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Spoof plasmon polaritons in slanted geometries
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We present a refined quasianalytical approach that provides a complete description of the modal characteristics
of the spoof plasmon modes sustained by a periodic array of slanted grooves. Specifically, our method yields deep
physical insight into the effect that the orientation of the supporting structure has on the dispersion properties
and field confinement capabilities of these geometrically induced surface electromagnetic waves.
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I. INTRODUCTION

The remarkable ability of surface plasmon polaritons1

(SPPs)—electromagnetic (EM) surface waves sustained at the
interface between a conductor and a dielectric—to guide and
localize light into the subwavelength scale has attracted a
great deal of attention during the last decade.2 Moreover, the
recent development of powerful nanofabrication and charac-
terization techniques has promoted a deep exploration of the
technological capabilities of these confined EM waves in areas
such as optoelectronics, materials science, and biosensing.3–5

Although most plasmonic research so far has focused on the
near-infrared and optical ranges of the EM spectrum (where
noble metals support highly confined surface waves), there
exists increasing interest in transferring SPP-based photonics
to lower frequencies, such as microwave or terahertz (THz).
However, in these spectral ranges, noble metals behave like
perfect electric conductors (PECs), whose surface charges
are able to screen any external EM excitation with extreme
efficiency, preventing the formation of tightly bound SPPs.

Since the middle of the last century, it has been well-known
that the binding of EM fields to a metal surface can be
increased by its corrugation.6–8 However, it was not until 2004
when the strategy to reproduce the modal characteristics of
plasmonic modes at low-frequency domains was clarified.
Using an elegant metamaterial approach, Pendry and co-
workers9 demonstrated that confined EM waves mimicking
SPPs can be created at the surface of a PEC through its
subwavelength structuring. This led to the spoof plasmon
concept, which was subsequently verified experimentally at
microwave10 and THz frequencies.11 Importantly, although the
first studies analyzing spoof SPPs considered simple planar
geometries,12–20 lately more complex waveguiding schemes
exploiting these surface EM modes have been proposed
theoretically21–26 and realized experimentally.27–37 All these
designs feature deep subwavelength transverse confinement of
microwave or THz waves while keeping long propagation dis-
tances, modal characteristics which are unattainable otherwise.
More recently, the spoof plasmon concept has been proposed
as a means to achieve broadband transparency,38 directional
beaming,39 and nonreciprocal transmission40 of EM radiation.

Contrary to conventional SPPs, whose attributes are dic-
tated by the intrinsic dielectric properties of their supporting
material, spoof plasmon modes are entirely governed by the
geometry of the corrugated surface sustaining them, provided
the surface acts as a perfect conductor. Thus, the geometrically
induced nature of spoof SPPs translates into the possibility

of tailoring their properties through design. Although a wide
range of spoof plasmon waveguides have been developed
so far, most research efforts have explored the dependence
of their performance on the dimensions of the indentations
decorating them. In this paper, we introduce a new degree of
freedom in these designs by investigating theoretically how the
orientation of the surface structuring modifies the dispersion
and field confinement capabilities of spoof SPPs. Specifically,
we present an insightful modal expansion formalism that
enables us to analyze the spoof plasmon modes sustained by
a periodic array of slanted grooves, the simplest geometry
where orientation effects come into play. Note that although
slanted gratings have been extensively used in conventional
waveguide coupling41–44 and SPP excitation,45 their spoof
plasmon guiding capabilities have not yet been investigated.
Our approach yields approximate analytic expressions for the
spoof SPP dispersion relation and associated EM fields, which
gives a deep physical insight into their dependence on the
angle of orientation of the grooves. Finally, we extend our
method to sawtooth and triangular indentations, showing the
validity of our theoretical results for these geometries through
the comparison with full field numerical calculations.

