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We present a theory of electronic properties of gated triangular graphene quantum dots with zigzag edges as
a function of size and carrier density. We focus on electronic correlations, spin, and geometrical effects using a
combination of atomistic tight-binding, Hartree-Fock, and configuration interaction methods (TB + HF + CI),
including long-range Coulomb interactions. The single-particle energy spectrum of triangular dots with zigzag
edges exhibits a degenerate shell at the Fermi level with a degeneracy N.qe. proportional to the edge size. We
determine the effect of the electron-electron interactions on the ground state, the total spin, and the excitation
spectrum as a function of a shell filling and the degeneracy of the shell using TB + HF + CI for Negge < 12
and approximate CI method for Nege. 2> 12. For a half-filled neutral shell we find spin-polarized ground state for
structures up to N = 500 atoms in agreement with previous ab initio and mean-field calculations and in agreement
with Lieb’s theorem for a Hubbard model on a bipartite lattice. Adding a single electron leads to the complete spin
depolarization for Ngee < 9. For larger structures, the spin depolarization is shown to occur at different filling
factors. Away from half-fillings excess electrons(holes) are shown to form Wigner-like spin-polarized triangular
molecules corresponding to large gaps in the excitation spectrum. The validity of conclusions is assessed by a
comparison of results obtained from different levels of approximations. While for the charge-neutral system all
methods give qualitatively similar results, away from the charge neutrality an inclusion of all Coulomb scattering

terms is necessary to produce results presented here.
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I. INTRODUCTION

Graphene is an atomically thick layer of carbon atoms
arranged in a honeycomb lattice."”!° Due to its unique
electronic properties and promising potential for applica-
tions, there is a growing research interest in graphene-
based nanostructures.'®"'? Attempts at fabricating graphene
nanostructures with well-defined shape and edge type have
been reported starting from the graphene layer and using top-
down techniques, >~ bottom-up techniques?*-? starting from
carbon-based molecules, as well as starting from graphane and
removing hydrogen atoms using AFM tips.3!-3

The work on graphene nanostructures is motivated by the
expectation that finite-size effects significantly modify elec-
tronic properties of graphene. As a result of size quantization,
an energy gap opens up, making graphene a semiconductor
with a gap tunable from THz to UV. The energy gap can
be tuned by changing not only the size but also the shape
and the type of edge, allowing us to control the material’s
optical properties.*>7 Two types of edges in graphene are
of particular interest due to their stability: armchair and
zigzag. For zigzag edges, edge states in the vicinity of
the Fermi energy appear. This is related to breaking the
sublattice symmetry between the two types of atoms in the
unit cell of the graphene honeycomb lattice. The presence of
edge states was predicted theoretically**>33-4¢ and confirmed
experimentally.*’~* These edge states form a degenerate band
in graphene ribbons*3**! or can collapse to a degenerate
shell in graphene quantum dots.3>#>#6031 Tt was previously
shown that the degeneracy is equal to the difference between
the number of atoms corresponding to two sublattices in
the bipartite lattice.*>*34%39 In particular, the geometry that
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maximizes the imbalance between the two sublattices is a
zigzag edge triangle where the degeneracy of the zero-energy
shell is proportional to the number of atoms on the one
edge.*0 This presents a unique opportunity to design a quantum
system with a macroscopic degeneracy, analogously to the
two-dimensional electron gas in a strong magnetic field.

While fabricating and measuring triangular graphene
quantum dots with well-defined edges®*?¢?*3 remains a
challenge, the theory of triangular graphene quantum dots
(TGQD) with zigzag edges was developed by several
groups.??-3%:37:42-44:46,50-64 Tn particular, the macroscopically
degenerate zero-energy band and the corresponding wave
functions were explicitely constructed.*® For a half-filled
shell, TGQDs were studied by Ezawa using the Heisenberg
Hamiltonian;** by Fernandez-Rossier and Palacios*® using the
mean-field Hubbard model; by Wang, Meng, and Kaxiras>
using density functional theory (DFT); and Giiclii et al.’!
using exact diagonalization techniques. It was shown that the
ground state is fully spin polarized, with a finite magnetic
moment proportional to the shell degeneracy. This finding is in
agreement with Lieb’s theorem on magnetism of the Hubbard
model for bipartite lattice systems.®

The effect of defects and disorder was also
investigated.*>>7>% In particular, Voznyy et al>® have
shown by using ab initio methods that hydrogen-passivation
stabilizes zigzag edges in TGQD over the pentagon-heptagon
reconstructed edges.*® It was also proved that the zero-energy
shell survives when TGQD is deformed to trapezoidal shape.*®
Ezawa studied the stability of magnetization against disorder.
He considered three types of randomness: in a hopping
integral, a site energy, and lattice defects.”’ He proved that
the magnetism is still governed by Lieb’s theorem but the
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number of degenerate states changed by the number of lattice
defects. Some of us have shown in Ref. 51, by use of methods
beyond mean-field approximations, that the magnetization
is unstable with respect to additional charge, leading to a
complete spin depolarization. The spin depolarization was
shown to significantly influence transport properties, blocking
current through the graphene quantum dot due to the spin
blockade.”! It was also shown that by changing the population
of the degenerate shell using a gate, one can simultaneously
control magnetic and optical properties, determined by strong
electron-electron and excitonic interactions.?’

