved in the numerical im-
plementations of the GW method have greatly hampered
our ability to establish the limit of validity of many-body
perturbation theory in describing photoemission spectra. For
example, issues such as the influence of core state polariz-
ability in determining quasiparticle energies,4 the effect of
self-consistency,5 and the importance of vertex corrections6 are
still the subject of controversy. The debate on these issues will
lead to robust conclusions only if the numerical accuracy of
GW calculations can be systematically controlled, and one can
clearly discriminate between numerical errors and theoretical
approximations.

Recently several methodological advances7–11 have been
proposed to improve the efficiency of GW calculations, in
particular, to overcome the limitation imposed by slowly
converging sums over empty electronic states.12 However,
an approach that is at the same time efficient, and thus
applicable to systems with several hundred electrons, and
whose numerical accuracy may be systematically controlled,
is not yet available, to the best of our knowledge.

In this Rapid Communication, we present a technique for
the evaluation of GW quasiparticle energies based on density
functional perturbation theory,13 (DFPT) which improves both
the computational efficiency and accuracy of existing method-

ologies. The unique characteristics of our framework are as
follows: (i) the use of a single parameter that systematically
controls the numerical accuracy of computed quasiparticle en-
ergies, and (ii) the use of the eigenvectors of the static dielectric
matrix as a basis for the frequency-dependent density-density
response function. We also utilize a Lanczos-chain algorithm14

to efficiently evaluate the Green’s function and polarizability
matrix elements over a wide frequency range, similar to what
was proposed in Ref. 7. Our computational procedure does
not require the calculation of empty electronic states, nor the
inversion and storage of large dielectric matrices. It also avoids
the use of plasmon pole models.

Within the GW approximation,1 quasiparticle energies
(Eqp

n ) are written as

Eqp
n = εn + 〈ψn|�̂GW

(
Eqp

n

)|ψn〉 − 〈ψn|V̂xc|ψn〉, (1)

where εn and ψn are eigenvalues and eigenvectors of the
Kohn-Sham (KS) Hamiltonian with the exchange-correlation
potential Vxc. The self-energy (�) at an imaginary frequency
iω is expressed in terms of the interacting Green’s function G

and the screened Coulomb interaction W :

�GW (r,r′; iω) = 1

2π

∫
dω′G(r,r′; i(ω − ω′))W (r,r′; iω′).

(2)

We further approximate G by the unperturbed Green’s function
G◦ and W by the screened Coulomb potential within the
random phase approximation (RPA), W ◦. We thus obtain �

in the non-self-consistent G◦W ◦ approximation, where W ◦ =
ε−1

RPA · v = v + v · χ · v; ε−1
RPA is the inverse dielectric matrix, v

is the bare Coulomb potential, and χ is the interacting density-
density response function, related to the unperturbed one, χ◦,
by a Dyson-like equation: χ = (1 − χ◦ · v)−1 · χ◦. In the cur-
rent notation v · χ (r,r′; iω) = ∫

dr′′v(r,r′′)χ (r′′,r′; iω), and
similarly for all other quantities. In the following the subscript
RPA is omitted for simplicity.

In numerical implementations it is convenient to consider
the Hermitian dielectric matrix ε̃ = v− 1

2 · ε · v
1
2 = 1 − v

1
2 ·
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χ◦ · v
1
2 ≡ 1 − χ◦; its inverse is given by ε̃−1 = v

1
2 · ε−1 ·

v− 1
2 = 1 + v

1
2 · χ · v

1
2 ≡ 1 + χ , where χ and χ◦ are related

by the equation

χ = (1 − χ◦)−1 · χ◦. (3)

Following Ref. 15, we use a spectral decomposition to
represent the inverse of the Hermitian dielectric matrix:

ε̃−1(r,r′) − 1 ≡ χ(r,r′) =
Neig∑
i

(
λ−1

i − 1
)

∗

i (r)
i(r′), (4)

where λi and 
i(r) denote eigenvalues and eigenvectors,
respectively.

It has been shown that dielectric eigenvalue spectra of non-
metallic solids, nanostructures, and molecular systems exhibit
a rapid decay of eigenvalues toward unity.15,16 Therefore one
expects a relatively small number Neig to be necessary to
numerically converge the summation of Eq. (4).

We write the self-energy in Eq. (2) as the sum of an
exchange (�x) and a correlation (�c) term, where �x = G◦v
and �c = G◦(v · χ · v). The integral defining �x leads to the
well-known expression of the Hartree-Fock exchange energy
and can be evaluated with the techniques of Ref. 17. From the
definition of χ , one has �c = G◦(v

1
2 · χ · v

1
2 ).