II. THEORETICAL APPROACH

Figure 1 depicts the structure under consideration. It is
a PEC block whose surface is perforated with a periodic
arrangement of slanted grooves. Four parameters characterize
the geometry: the array pitch d, the width a, and the height
h of the grooves, and their orientation angle θ . Note that
a (h) is defined at the groove’s bottom (center plane), and
that θ is measured from the surface normal. Moreover, as
the structure is perfectly conducting, all the lengths in the
system are scalable and we can take the period d as the
reference length. We have developed a theoretical approach to
investigate the spoof SPP modes supported by this structure.
Our method is based on the modal expansion technique,46

which has been exploited in the study of spoof plasmons in
straight geometries,47 as well as in other fields of research
such as double fishnet metamaterials48 or the extraordinary
transmission phenomenon.49

We divide the geometry in Fig. 1 into two different regions
and express the EM fields in each of them in terms of the
most convenient set of solutions of Maxwell’s equations. Note
that the structure presents translational symmetry along the
y direction, parallel to the grooves. This allows us to restrict our
analysis to the perpendicular plane where light polarizations
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FIG. 1. (Color online) Schematic view of the most general
geometry analyzed in this paper: a periodic array of slanted grooves
perforated in a PEC surface. The parameters defining the structure
are the array pitch d , the groove width a, the groove height h, and
the slant angle θ . The physical interpretation of the various terms
in Eq. (5), which expresses the continuity of the EM fields at the
interface between regions I and II, is also sketched.

are decoupled, and consider only p-polarized fields, which
are fully described through the y component of the magnetic
field (the only nonzero), Hy . The electric field components can
be straightforwardly obtained by applying the Maxwell curl
equations on Hy . Taking advantage of the periodic character
of the system, we restrict our analysis to a single unit cell of
length d. Thus, in region I, which corresponds to the free space
above the PEC structure, Hy can be expanded into diffracted
plane waves, having

HI
y (x,z) =

∞∑
n=−∞

rnY
I
n e−qI

n zφn(x), (1)

where φn(x) = eiknx/
√

d is the nth diffraction order wave
function, kn = kx + n 2π

d
and qI

n = √
k2
n − k2

ω are its wave-
vector components, and Y I

n = −ikω/qI
n is the modal admit-

tance. Note that we have introduced the free-space wave-vector
modulus kω = ω/c = 2π/λ, and set the zero-order parallel
wave vector k0 = kx . Equation (1) is evaluated using the
unprimed coordinates (x,z), defined as indicated in Fig. 1.

Region II ranges over both the PEC block, where both
the electric and magnetic fields vanish, and the surface
indentations, where EM fields can be expressed in terms of
groove waveguide modes. These must be evaluated using the
prime coordinates (x ′,z′), whose origin is located at the center
of the groove bottom and are slanted at an angle θ with
respect to the unprimed ones (see Fig. 1). The primed and
unprimed coordinates can be related simply to one another by
x ′ = cos θx + sin θz, y ′ = y, and z′ = h − sin θx + cos θz. In
terms of the primed coordinates, the y ′ component of the
magnetic field within the groove reads

HII
y ′ (x ′,z′) =

∞∑
m=0

Y II
m Am cos

(
qII

m z′)χm(x ′), (2)

where χm(x ′) = √
(2 − δm0)/a cos[mπ

a
(x ′ + a

2 )] is the wave
function for the mth guided mode.50 The corresponding normal
wave vector and modal admittance are qII

m = √
k2
ω − (mπ/a)2

and Y II
m = −ikω/qII

m , respectively.
As a result of the modal expansion procedure, the only

unknowns of the system are the set of coefficients {rn,Am}.
These are the only ingredients needed to construct the EM

fields in both regions. They can be calculated by imposing
continuity conditions on the fields at the interface between
regions I and II (z = 0). At this boundary, the x component
of the electric field must be continuous across the whole
interface, whereas the y component of the magnetic field is
only continuous at the groove’s opening. In order to perform
the field matching, EII

x (x,z = 0) (in the unprimed frame) must
be calculated from the primed electric field components. Thus,
the two continuity conditions can be written as

EI
x (x,0) = cos θEII

x ′ (cos θx,h − sin θx)