In this work we use improved configuration-interaction
(CI) tools to extend our previous results®!' regarding the role
of electron-electron interactions, magnetism, and correlations
in TGQDs to larger structures. We investigate the electronic
properties as a function of size and filling factor of the
degenerate shell by using a combination of tight-binding (TB),
Hartree-Fock (HF), and configuration interaction methods
(TB 4+ HF + CI). Our many-body Hamiltonian includes,
in addition to the on-site interaction term, all scattering and
exchange terms within next-nearest neighbors and all direct
interaction terms in the two-body Coulomb matrix elements.
Using full CI combined with the TB + HF method we
demonstrate that the ground state for the charge-neutral system
has maximally polarized edge states for structures consisting
of up to 200 atoms with the number of degenerate edge states
Negge < 9. By analyzing a spin-flip excitation spectrum of
the spin-polarized ground state, we verify the spin-polarized
ground state for up to 500 atoms or Negge = 20. These results
for a system with long-ranged Coulomb interaction appear
to be consistent with Lieb’s theorem for the Hubbard model.
Using TB + HF + full CI method for TGQD charged with
an additional electron and a size of up to N = 200 atoms it is
shown that a complete spin depolarization predicted earlier by
some of us’!' exists only up to a critical size. The critical
size is established by studying the stability of a charged
spin-polarized shell to spin-flip excitations. It is shown that
for sizes up to the critical size the spin wave and minority spin
electron form a bound state, a trion, signaling the tendency to
the depolarization. For sizes exceeding the critical size the spin
waves are unbound and the spin-polarized state is the ground
state up to the sizes studied (N = 500 atoms). For TGQD
structures above the critical size, depolarization effects away
from the half-filling are observed. Results of TB 4+ HF + CI
calculations allow us to extract the excitation gap as a function
of a shell filling. It is found that the largest gaps correspond to
the half-filled spin-polarized shell and special filling fractions.
At these special filling fractions, we predict a formation of
Wigner-like spin-polarized molecules, related to long-range
Coulomb interactions and a triangular geometry of graphene
quantum dot. Finally, we compare results obtained at different
levels of approximations. We show that, for the charge-neutral
system, the Hubbard, extended Hubbard, and fully interacting
models are in good qualitative agreement. On the other hand,
away from the half-filling, only a fully interacting model is
able to correctly capture the effect of correlations.

The paper is organized as follows. In Sec. II, we describe
our model. Section III contains analysis of the ground-state
spin and correlations as a function of size and filling factor of
the degenerate shell. In Sec. IV, we compare results obtained
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within different levels of approximations. In Sec. V, we
summarize our results.

II. MODEL OF A GRAPHENE TRIANGULAR
QUANTUM DOT

Graphene is a two-dimensional honeycomb crystal formed
by carbon atoms on two interpenetrating hexagonal sublattices.
The unit cell thus contains two carbon atoms. The distance
between nearest-neighbor atoms is @ = 1.42 A. By using
vectors R = na; + ma, with n,m integers and primitive unit
vectors defined as a;, = a/2(:|:«/§,3), one can obtain the
positions of all the atoms in the structure. By cutting the
graphene lattice in three zigzag directions, an equilateral
triangle can be obtained, as shown in Fig. 1. Such a system has
a broken sublattice symmetry with two properties: (i) all edge
atoms (with only two bonds) belong to the same sublattice and
(ii) the difference between the number of atoms belonging to
each sublattice is proportional to the number of atoms on one
of the three edges.

Each carbon atom has four valence electrons. Three of them,
ons, py, and p, orbitals, form sp2 bonds with the three nearest
in-plane neighbors. They are strongly bound and responsible
for mechanical properties of graphene. The remaining fourth
valence electron on each carbon atom p, orbital, perpendicular
to the plane of graphene, is weakly bound and determines
electronic properties of the system. Single-particle properties
of graphene can be described by using one orbital tight-
binding (TB) Hamiltonian.%® We have previously shown that,
within the TB model in the nearest-neighbors approximation,
TGQDs with zigzag edges exhibit an energy gap, with a
degenerate shell at the Fermi (zero) energy, with a degeneracy
proportional to the length of an edge.*® An example of TB
energy levels for a structure consisting of 97 atoms with
Negge = 7 degenerate states is shown in Fig. 2(a). Our goal is
to study the role of electron-electron interactions for electrons
occupying this degenerate shell. Solving the full many-body

FIG. 1. (Color online) Triangular graphene quantum dot with
zigzag edges. There are eight edge atoms (with two bonds) on one
edge. Red (light gray) and blue (dark gray) colors distinguish between
two sublattices in the honeycomb graphene lattice. Structure consists
of a total of N = 97 atoms
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FIG. 2. (a) Single-particle nearest-neighbor tight-binding (TB)
energy levels. The zero-energy shell on the Fermi level is perfectly
degenerate. (b) Positively charged system with an empty degenerate
band after self-consistent Hartee-Fock (HF) mean-field calculations
described by a single Slater determinant (TB + HF model). (c) Oc-
cupation of empty degenerate HF quasiorbitals by electrons. The
inset pictures schematically show the excess charge corresponding to
each of the three model systems. The ground state and the total
spin of the system of interacting electrons can be calculated by
using the configuration interaction (CI) method, described in Sec. II
(TB + HF + CI). The charge neutrality corresponds to a half-filled
degenerate band (not shown).

problem even for such a small structure with 97 atoms is
not possible at present. However, due to the energy gap
separating the valence band and degenerate states, the valence
electrons that do not occupy the degenerate band can be
treated in a mean-field approximation. The remaining electrons
occupying the degenerate shell must, however, be treated using
a configuration-interaction method (CI). Therefore, we use a
TB + HF 4 CI approach that allows us to treat the electronic
correlations for electrons in the degenerate shell and their
interaction with valence electrons at the mean-field level.

