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Transport through an electrostatically defined quantum dot lattice in a two-dimensional electron gas
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Quantum dot lattices (QDLs) have the potential to allow for the tailoring of optical, magnetic, and electronic
properties of a user-defined artificial solid. We use a dual gated device structure to controllably tune the potential
landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the formation of a periodic QDL.
The current-voltage characteristics, I (V ), follow a power law, as expected for a QDL. In addition, a systematic
study of the scaling behavior of I (V ) allows us to probe the effects of background disorder on transport through
the QDL. Our results are particularly important for semiconductor-based QDL architectures which aim to probe
collective phenomena.
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I. INTRODUCTION

A single quantum dot has a distinct energy spectrum and has
often been termed an “artificial atom.” One may thus expect a
periodic array of quantum dots to exhibit collective properties
of an “artificial solid.” This has been a strong motivation
for a wide variety of experimental and theoretical work on
quantum dot lattices (QDLs). Two-dimensional (2D) QDLs
have primarily been realized using self-assembled nanocrystal
arrays.1–4 Electrical transport in these systems is governed not
only by electron-electron interactions but also by disorder.
This is clearly reflected in transport studies, which go well
beyond the observation of standard Coulomb blockade. For
example, Parthasarathy et al. have emphasized the important
role that structural and charge disorder can play on the
current-voltage [I (V )] characteristics of the system.1 It has
also been shown recently that the transport through such arrays
can exhibit cotunneling effects, leading to an Efros-Shklovskii-
type variable range hopping,4 signifying the importance of
Coulomb interactions in the system. Other routes toward
fabricating 2D QDLs include lithographically defined metal
islands5,6 and semiconductor quantum dot arrays.7–11

With regard to the study of many-body physics, we expect
semiconductor QDLs to exhibit a significant advantage due
to primarily two reasons: (1) the interdot coupling and dot
charging energy can be controlled in situ using gate voltages;
(2) the high Fermi temperatures in these systems should allow
for the observation of Mott-Hubbard-like physics at experi-
mentally accessible temperatures.12 Early measurements using
far-infrared spectroscopy were used to study the energy levels
of individual quantum dots in a gate-defined QDL.9 A similar
method was employed to study the transition from an antidot
lattice (ADL) to a QDL using a single gridlike gate.8 Very
recently, optical studies on a large array of etched quantum
dots in a GaAs/AlGaAs two-dimensional electron gas (2DEG)
have even shown the existence of Mott-Hubbard electrons.13

However, electrical transport through such semiconductor
QDLs remains relatively unexplored. Smith et al. used a
patterned gate7 to introduce a periodic potential in the 2DEG.
Their magnetic field studies showed a splitting of Landau
levels when the periodic potential was weak, and possible
signatures of a QDL for stronger potentials. A similar device

structure was used to study the combined effects of a weak peri-
odic potential and strong disorder in large quantizing magnetic
fields.14 Duruöz et al. were the first to study nonequilibrium
transport through an etched QDL with a significantly stronger
confining potential.10 They found I (V ) to follow a power law,
in agreement with the predictions of Middleton and Wingreen
(MW).15 However, they focused primarily on hysteresis and
switching effects in the system. More recently, Dorn et al.
studied a similar system with quantum dots defined by a
combination of atomic force microscope oxidation and a top
gate.11 They did not appear to observe the standard power-law
dependence expected from a collective behavior of the QDL,
but used percolation analysis and magnetotransport to establish
transport through a “network” of quantum dots.

In this work we focus on the dc transport through a tunable
QDL in a GaAs/AlGaAs 2DEG, which is defined solely by
electrostatic gating. The electrostatic definition of the QDL
allows us to controllably alter the potential landscape in the
2DEG. It also avoids the inevitable introduction of additional
disorder associated with etching and oxidation techniques.
The versatility of the device structure enables us to drive the
system from a delocalized ADL to a localized QDL by simply
changing the gate voltage configuration. Furthermore, it allows
us to decouple the effects of strong background disorder from
transport through the QDL of interest, something which has
not been possible thus far.