− sin θEII
z′ (cos θx,h − sin θx), (3)

HI
y (x,0) = HII

y ′ (cos θx,h − sin θx). (4)

In order to remove the x dependence of these equations, we
project Eq. (3) into diffracted plane waves, φn(x), and Eq. (4)
into groove wave-guide modes, χm(cos θx). The resulting
algebraic equations can then be combined and rewritten as
a set of m × m system of equations of the form∑

m′
(Gmm′ − εmm′ )Em′ = 0, (5)

where the unknowns, Em = Am sin(qII
m h), are linked to the

expansion coefficients in Eq. (2), and can be interpreted as the
m-modal amplitude of Ex at z = 0.49 The term

εmm′ = Y II
m′

sin
(
qII

m′ h
) ∫ a/2 cos θ

−a/2 cos θ

χ∗
m(cos θx) cos

[
qII

m′ (h − sin θx)
]

×χm′(cos θx) cos θ dx (6)

describes the bouncing back and forth of the m′th waveguide
mode inside the indentations and its coupling to χm(x) (with
m �= m′ in general) at the groove opening. For θ = 0◦, Eq. (6)
gives εmm′ = Y II

m′ cot(qII
m′ h)δmm′ . This recovers the result for

straight geometries, in which the reflection of the groove
waveguide modes at the system interface does not lead to
the overlapping among EM fields associated with different
m’s.47

The term Gmm′ in Eq. (5) reflects the EM coupling between
m and m′ groove waveguide modes through diffracted waves.
It takes into account the radiation emitted by χm′(x cos θ ) into
free space, and its collection back at the structure indentations
by χm(x cos θ ). It has the form

Gmm′ =
∑

n

Y I
n Smn[cos θXnm′ − sin θZnm′], (7)

where

Smn =
∫ a/2 cos θ

−a/2 cos θ

χ∗
m(x cos θ )φn(x) cos θ dx (8)

gives the overlapping between diffracted waves and waveguide
modes at the groove opening. Equation (7) describes the EM
interaction among the fields at different indentations. The
physical interpretation of Gmm′ and εmm′ is sketched in Fig. 1.
The elements

Xnm′ = 1

sin
(
qII

m′ h
) ∫ a/2 cos θ

−a/2 cos θ

φ∗
n(x) sin

[
qII

m′ (h − sin θx)
]

×χm′ (cos θx) dx, (9)
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Znm′ = −im′πY II
m′

akω sin
(
qII

m′ h
) ∫ a/2 cos θ

−a/2 cos θ

φ∗
n(x) cos

[
qII

m′ (h − sin θx)
]

× tan

[
m′π
a

(
cos θx + a

2

)]
χm′ (cos θx) dx, (10)

weight the contributions of EII
x ′ and EII

z′ to Eq. (4), re-
spectively. At θ = 0◦, both coordinate systems are parallel
and the continuity equation reads EII

x ′ = EII
x . In this limit,

Xnm′ = S∗
m′n and Eq. (7) yields Gmm′ = ∑

n Y I
n SmnS

∗
m′n. This

reproduces the result for straight corrugations. Let us stress that
all the overlap integrals above can be calculated analytically
(see Appendix), hence forming a closed and elegant theoretical
description of the system.

The spoof SPP modes supported by the structure shown
in Fig. 1 correspond to the nontrivial (Em �= 0) solutions of
Eq. (5). Specifically, the spoof plasmon dispersion relation is
given by the values of the parallel wave vector kx and frequency
ω, which produce a vanishing determinant associated with
these continuity equations. In general, this problem must be
solved numerically by scanning over kω and kx and searching
for zeros in the determinant associated with Eqs. (5). However,
an analytical expression for ω = ω(kx) can be obtained
under two assumptions.49 First, for deeply subwavelength
indentations (λ � a), only the lowest waveguide mode is
propagating inside the grooves. This allows us to restrict the
sum in Eq. (4) to the m = 0 term, as it governs the EM fields
behavior inside the indentations. Note that this assumption is
more restrictive in slanted geometries than in the straight case,
as it disregards the EM coupling among different waveguide
modes described by Eq. (6). Second, in the limit of wavelengths
much larger than the structure period (λ � d), diffraction
effects can be neglected and we can keep only the n = 0
order in Eq. (3). This is equivalent to describing the array
of indentations as a metamaterial structure characterized by a
homogeneous permittivity and permeability.