We start from the full many-body Hamiltonian for inter-
acting electrons on the p, orbitals of graphene. It can be
written as

1 N
H=) tusclas +5 Y GilVIkDecjycoas. (1)
i,l,o ij.k,l,
oo’

where the operator cja creates an electron on the i-th p,

orbital with spin o, 7;, is a hopping integral that describes
the probability of scattering of electron on the /-th p, orbital
¢, tothe i-th p, orbital ¢;. The second term describes two-body
Coulomb interactions between p, electrons. Note that, at this
stage, the unknown hopping terms 7;;, do not include the effect
of electron-electron interactions of p, electrons.
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A. Mean-field approximation for infinite graphene sheet

Let us, first, write the Hamiltonian for graphene, given by
Eq. (1), in the mean-field Hartree-Fock (HF) approximation as

Hyp =Y Tugclycio + Y > poe (if1VIKD)

i,l,o i,l,o jk,o

— IV s o)y clc = Y tisClyclo. (2)

il,o

This is effectively a one-body TB Hamiltonian for a graphene
layer®® with density matrix elements Pror = (cj-(,,ck(,/) calcu-
lated with respect to the fully occupied valence band. The
values of p;.’ko, are evaluated in Appendix and their role
becomes clear in the next subsection. #;;, are experimentally
estimated hopping integrals.

B. Mean-field approximation for graphene quantum dots

We now derive a mean-field Hamiltonian for electrons
in graphene quantum dots (GQD). First, we apply mean-
field approximation to the Hamiltonian given by Eq. (1) for
electrons in GQD, with a result written as

Hyd® =3 Tioclyclo + Y Y piko (i1 VIKD)

il,o i,l,o jk,o
— (i IVIIK)Ss.0)C) Clos 3)

with density matrix p i, for GQD. By combining Eq. (2) and
Eq. (3) we get

GQD GQD
Hyp™ = Hyp " — H&F + HI\{;[F

=Y tugclycio + Y Y (ko — Pker) (i 1V 1K)

il,o il,o jk,o
— (i jIV 1K) 0r)C) Clo. @)

Here the subtracted component in the second term corresponds
to mean-field interactions included in effective #;;, hopping in-
tegrals, described by the graphene density matrix p%, . For the
TGQDs, the density matrix elements p i, are calculated with
respect to the many-body ground state of Nt = Ngjte — Nedge
electrons, where Ng; is the number of atoms. Since the valence
band and the degenerate shell are separated by an energy gap,
the closed-shell system of N, interacting electrons is expected
to be well described in a mean-field approximation, using
a single Slater determinant. This corresponds to a charged
system with Negge positive charges, as schematically shown in
Fig. 2(b). The Hamiltonian given by Eq. (4) has to be solved
self-consistently to obtain Hartree-Fock quasiparticle orbitals.
In numerical calculations, in addition to the on-site interaction
term, all scattering and exchange terms within next-nearest
neighbors and all direct interaction terms are included in the
two-body Coulomb matrix elements (i j |V |k/) computed using
Slater p, orbitals.%” The few largest Coulomb matrix elements
are given in Ref. 68. The value of the effective dielectric
constant x depends on the substrate and is set to x = 6 in what
follows.®” A method of calculating values of Pk Tor graphene
is shown in Appendix. Values of hopping integrals #;;, are
taken from the experimental data’ or ab initio calculation.®’
We use t = —2.5 eV for nearest-neighbors and ¢’ = —0.1 eV
for next-nearest-neighbors’' hopping matrix elements. The
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HF results were also compared with the results of ab initio
calculations.>'

We now discuss mean-field results for the charge-neutral
system. In the vicinity of the center of a sufficiently large
dot a charge distribution around a given site is identical to
that of an infinite system. The density matrices for graphene
p;.’kg, and for GQD pji, are equal. A second term in Eq. (4)
vanishes, leaving only a hopping integral f;;,. On the other
hand, close to the edges, a density matrix for the GQD differs
in comparison to its graphene counterpart. After diagonalizing
the HF Hamiltonian given by Eq. (4) one obtains eigenvalues
and eigenvectors that involve the geometrical properties of the
system, shown in Fig. 2(b). A slight removal of the degeneracy
of middle edge states and three corner states with a bit higher
energies are observed, with electronic densities shown in
Ref. 51.