In principle, one could use a spectral decomposition of
χ at each imaginary frequency and obtain eigenvalues and
eigenvectors in the same way as those of ε̃ [Eq. (4)]. In
practice it is computationally more convenient to expand
χ in terms of the eigenvectors of χ (iω = 0): χ (r,r′; iω) =∑Neig

i,j cij (iω)
∗
i (r)
j (r′), where cij are expansion coeffi-

cients. By inserting this expression into that of �c one gets

〈ψn|�c(iω)|ψn〉 = 1

2π

Neig∑
i,j=1

∫
dω′cij (iω′)〈ψn(v

1
2 
i)|

× [Ĥ ◦ − i(ω − ω′)]−1|ψn(v
1
2 
j )〉, (5)

where |ψn(v
1
2 
j )〉 is a vector whose coordinate represen-

tation is 〈r|ψn(v
1
2 
j )〉 = ψn(r)

∫
dr′v

1
2 (r,r′)
j (r′), and Ĥ ◦

is the unperturbed KS Hamiltonian. The computation of the
matrix elements of the inverse, shifted Hamiltonian entering
Eq. (5) may be carried out by solving a linear system with
techniques based on DFPT.13 However, here we utilize a
more efficient approach based on the Lanczos-chain algorithm
proposed in Ref. 14 to obtain simultaneously solutions
over a broad frequency range. The same technique is also
employed to compute the expansion coefficients c◦

ij (iω) =∫

∗

i (r)χ◦(r,r′; iω)
j (r′)drdr′:

c◦
ij (iω) = 2

∑
v

{〈ψv(v
1
2 
i)|P̂c(Ĥ◦ − εv + iω)−1

× P̂c|ψv(v
1
2 
j )〉 + c.c.}, (6)

with P̂c being the projection operator on the unoccupied
electronic state manifold; the subscript v is used to indicate
the occupied electronic states. Once c◦

ij and thus the matrix χ◦

are computed, the matrix χ is obtained from Eq. (3) by simple
inversion. We note that the dimension of χ and χ◦ is Neig

and thus it is much smaller than that of the dielectric matrix
expanded in plane waves (PWs). After obtaining the self-

L=20 a.u.
L=25 a.u.
L=30 a.u.

FIG. 1. (Color online) Left: Imaginary (Im) and real (Re) part of
the correlation self-energy (�c) of the benzene molecule as a function
of imaginary frequencies (iω) computed using an increasing number
of eigenpotentials (Neig) in the definition of the dielectric matrix [see
Eq. (4)]. Right: The same quantities computed using Neig = 300 for
different unit-cell lengths (L).

energy for imaginary frequencies, its values at real frequencies
are computed by the analytic continuation technique proposed
by Rojas et al..18

We have obtained a scheme to compute the self-energy and
quasiparticle energies that does not require the computation of
empty electronic states, nor the inversion and storage of large
DMs, and whose accuracy is controlled by a single parameter:
the number of eigenvalues and eigenvectors used in the spectral
decomposition of the DM [Eq. (4)]. We have implemented
this scheme for norm-conserving pseudopotentials (PPs) as a
postprocessing module in the QUANTUM ESPRESSO distribution
of electronic-structure codes.19

We now turn to present results for several molecules and
clusters. Our first example is the benzene molecule. This
system has been investigated using the GW approximations
by several authors,7,10,20,21 and the calculation of its ionization
potential (IP) and electron affinity (EA) are known to be
very demanding from a computational standpoint, as the
convergence of DMs as a function of empty electronic states
is rather challenging when using conventional techniques. We
have employed the local density approximation (LDA) in DFT
calculations.22 Figure 1 shows the convergence of the real and
imaginary part of �c as a function of Neig included in the
decomposition of the DM. It is seen that both Re(�c) and
Im(�c) are well converged for Neig = 300. We note that the
size of the dielectric matrix would be at least three orders
of magnitude larger than Neig if it were represented using a
plane-wave basis set.

Figure 2 shows the convergence of vertical ionization
potentials (VIPs) of C6H6 as a function of Neig; our computed
values are already well converged (within 0.05 eV) for
Neig = 300. The inset of Fig. 2 presents a comparison between
calculations with Neig = 500, using an energy cutoff of 40 and
60 Ry, and it shows that a cutoff of 40 Ry yields computed
VIPs values converged within 0.05 eV. The value of the
first ionization potential, 9.23 eV, is in excellent agreement
with experiment23 (9.3 eV) and results in the literature,7,20

but slightly higher than the one recently reported in Ref. 10
(9.05 eV). The vertical electron affinity (VEA) exhibits a
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FIG. 2. (Color online) Differences between the calculated vertical
ionization potentials (VIPs) of benzene and experimental results as
functions of the number of eigenpotentials (Neig) included in the
definition of the dielectric matrix [see Eq. (4)]: circle, Neig = 100;
square, Neig = 200; diamond, Neig = 300; triangle up, Neig = 400;
and triangle left, Neig = 500. The inset shows the differences between
the calculated VIPs of benzene with Neig = 500 and experimental
results: Triangle left and triangle right show results obtained with 40
and 60 Ry, respectively.

convergence behavior similar to the VIP, and we obtain a value
of −0.8 eV, in fair agreement with experiment24 (−1.12 eV).
A fast convergence with respect to Neig is observed for all
VIPs; the largest error of the computed VIPs is less than 4%
compared to experiment.23 Our computed quasiparticle gap
(10.03 eV) is slightly smaller than those reported by Tiago
et al.20 (10.29 eV), Neaton et al.21 (10.51 eV), and Samsonidze
et al.10 (10.56 eV). We note that in Ref. 20 vertex corrections
were included in the calculation, and a plasmon pole model as
well as a relatively small cutoff for the dielectric matrix (6 Ry)
were used in Refs. 10 and 21.