Under the two assumptions discussed above, the dispersion
relation for the spoof SPPs in slanted geometries can be written
in the same form as for straight indentations:12

kx(ω) = kω

√
1 +

(
aeff(kω,θ )

d

)2

tan2(kωh), (11)

where we have introduced an effective groove width
aeff(kω,θ ) = a sinc−1[(kωa/2) tan θ ] 	 a[1 + (π2/6)(a tan θ/

λ)2]. The transformation of Eqs. (5) to (11) is shown in the
Appendix. According to Eq. (11), the spoof SPP asymptotic
behavior (kx → ∞) is not affected by the rotation of the
indentations. This indicates that it is the actual dimension of
the grooves, h, and not their depth along the direction normal
to the PEC surface, h cos θ , which controls the spoof SPP
characteristics.

Equation (11) predicts an effective widening of the indenta-
tions with the slant angle through aeff(kω,θ ). This enlargement
does not only reflect the fact that the slanted grooves are wider
at their opening than at their bottom, a/ cos θ > a, but also the
sensitivity of the spoof SPP fields to the groove dimensions. It
is important to note that although ω(kx → ∞) is unaffected by
the rotation of the groove, the associated widening of the slit
increases the slope with which the spoof SPP band approaches
this asymptote. This alters the curvature of the dispersion

relation and makes the frequency at the edge of the first
Brillouin zone (kx = π/d) dependent on θ . Let us stress that
despite its approximate character, Eq. (11) provides physical
insight into the dependence of the spoof SPP characteristics
on the various geometric parameters defining the structure in
Fig. 1.

III. RESULTS AND DISCUSSION

Figure 2 plots the dispersion relation of the spoof plasmon
modes supported by a periodic array of grooves of width
a = 0.4d and height h = 0.4d, and three different orientations
θ : 10◦ (blue), 30◦ (green), and 45◦ (red). Note that only
confined bands are rendered, while the leaky region above
the light line is shaded in gray. The spoof SPP bands were cal-
culated including as many diffraction orders (nmax = 10) and
waveguide modes (mmax = 2) as needed to reach convergence
in the solution of Eq. (5). The main panel of Fig. 2 shows that
by slanting the grooves, the spoof plasmon dispersion relation
shifts to higher frequencies. This trend is predicted by Eq. (11),
where the effective widening of the indentation’s size with θ

leads to a faster growth of the modal frequency with increasing
parallel wave vector. Let us stress that the 10◦ band virtually
overlaps with the one for straight grooves (not shown). This
observation is also in good agreement with our approximate
expression for aeff(kω,θ ), which for the geometric parameters
considered yields an effective enlargement of only 5% in the
groove’s width at the spoof SPP band edge (kx = π/d).

The left (right) inset of Fig. 2 displays the normalized
frequency, d/λ, evaluated at the spoof SPP band edge as a
function of the slant angle and the groove’s width (height) for
h = 0.4d (a = 0.4d). In both panels, colors render d/λ in a
linear scale from 0.15 (blue) to 0.43 (red). For all the groove
dimensions considered, increasing the slant angle blueshifts
the normalized frequency and moves the spoof plasmon bands
closer to the light line. As stated previously, this originates