C. Configuration interaction method

After the self-consistent procedure we get new orbitals
for quasiparticles with a fully occupied valence band and
a completely empty degenerate shell. We start filling these
degenerate states by adding extra electrons one by one,
schematically shown in Fig. 2(c). Next, we solve the many-
body Hamiltonian corresponding to the added electrons,
given by

HMB = E esajaasa
5,0

1
+ 5 2 bplVidfala),aias,. ©)
s,p.d, f,

0,0’

where the first term describes the energies of the Hartree-Fock
orbitals and the second term describes an interaction between
quasiparticles occupying degenerate HF states denoted by
s,p,d, f indices. The two-body quasiparticle scattering ma-
trix elements (sp|V|df) are calculated from the two-body
localized on-site Coulomb matrix elements (ij|V|kl).

In our calculations, we neglect scattering from/to the states
from a fully occupied valence band. Moreover, because of
the large energy gap between the shell and the conduction
band, we can neglect scatterings to the higher energy states. A
validity of these approximations is assessed in Ref. 68. These
approximations allow us to treat the degenerate shell as an
independent system that significantly reduces the dimension
of the Hilbert space. The basis is constructed from vectors
corresponding to all possible many-body configurations of
electrons distributed within the degenerate shell. For a given
number of electrons N, the Hamiltonian given by Eq. (5) is
diagonalized in each subspace with total S;.

D. Effect of gate charge

In our model, we start from the system with an empty
shell that corresponds to the charged system. As in our
previous work, Ref. 51, electrons from the shell are transferred
to the metallic gate. The Hamiltonian for N, electrons
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in the presence of a gate in the mean-field Hartree-Fock
approximation was written as

Hyve = titoCloCla + Y Y (Pjkar — 05k ) (i IV IKD)

il,o i,l,o jk,o’
— (VIS0 )yt + Y 05 (Gna)clyCiar  (6)
i,0
with an electrostatic potential vfi related to Negge electrons in
a gate defined as

Niite

Ui = Y Tind /i —
I kG = G = ) e
with ging = — Negge charge smeared out at positions (x;,y;) at

a distance dgae from the quantum dot. Next, we derived the
many-body Hamiltonian with an inclusion of the effect of gate,
written as

1

H = Zepa;t]apa + 2 Z (pq|V|rs>a;ga;0/aro”asa

p,o p,q,r,,x,
+ D (pIv (Naad)lg)a),ags +2 D (P[4 (Naaa) P').
r.q.0 r

®)

where the indices without the prime sign (p,q,r,s) run over
Negge degenerate states, while the index with the prime sign p’
runs over Nr/2 valence states (below the degenerate shell).
A third term in Eq. (8) corresponds to scattering from state g
to state p in a degenerate shell as a result of interactions with
electrons in a gate. The fourth term is a constant and just shifts
the entire spectrum by a constant energy.

III. MAGNETISM AND CORRELATION EFFECTS

A. Electronic properties as a function of the filling factor

We, first, concentrate on a TGQD consisting of N = 97
atoms, which is the largest system previously studied in
our earlier work in Ref. 51. It has Negee = 7 zero-energy
degenerate states obtained from TB calculations, shown in
Fig. 2(a). After self-consistent HF calculations neglecting the
gate charge (the effect of the gate will be discussed later),
we obtain new quasiparticle orbitals, shown in Fig. 2(b). The
degeneracy is slightly removed. We fill these degenerate levels
by additional electrons and calculate two-body scattering
matrix elements. For a given number of quasiparticles, the
many-body Hamiltonian, Eq. (5), is diagonalized in a basis
of configurations of electrons distributed within the shell, as
explained in Sec. II. In Fig. 3, we analyze the dependence
of the low-energy spectra on the total spin S for [Fig. 3(a)]
the charge-neutral system, N, = 7 electrons and [Fig. 3(b)]
one added electron, i.e., N; = 8 electrons. We see that for
the charge-neutral TGQD with N, = 7 electrons the ground
state of the system is maximally spin polarized, with § = 3.5,
indicated by a circle. There is only one possible configuration
of all electrons with parallel spins that corresponds to exactly
one electron per one degenerate state. The energy of this
configuration is well separated from other states with lower
total spin S, which require at least one flipped spin among
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FIG. 3. The low-energy spectra for the different total spin S for
(a) N = 7 electrons and (b) N = 8 electrons. For N, = 7 electrons
the ground state corresponding to S = 3.5, indicated by a circle, is
well separated from excited states with different total spin S. For
N, = 8 electrons the ground state corresponding to S = 0, indicated
by a circle, is almost degenerate with excited states with different
total spin S.

seven initially spin-polarized electrons. An addition of one
extra electron to the system with N = 7 spin-polarized
electrons induces correlations as seen in Fig. 3(b), where
the cost of flipping one spin is very small. Moreover, for
N =8, the ground state is completely depolarized with
S = 0, indicated by a circle, but this ground state is almost
degenerate with states corresponding to the different total spin.