We also checked the robustness of our implementation
by computing the first ionization potentials for a number
of small molecules chosen within a set recently investigated
with all electron (AE) calculations and localized basis sets.25

The computed VIPs, shown in Fig. 3, are in good agreement
with experiment (within 5%, except for NaCl). A detailed
discussion of the differences between PP and AE results will
be given elsewhere.26

We now turn to discussing the electronic properties of
diamondoids for which both experimental27 and quantum
Monte Carlo (QMC)28 results are available. We have studied
diamondoids constructed from adamantane cages C4n+6H4n+12

(n = 1,4) and two H-terminated, spherical diamond clusters,
C29H36 and C66H64, that has 328 valence electrons. The
parameters used in these calculations were the same as those of
the benzene molecule except that a larger cell of 40 a.u. length
was used.29 In Fig. 4 our calculated VIPs of diamondoids and
diamond clusters are compared to the experimental adiabatic
IPs27 and vertical IP,30 and to the previous QMC results.28

The calculated VIPs at the G◦W ◦ level are consistent with
experiments, being systematically larger than the measured
adiabatic IPs (0.34–0.66 eV), and decreasing as a function of
the cluster size. For the smallest diamondoid, i.e., C10H16,
our G◦W ◦ result is in a very good agreement with the

FIG. 3. (Color online) Differences between calculated vertical
ionization potentials (VIPs) and experimental values for a series of
small molecules. The lines are a guide to the eye.

experimental VIP. We also find fair agreement with QMC
calculations for C10H16 and C29H36, with differences of 0.3
and 0.7 eV, respectively. For a specific case, i.e., C29H36,
we tested the dependence of our results on the choice of
the ground-state wave functions and eigenvalues and on the
geometries optimized with different functionals. When using
geometries obtained at the PBE level of theory and PBE wave
functions and eigenvalues, we obtain a VIP which is smaller
by 0.2 eV than that obtained at the LDA level. Irrespective
of the functional used for ground-state calculations, we find
that the electron affinity is almost constant as a function of the
cluster size (−0.55 eV with the use of the LDA functional),
in agreement with x-ray absorption experiment.31 In addition,
our computed values of the EA are negative, consistent with
QMC results.28 In the absence of quasiparticle corrections to
LDA eigenvalues, the EA is very weakly dependent on cluster
size but it is positive (�0.86 eV).
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FIG. 4. (Color online) Computed and measured (Expt.) ionization
potentials of diamondoids and diamond clusters as a function of the
number of constituent carbon atoms. All computed values refer to
vertical ionization potentials (VIP), and were obtained using quantum
Monte Carlo (QMC), density functional theory (DFT) within the
local density approximation (LDA), and many-body perturbation
theory with the G◦W ◦ approximation. Measured adiabatic ionization
potentials (AIPs) are also shown.
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In summary, we have presented an approach to perform
GW quasiparticle energy calculations using a spectral decom-
position of dielectric matrices. The evaluation of unoccupied
one-particle states, and storage and inversion of large dielectric
matrices are avoided, as well as the use of plasmon pole
models; numerical approximations are controlled by a single
parameter. This distinctive feature allows one to converge
GW calculations in a systematic way. The workload of
the calculations presented here scales as Neig × Npwψ × N2

v ,
where Npwψ is the size of the basis set used to represent the
wave functions and Nv is the number of occupied states. This
scaling represents a substantial improvement over the scaling
of conventional approaches, N2

pwε × Nv × Nc, as in general
Neig 	 Npwε , Nv 	 Nc; Nc is the number of empty states
required to converge summations to compute the dielectric
matrix and the Green’s function, and Npwψ is typically much
smaller than the basis set necessary to represent the dielectric
matrix, Npwε . In addition, the technique presented here is
amenable to various levels of straightforward paralleliza-
tion, e.g., over eigenpotentials, frequencies, and electronic
states. The favorable scaling and the much reduced memory

requirements of our approach allowed us to carry out calcula-
tions with more than 300 electrons, using large basis sets, e.g.,
270 000 plane waves to represent electronic wave functions in
the case of diamondoids. Computed VIPs and VEAs of repre-
sentative systems show a good agreement with experiment and
results reported in the literature, when available. Although all
systems studied in this Rapid Communication are molecules
and clusters, the extension of our approach to periodic systems
is straightforward and underway. Work is also in progress
to generalize our approach to self-consistent calculations
and to use quasiparticle energies in the solution of the
Bethe-Salpeter equation based on density matrix perturbation
theory.32
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