FIG. 2. (Color online) Spoof SPP dispersion relation for an array
of grooves of dimensions a = 0.4d and h = 0.4d , and three different
orientation angles θ . The black line plots the light line, kω = kx . Left
inset: Normalized spoof SPP frequency, d/λ, evaluated at the band
edge (kx = π/d) as a function of the slant angle and the groove width
for h = 0.4d . Right inset: The same as before but as a function of
the groove height for a = 0.4d . In both insets the linear color scale
ranges from 0.15 (blue) to 0.43 (red).
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from the effective enlargement of the width of the indentations
with θ . The left inset of Fig. 2 indicates that this trend is more
pronounced for wide grooves (a � 0.4d) than for narrow ones,
which can be explained in terms of aeff(kω,θ ). aeff grows as
the square of a tan θ/λ and hence the spoof plasmon modes
sustained by wide indentations are more sensitive to variations
in their orientation. On the other hand, the right inset of Fig. 2
shows that deep grooves (h � d) support spoof SPPs whose
modal characteristics depend very weakly on θ . This can be
understood from Eq. (11), which, for large h, is governed by
the tan(kωh) divergent term. For shallower indentations, the
competition between width and depth effects makes the spoof
SPPs less robust to variations in the slant angle.

In order to test the validity of our theoretical approach
and to investigate its convergence with the number of groove
waveguide modes, mmax, we compare our quasianalytical re-
sults with finite-element simulations. The commercial program
COMSOL MULTIPHYSICS was used to calculate numerically the
spoof SPP bands for different geometries, which were then
contrasted to the solution of Eq. (5) for mmax = 0, 1, and
2. In the upper panel of Fig. 3, this comparison is shown
for indentations of dimension a = 0.3d and h = 0.5d, and
two different orientations, 10◦ (green line) and 45◦ (red line).
For small θ , the truncation of the sum in Eq. (2) modifies
the spoof SPP dispersion relation by a very small amount,
and considering only the lowest (m = 0) groove waveguide
mode yields accurate results. On the other hand, for larger
slant angles, more waveguide modes are required to reach
convergence. This observation can be linked to the effective
enlargement of the groove width with increasing θ . Note
that the validity of the m = 0 approximation lies in the fact
that for narrow indentations, higher waveguide modes are
evanescent. This assumption also fails when the grooves are
highly slanted, as the complex field pattern at the indentation
opening cannot be correctly described through the lowest
waveguide mode. As predicted by Eq. (6), the field matching
at the groove opening gives rise to the EM coupling among
different waveguide modes. This effect is enhanced for large
θ , which also explains the failure of the m = 0 approximation.
Despite these limitations, it is remarkable that as shown
in the upper panel of Fig. 3, spoof SPP bands calculated
with mmax = 2 are in excellent agreement with numerical
simulations.

The lower panels of Fig. 3 depict the x component of the
electric field evaluated at the edge of the first Brillouin zone for
a = 0.3d and h = 0.5d, and a range of orientation angles. All
the field maps were calculated by considering only the lowest
groove waveguide mode in the field expansion. As θ increases,
the electric field pattern becomes more asymmetric at the
groove opening. This effect is accompanied by the enlargement
of the spread of the fields in region I, a consequence of the
reduced confinement of the spoof SPP modes. Note that as a
result of the blueshift experienced by the spoof SPP bands with
increasing θ , the fields in Fig. 3 corresponding to geometries
with a greater slant angle are evaluated at higher frequencies.
As a consequence of the m = 0 approximation, the fields inside
the indentation remain very similar with increasing θ , only
undergoing a rotation. Moreover, Ex becomes increasingly
mismatched at the interface between regions I and II as θ

increases, which is a clear indication of the failure of the

FIG. 3. (Color online) Upper panel: Spoof SPP dispersion rela-
tion for indentations with a = 0.3d , h = 0.5d , and two different slant
angles: 10◦ (green) and 45◦ (red). Bands obtained considering one
(solid line), two (dashed line), and three (dotted line) waveguide
modes in Eq. (5) are plotted, together with simulations results
(square dots). Lower panels: Ex evaluated at kx = π/d for four
different groove orientations. Fields were calculated using the single
waveguide mode (mmax = 0) approximation. In all cases the linear
color scale ranges from blue (minimum) to red (maximum).

approximation at large slant angles. Note that the fields in Fig. 3
are evaluated at the band edge (kx = π/d), which maximizes
the field confinement and localization within the groove.