The calculated many-body energy levels, including all spin
states for different numbers of electrons (shell filling), are
shown in Fig. 4. For each electron number, N, energies
are measured from the ground-state energy and scaled by the
energy gap of the half-filled shell, corresponding to N = 7
electrons in this case. The solid line shows the evolution of
the energy gap as a function of shell filling. The energy gaps
for a neutral system, N, = 7, as well as for Ny =7 -3 =4

0.8
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©
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FIG. 4. The low-energy spectra of the many-body states as a
function of the number of electrons occupying the degenerate shell
for the system with N, = 7 degenerate states. The energies are
renormalized by the energy gap corresponding to the half-filled shell,
N = 7 electrons. A large density of states around Neqe. + 1 electrons
is a signature of the correlation effects. The solid line shows the
evolution of the energy gap as a function of shell filling.
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FIG. 5. (Color online) (a) The total spin as a function of number
of electrons occupying the degenerate shell and (b) corresponding
the energy excitation gaps, with and without a gate, red (light gray)
and black (dark gray) lines, respectively. Due to a presence of
correlation effects for some fillings, the magnitude of the energy
gap is significantly reduced.

and N = 7 + 3 = 10, are found to be significantly larger in
comparison to the energy gaps for other electron numbers. In
addition, close to the half-filled degenerate shell, the reduction
of the energy gap is accompanied by an increase of low-energy
density of states. This is a signature of correlation effects,
showing that they can play an important role at different filling
factors.

We now extract the total spin and energy gap for each
electron number. Figures 5(a) and 5(b) show the phase
diagram, the total spin S, and an excitation gap as a function
of the number of electrons occupying the degenerate shell.
The system reveals maximal spin polarization for almost all
fillings, with exceptions for N, = 8,9 electrons. However, the
energy gaps are found to strongly oscillate as a function of
shell filling as a result of a combined effect of correlations
and system’s geometry. We observe a competition between
fully spin-polarized system that maximizes exchange energy
and fully unpolarized system that maximizes the correlation
energy. Only close to the charge neutrality, for N = 8 and
Nq =9 electrons, are the correlations sufficiently strong to
overcome the large cost of the exchange energy related to
flipping spin. The excitation gap is significantly reduced and
exhibits large density of states at low energies, as shown in
Fig. 3.

Away from half-filling, we observe larger excitation gaps
for N = 4 and N, = 10 electrons. These fillings correspond
to subtracting/adding three electrons from/to the charge-
neutral system with Ny = 7 electrons. In Fig. 6 we show
the corresponding spin densities. Here, long-range interactions
dominate the physics and three spin-polarized [Fig. 6(a)] holes

075431-5



POTASZ, GUCLU, WOJS, AND HAWRYLAK

(@) . (b) 00
et o e

0:::°.q T
Q0 R
il 2.ty
.-0-0-0-0.0-0-.- - -0-.-. .-.-o-e-

FIG. 6. (Color online) The spin densities of the ground state for
(a) N = 4 electrons and (b) N = 10 electrons that correspond to
subtracting/adding three electrons from/to the charge-neutral system.
The radius of circles is proportional to a value of spin density on a
given atom. A long-range Coulomb interaction repels (a) holes and
(b) electrons to three corners, forming a spin-polarized Wigner-like
molecule.

(Ne = 7 — 3 electrons) and [Fig. 6(b)] electrons (Ngj = 7 +
3 electrons) maximize their relative distance by occupying
three consecutive corners. Electron spin density is localized
in each corner while holes correspond to missing spin density
localized in each corner. We also note that this is not observed
for N = 3 electrons filling the degenerate shell (not shown
here). The energies of HF orbitals of corner states correspond
to three higher energy levels [see Fig. 12(c)], with electronic
densities shown in Ref. 51. Thus, N, = 3 electrons occupy
lower-energy degenerate levels corresponding to sides instead
of corners. On the other hand, when N, = 7 electrons are
added to the shell, self-energies of extra electrons renormalize
the energies of HF orbitals. The degenerate shell is again
almost perfectly flat, similarly to levels obtained within the
TB model. A kinetic energy does not play a role allowing a
formation of a spin-polarized Wigner-like molecule, resulting
from a long-range interactions and a triangular geometry. We
note that Wigner molecules were previously discussed in circu-
lar graphene quantum dots with zigzag edges described in the
effective mass approximation.’””? The rotational symmetry of
quantum dot allowed for the construction of an approximate
correlated ground state corresponding to either a Wigner-
crystal or Laughlin-like state.”” Later, a variational rotating-
electron-molecule (VREM) wave function was used.”® Unfor-
tunately, due to a lack of an analytical form of a correlated wave
function with a triangular symmetry, it is not possible to do it
here.

Figure 5 also shows the effect of the presence of a gate at a
distance dgae = 20a, where a = 1.42 is a nearest-neighbor’s
interatomic distance. Clearly, the effect of a gate is very weak,
just slightly changing energy gaps. In Fig. 7, energy gaps as a
function of a gate distance for the charge-neutral N, = 7 and
charged N = 8 system for our tested system with Negee = 7
degenerate states are shown. There are no effects for a gate
distance dgae > 20a. When a gate distance is comparable to
graphene-substrate separation, dg.e ~ Sa, the energy gap for
N, = 7 increases while the energy gap for N, = 8 decreases.
The drop for N, = 8 is not sufficiently strong to change an
observed effect of the spin depolarization. According to the
above analysis, we next present results for a Hamiltonian with
a gate at infinity.

PHYSICAL REVIEW B 85, 075431 (2012)

62— ——————
6.1 ——N_=7| ]

66.0-
65.9 ]
65.81 . .

65.73’
5.0 .
451
4.0
3.51
3.0
2.5 T T T T T T T T T

0 10 20 30 40 50

[a]

gap [eV]
\
" \\‘I\ "

E

gate

FIG. 7. (Color online) The energy gaps around the charge
neutrality for a system with N4, = 7 degenerate states as a function
of a gate distance. The energy gap for the charge-neutral system,
N = 7, changes by less than 1%. For the charged system, N = 8,
we observe changes in the energy gap for a gate distance in a range
5a < dyye < 10a but still not affecting the spin depolarization.

B. Electronic properties as a function of the size

In a previous section, we have analyzed in detail the
electronic properties of a particular TGQD with N = 97 atoms
as a function of the filling factor v = N¢j/Negge, i.€., the
number of electrons per number of degenerate levels. In this
section we address the important question of whether one can
predict the electronic properties of a TGQD as a function of
size.

Figure 8 shows spin phase diagrams for triangles with
odd number of degenerate edge states Negqe and increasing
size. Clearly, the total spin depends on the filling factor and
size of the triangle. However, all charge-neutral systems at
v = 1 are always maximally spin polarized and a complete
depolarization occurs for Negee < 9 for structures with one
extra electron added (such depolarization also occurs for even
Negge, not shown). Similar results for small size triangles were
obtained in our previous work.>! However, at Negge = 11 we
do not observe depolarization for Negge + 1 electrons but for
Negge + 3, where a formation of Wigner-like molecule for a
triangle with Negee = 7 was observed. We will come back to
this problem later. We now focus on the properties close to the
charge neutrality.

For the charge-neutral case, the ground state corresponds
to only one configuration |GS) = [, ai |0) with maximum
total S, and occupation of all degenerate shell levels i by
electrons with parallel spin. Here |0) is the HF ground state
of all valence electrons. Let us consider the stability of the
spin-polarized state to single spin flips. We construct spin-
flip excitations |kl) = a,LTal, 1IGS) from the spin-polarized
degenerate shell. The spin-up electron interacts with a spin-
down “hole” in a spin-polarized state and forms a collective
excitation, an exciton. An exciton spectrum is obtained by
building an exciton Hamiltonian in the space of electron-hole
pair excitations and diagonalizing it numerically, as was done,
e.g., for quantum dots.” If the energy of the spin-flip excitation
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FIG. 8. Spin phase diagrams as a function of filling factor v =
Nei/Negge for different size triangles characterized by the number of
the degenerate edge states Negq. Half-filled shell v =1 is always
maximally spin polarized. The complete spin depolarization occurs
for one added electron to the charge-neutral system for Nege. < 9.
For Negge = 11 the depolarization effect moves to a different filling.

turns out to be negative in comparison with the spin-polarized
ground state, the exciton is bound and the spin-polarized
state is unstable. The binding energy of a spin-flip exciton
is a difference between the energy of the lowest state with
S = §7"* — 1 and the energy of the spin-polarized ground state
with § = S1™. An advantage of this approach is the ability to
test the stability of the spin-polarized ground state for much
larger TGQD sizes.

Figure 9 shows the exciton binding energy as a function
of the size of TGQD, labeled by a number of the degenerate
states Negge. The largest system, with Negge = 20, corresponds
to a structure consisting of N = 526 atoms. The exciton
binding energies are always positive, i.e., the exciton does
not form a bound state, confirming a stable magnetization of
the charge-neutral system. The observed ferromagnetic order
was also found by other groups based on calculations for small
systems with different levels of approximations.*>#>>%3! The
above results confirm predictions based on Lieb’s theorem
for a Hubbard model on bipartite lattice relating total spin
to the broken sublattice symmetry.®> Unlike in Lieb’s theo-
rem, in our calculations many-body interacting Hamiltonian
contains direct long-range, exchange, and scattering terms.
Moreover, we include next-nearest-neighbor hopping inte-
gral in HF self-consistent calculations that slightly violates
bipartite lattice property of the system, one of cornerstones
of Lieb’s zurguments.(’5 Nevertheless, the main result of the
spin-polarized ground state for the charge-neutral TGQD
seems to be consistent with predictions of Lieb’s theorem and,
hence, applicable to much larger systems.
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FIG. 9. Size-dependent analysis based on exciton and trion
binding energies. For the charge-neutral system, it is energetically
unfavorable to form an exciton, which is characterized by a positive
binding energy. Observed dependence confirms Lieb’s theorem
regarding the magnetization of the bipartite lattice systems. The
formation of a trion is desirable for small size systems. The
phase transition occurs close to Negee = 8, indicated by an arrow.
The complete depolarization effects close to the charge neutrality
observed previously in TGQD with Negge < 9 for Negge + 1 electrons
in Fig. 8 is predicted to not appear for larger systems.