To further investigate spoof SPPs in slanted geometries, it
is convenient to introduce a new parameter b. This is defined
as the width of the groove at its opening, related to a via
b = a/ cos θ . So far we have analyzed the effect of rotating a
rectangular groove in a metal surface by an arbitrary θ . As a
variation of this geometry, it is possible to increase the slant
angle until the shorter side of the groove vanishes. At this point,
the indentation forms a triangular dent carved into the PEC
surface. This structure is realizable provided (2h)2 + a2 � d2,
and the relation between the orientation angle θ and a and h

reads

θ = arctan

(
2h

a

)
. (12)
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FIG. 4. (Color online) Upper panel: Spoof SPP dispersion rela-
tion for triangular grooves with b = 0.7d , and three different angles:
15◦ (blue), 30◦ (green), and 45◦ (red). The inset shows d/λ at the band
edge as a function of b/d and θ . The color scale ranges linearly from
0.42 (blue) to 0.5 (red). Note that these results have been compared
with simulations and been found to be in a good agreement. Lower
panel: |E| at kx = π/d for a sawtooth surface with b = d and θ = 45◦

calculated for mmax = 2. The corresponding numerical field map
is also shown. In both panels the color ranges linearly from blue
(minimum) to red (maximum).

A schematic of this geometry is shown in the lower inset
of the top panel of Fig. 4. Note that our description is
limited to right-angled triangular dents. Thus, for fixed b,
as θ increases the possible triangles that can be modeled by
our theoretical approach trace out a semicircle. Moreover,
by specifying a right-angled triangular groove, we reduce
the number of geometric parameters defining the structure
from 3 to 2. Note that in general there are now more
than one set of parameters that specify a single triangular
geometry.

The top panel of Fig. 4 renders the dispersion relation
of the spoof plasmon modes supported by a periodic array
of triangular dents of width b = 0.7d, and three different
orientation angles, 15◦ (blue line), 30◦ (green line), and 45◦
(red line). As expected, increasing θ redshifts the dispersion
relation, which departs further from the light line. This results
from the fact that for a fixed groove width, larger orientation
angles translate into an increase of the indentation vertical
depth. Thus, for larger θ , EM fields penetrate deeper into the
corrugated PEC surface, which yields greater confinement of
the spoof SPP modes.

The inset to Fig. 4 displays the normalized frequency
evaluated at the band edge for a wide range of groove widths
and orientation angles. Colors render d/λ in a linear scale
from 0.42 (blue) to 0.5 (red). The dents with small b are very

shallow for all θ , and hence the spoof SPP dispersion relation
lies close to the light line. For triangular grooves with higher
b, the decrease of the normalized frequency with increasing θ

is clearly visible. This indicates the binding of the spoof SPPs
to the indentations associated with the effective deepening
of the structure corrugation. Note that for all widths, d/λ

reaches its lowest value for θ = 45◦, as it is at this point that
the triangular dent is at its deepest with respect to the PEC
surface. Although it is not shown in Fig. 4, full field numerical
calculations were also performed for triangular indentations
and the results were found to be in a good agreement with
our model. As in the case of slanted grooves, for larger θ

the convergence is worse, but of a similar size to that shown
in Fig. 3.

Finally, we explore triangular dents having b = d. In this
limit, the PEC structure supporting spoof SPPs is no longer a
planar interface decorated with indentations, but a completely
triangular sawtooth surface. The inset of Fig. 4 shows that the
spoof plasmon modes in this geometry are the most sensitive to
changes in the orientation angle. We focus on the case θ = 45◦,
which yields the lowest modal frequency (d/λ ∼ 0.42 at the
band edge) and hence the highest field confinement. The lower
two panels of Fig. 4 depict |E| evaluated at kx = π/d for a
sawtooth surface with b = d and θ = 45◦. Two calculations
are shown: quasianalytical results for mmax = 2, and COMSOL