Having established the spin polarization of the charge-
neutral TGQD we now discuss the spin of charged TGQD.
We start with a spin-polarized ground state |GS) of a charge-
neutral TGQD with all electron spins down and add to it a
minority spin electron in any of the degenerate shell states i as
li) = aj’? |GS). The total spin of these states is ST"** — 1/2. We
next study stability of such states with one minority spin-up
electron to spin-flip excitations by forming three particle states
|lki) = alT,Wk,LaiHGS) with total spin §7** — 1/2 — 1. Here
there are two spin-up electrons and one hole with spin-down
in the spin-polarized ground state. The interaction between the
two electrons and a hole leads to the formation of trion states.
We form a Hamiltonian matrix in the space of three-particle
configurations and diagonalize it to obtain trion states. If the
energy of the lowest trion state with ST** —1/2 — 1 is lower
than the energy of any of the charged TGQD states |i) with
ST —1/2, the minority spin electron forms a bound state
w1th the spin-flip exciton, a trion, and the spin-polarized state
of a charged TGQD is unstable. The trion binding energy,
shown in Fig. 9, is found to be negative for small systems with
Negge < 8 and positive for all larger systems studied here.
The binding of the trion, i.e., the negative binding energy,
is consistent with the complete spin depolarization obtained
using TB + HF + CI method for TGQD with Negge < 9 butnot
observed for Negge = 11 (and not observed for Negee = 10, not
shown here), as shown in Fig. 8. For small systems, a minority
spin-up electron triggers spin-flip excitations, which leads to
the spin depolarization. With increasing size, the effect of
the correlations close to the charge neutrality vanishes. At a
critical size, around Negee = 8, indicated by an arrow in Fig. 9,

075431-7



POTASZ, GUCLU, WOJS, AND HAWRYLAK

0.8 = —— = —
064 — == =T —
044 — = — ==
g - _T - —_
(o] =
L — — = = =
~ — —_ = -
w 0.2 - = B =——_
0.0 - ==
T T T [} [} |

FIG. 10. The low-energy spectra of the many-body states as a
function of the number of electrons occupying the degenerate shell
for the triangle with Neg,. = 11 degenerate states. The energies are
renormalized by the energy gap corresponding to the half-filled
shell, N = 11 electrons. The large density of states related to the
correlation effects observed in Fig. 4 around N4, + 1 electrons
shifts to a different filling around Ng,. + 3 electrons.

a quantum phase transition occurs from minimum to maximum
total spin.

However, the spin depolarization does not vanish but moves
to different filling factors. In Fig. 8 we observe that the
minimum spin state for the largest structure computed by the
TB + HF + CI method with Negee = 11 occurs for TGQD
charged with additional three electrons. We recall that for
TGQD with Negee = 7 charged with three additional electrons
a formation of a Wigner-like spin-polarized molecule was
observed, shown in Fig. 6. In the following, the differences
in the behavior of these two systems, Neggee = 7 and 11, will
be explained based on the analysis of the many-body spectrum
of the Negge = 11 system.

Figure 10 shows the many-body energy spectra for dif-
ferent numbers of electrons for Negge = 11 TGQD to be
compared with Fig. 4 for the N = 7 structure. Energies
are renormalized by the energy gap of a half-filled shell, N =
11 electrons in this case. In contrast to the Negge = 7 structure,
energy levels corresponding to Nej = Negge + 1 €lectrons are
sparse, whereas increased low-energy densities of states appear
for Nej = Negge +2 and Ngj = Negge + 3 electrons. In this
structure, electrons are not as strongly confined as for smaller
systems. Therefore, for Nej = Negge + 3 electrons, geometrical
effects that lead to the formation of a Wigner-like molecule
become less important. Here, correlations dominate, which
results in a large low-energy density of states.

IV. DIFFERENT LEVELS OF APPROXIMATIONS
ANALYSIS

In this section, we study the role of different interaction
terms included in our calculations. The computational proce-
dure is identical to that described in Sec. II. We start from the
TB model but in self-consistent HF and CI calculations we
include only specific Coulomb matrix elements. We compare
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FIG. 11. Hartree-Fock energy levels corresponding to the degen-
erate shell for calculations with (a) only the on-site term U (Hubbard
model), (b) the on-site term U + direct long-range interaction
(extended Hubbard model), and (c) all interactions. A separation of
three corner states with higher energies is related to direct long-range
Coulomb interaction terms.

results obtained with Hubbard model with only the on-site
term, the extended Hubbard model with on-site plus long-
range Coulomb interactions, and a model with all direct and
exchange terms calculated for up to next-nearest neighbors
using Slater orbitals, and all longer-range direct Coulomb
interaction terms approximated as (ij|V|ji) = 1/(«|r; —r;|),
written in atomic units, la.u. = 27.211 eV, where r; and r; are
positions of i-th and j-th sites, respectively.

The comparison of HF energy levels for the structure with
Negge =7 is shown in Fig. 11. The on-site U term slightly
removes degeneracy of the perfectly flat shell [Fig. 11(a)] and
unveils the double valley degeneracy. On the other hand, the
direct long-range Coulomb interaction separates three corner
states from the rest with a higher energy [Fig. 11(b)], forcing
the lifting of one of the doubly degenerate subshells. Finally,
the inclusion of exchange and scattering terms causes stronger
removal of the degeneracy and changes the order of the four
lower-lying states. However, the form of the HF orbitals is not
affected significantly (not shown here).

In Fig. 12 we study the influence of different interaction
terms on Cl results. The phase diagrams obtained within (a) the
Hubbard model and (b) the extended Hubbard model show that
all electronic phases are almost always fully spin polarized.
The ferromagnetic order for the charge-neutral system is
properly predicted. For TGQD charged with electrons, only
inclusion of all Coulomb matrix elements correctly predicts the
effect of the correlations leading to the complete depolarization
for Ny = 8 and 9. We note that the depolarizations at other
filling factors are also observed in Hubbard (at N, = 2) and
extended Hubbard calculation (at N = 11) results.

A more detailed analysis can be done by looking at the
energy excitation gaps, which are shown in Fig. 13. For the
charge-neutral system, all three methods give comparable
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FIG. 12. Spin phase diagrams obtained by use of the CI method
with (a) only the on-site term U (Hubbard model), (b) the on-site term
U + direct long-range interaction (extended Hubbard model), and (c)
allinteractions. The ferromagnetic order for the charge-neutral system
is properly predicted by all three methods. Correlations leading
to the complete depolarization for N¢ = Negee + 1 electrons and
N = Negge + 2 electrons are observed only within a full interacting
Hamiltonian.

excitation gaps, in agreement with previous results.*>#330-31

In the Hubbard model, the energy gap of the doped system
is reduced compared to the charge neutrality but without
affecting magnetic properties. The inclusion of a direct long-
range interaction in Fig. 13(b) induces oscillations of the
energy gap. For N = Negge + 1 electrons the energy gap is
significantly reduced but the effect is not sufficiently strong
to depolarize the system. Further away from half-filling, a
large energy gap for models with long-range interactions for
Nei = Negge + 3 appears, corresponding to the formation of a
Wigner-like molecule of three spin-polarized electrons in three
different corners. The inclusion of exchange and scattering
terms slightly reduces the gap but without changing a main
effect of Wigner-like molecule formation.

V. CONCLUSIONS AND REMARKS

We have investigated magnetism, correlations, and geomet-
rical effects in TGQDs by use of the TB + HF + CI method.
Our many-body Hamiltonian includes all direct long-range
terms and exchange and scattering terms up to next-nearest
neighbors. We have performed analysis as a function of
the filling factor of the degenerate band of edge states for
different sizes. Through a full analysis of the many-body
energy spectrum of structures consisting of up to 200 atoms,
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FIG. 13. The excitation gaps corresponding to phase diagrams
from Fig. 12 for many-body Hamiltonians with (a) only the on-site
term U (Hubbard model), (b) the on-site term U + direct long-range
interaction (extended Hubbard model), and (c) all interactions. All
three methods give qualitatively similar excitation gaps for the charge-
neutral system. A large energy gap for Ne = Negee + 3 electrons,
which is related to geometrical properties of the structure, can be
obtained by inclusion of direct long-range interactions. This gap is
slightly reduced by inclusion of exchange and scattering terms.

we confirmed the existence of the spin-polarized ground state
in agreement with Lieb’s theorem. By studying spin exciton
binding energies, we also predicted stable magnetization for
structures with more than 500 atoms. The complete spin
depolarization was observed for one electron added to the
charge-neutral TGQD up to a critical size. Above a critical size
the maximally spin-polarized charged TGQD was predicted
using trion binding energy analysis. We have shown that
in small systems, three electrons/holes added to the charge
neutrality form the spin-polarized Wigner-like molecule. We
relate this fact to geometrical effects and direct long-range
interaction terms. For larger systems, geometry becomes
less important and for the same filling we observe a spin
depolarization as a result of correlations. Finally, we compared
the fully interacting model with the Hubbard and extended
Hubbard models. While qualitative agreement for the charge-
neutral system was observed, the effect of correlations can
be described only with the inclusion of all direct long-range,
exchange, and scattering terms.
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APPENDIX

In this Appendix, we calculate density matrix elements
P}, between sites j and [ for an infinite graphene sheet.
The valence band eigenfunctions of the TB Hamiltonian in the
nearest-neighbor approximation given by Eq. (2) are

1 .
W) = —— [ D e g, (r —Ry)
c Ry

+ ) ey, (r — R@}, (AD)

Rg

where ¢, (r) are p, orbitals. The positions of the sublattice A
and B atoms are given by Ry = na; + ma,; and Rg = na; +
may + b, described by unit vectors of hexagonal lattice defined
asa), = a/2(:l:\/§,3) and b = a(0,1), a vector between two
nearest-neighbors atoms from the same unit cell with a distance
a =1.42 A. N, is the number of unit cells, and exp(ify) =
LB with f(k) = 1 4 ¢ 4 ¢/ The density matrix for

Lf ()
the graphene layer p7;; for two sites j and / is defined as

P = Y br,(K)bg, (K), (A2)
k
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where br’s are the coefficients of the p, orbitals given in
Eq. (Al). The on-site density matrix element for an arbitrary
lattice site j is site and sublattice index independent,

1 —ikR; KR, 1 1
0 = _— e i A p— 1 = -, A3
Piie =N, &€ ¢ TN, Zk 2y W

where we took into account the fact that the num-
ber of occupied states is equal to the number of
unit cells in the system. The nearest-neighbors den-
sity matrix elements for two atoms from the same unit
cell corresponds to R; —R; =b and can be calculated
using

1 . . . .
o __ —ikR; ikR; —ikb —if
Pile = = e 4 e e
ile = 2N, Zk

1
~ 2N,

Z e % ~0.262,
k

where the summation over occupied valence states is carried
out numerically. We obtained the same value for two other
nearest neighbors. The same results can also be obtained
by diagonalizing a sufficiently large hexagonal graphene
quantum dot and by computing the density matrix elements
for two nearest neighbors in the vicinity of the center of
the structure. We have also calculated next-nearest neigh-
bors density matrix elements, obtaining negligibly small
values.
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