simulations. The former were obtained through the asymmetric
sum of the electric field patterns that our approach yields for
the two possible groove orientations (θ = ±45◦) that give rise
to the geometry under consideration. For the θ = +45◦ (−45◦)
orientation, the left (right) groove wall in Fig. 4 corresponds
to the original groove bottom before rotation. Despite the
evident field discontinuity at the structure interface, Fig. 4
demonstrates that by including only 3 groove waveguide
modes, our quasianalytical calculations reproduce the main
features of the numerical field pattern. In agreement with
simulations, our theory predicts that spoof SPPs in sawtooth
surfaces lead to the strongest field enhancements at the upper
corners of the structure corrugation. This is qualitatively
different from what is observed in rectangular grooves, where
the hot spots are located within the indentations decorating the
PEC surface.

Let us stress that in this work we have modeled the metal
permittivity using the PEC approximation. In this way, the
geometries analyzed herein can be scaled in size, making
possible the exploration of spoof SPPs in different frequency
ranges: microwave, terahertz, or optical. In the latter case,
the dielectric function of noble metals such as gold or silver
acquires low values, departing from the PEC behavior. This
enables EM fields to penetrate into the metal structure, leading
to the emergence of conventional plasmonic phenomena in the
system. These effects are omitted in this paper. The interplay
between pure geometric and intrinsic dielectric effects in
optical spoof plasmons is currently being explored as a means
to improve the waveguiding performance of conventional
plasmonic devices.51

IV. CONCLUSIONS

In conclusion, we have developed a refined quasianalytical
approach that allows the theoretical investigation of spoof
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plasmon polaritons supported by a perfectly conducting
surface decorated by a periodic array of slanted grooves.
We have presented an approximate analytical expression that
provides an insightful description of the dependence of the
spoof plasmon dispersion relation on the groove orientation.
Combining theory and simulations, a comprehensive study
of the effect of the groove rotation in rectangular geome-
tries has been performed. Finally, we have shown that our
method can be applied to the analysis of the spoof plasmon
modes sustained by triangular indentations and sawtooth
surfaces.
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APPENDIX

In this Appendix, we provide expressions for the evaluated
overlap integrals and the form of these equations that leads to
the dispersion relation given by Eq. (11). The overlap integrals
from Eqs. (6), (8), (9), and (10) can be written as follows:

Smn =
√

2 − δm0

ad

iqI
n cos θ

qI 2

n − (
mπ cos θ

a

)2

[
exp

(
− i

a

2
qI

n sec θ

)
− (−1)m exp

(
i
a

2
qI

n sec θ

)]
, (A1)

εmm′ = Y II
m′ cos θqII

m′ sin θ

√
(2 − δm0)(2 − δm′0)

a sin
(
qII

m′ h
) {

sin

[
qII

m′

(
h + a

2
tan θ

)]
− (−1)m+m′

sin

[
qII

m′

(
h − a

2
tan θ

)]}

× qII 2

m′ sin2 θ − (
π cos θ

a

)2
(m2 + m′2)

(
qII 2

m′ sin2 θ − (
π cos θ

a

)2
(m + m′)2

)(
qII 2

m′ sin2 θ − (
π cos θ

a

)2
(m − m′)2

) , (A2)

Xnm′ =
√

2 − δm′0

4ad
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(
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, (A3)
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√
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. (A4)

Next, when calculating the analytic dispersion relation only
the m = n = 0 modes are considered, under the assumption
that λ � d � a, and Eq. (5) can be reduced to

G00 − ε00 = Y I
0 S00(cos θX00 − sin θZ00) − ε00 = 0,

(A5)

where

Y I
0 = −ikω√

k2
x − kω

, S00 =
√

a

d
, X00 =

√
a

d
sec θ,

ε00 = −i cot(kωh)sinc[(kωa/2) tan θ ].

Note that Z00 = 0, as it is proportional to m2. Thus, after some
algebra, Eq. (11) is obtained.
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