II. DEVICE STRUCTURE

The 2DEG used for these studies was located 60 nm below
the surface and the Si δ-doping layer was located 30 nm above
the 2DEG. The wafers had an as-grown sheet density (ns) of
4 × 1015 m−2 and low-temperature mobility of 230 m2/Vs.
The device structure is outlined in Fig. 1(a). The first layer
consists of a Ti/Au (20 nm/15 nm) perforated gate (PG) on the
substrate. Figure 1(b) shows a scanning electron micrograph of
a typical PG. This is followed by a 150 nm thick cross-linked
polymethyl methacrylate (CL PMMA) layer, which is obtained
by exposing the desired portion of PMMA to a large electron
beam dose. The CL PMMA serves as a dielectric layer and
is resistant to further processing of the device. Finally, an
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FIG. 1. (Color online) (a) The dual gated device structure with a perforated gate (PG), followed by cross-linked polymethyl methacrylate
(CL PMMA), and an unpatterned top gate (TG). Voltages on the TG (Vtg) and PG (Vpg) are used to control the potential landscape in the
two-dimensional electron gas (2DEG). I represents the direction of current flow. (b) Scanning electron micrograph of the perforated gate. The
scale bar is 1 μm. (c) Sketch of the potential profile below the gated region. The TG acts through the holes in the PG and introduces a strong
periodic potential. In addition to this, there exist disorder induced fluctuations in the conduction band minimum. At a relatively high Fermi
energy (EF ), indicated by E1

F , an antidot lattice is formed [as suggested by the potential landscape in (d)]. A reduction in EF to E2
F localizes

the system, thus forming a quantum dot lattice (QDL), with a quantum dot formed between four adjacent antidots, as shown in (e). Finally,
at E3

F , the effects of disorder become significant, thus masking the effects of the QDL. (f) As Vtg is reduced from −25 V to −35 V (with
Vpg = 0 mV), clear commensurability peaks in magnetoresistance become apparent, signifying the formation of an antidot lattice in a device
similar to the one used to from the QDL. (g) Variation of equilibrium conductance (G) with top Vtg for different values of Vpg . The top (bottom)
trace corresponds to Vpg = 0 mV (−590 mV). (h) A zoom-in on the bottom four traces from (g). The shaded region shows the section of the
Vtg-Vpg phase space where the QDL is realized.

unpatterned Ti/Au (25 nm/80 nm) top gate (TG) is deposited
such that it lies directly above the PG. We present results
on two kinds of devices. The first (dev1) has a PG which
consists of a 6 × 26 array of perforations with diameter d =
150 nm and center to center distance a = 300 nm. The second
(dev2) has d = 300 nm and a = 700 nm and an array of 3 ×
11 perforations. All measurements were performed in a He-3
cryostat with a base temperature of 300 mK.

III. RESULTS AND DISCUSSION

By applying a large negative voltage on the TG (Vtg),
regions in the 2DEG directly below the PG perforations are de-
pleted, resulting in a periodic antidot potential which intersects
the Fermi surface. This is shown schematically in Fig. 1(c),
where in addition to the periodic potential, there exist random
fluctuations in the conduction band minimum that arise from
background disorder. As long as EF is relatively high (depicted

by E1
F ), the system is delocalized as a whole, and an antidot

lattice is formed. Figure 1(d) shows a three-dimensional
schematic of the potential landscape in such a case. The
application of a magnetic field now results in the emergence of
commensurability peaks in resistance (R) arising from pinned
orbits around the antidots.16 Figure 1(f) clearly shows that as
Vtg is lowered, the resistance maxima (associated with orbits
around 1, 4, and 9 antidots) become more pronounced. The
position of the fundamental commensurability peak (orbits
around 1 antidot) may be expressed as B1 = 2h̄

√
2πns/ea,

where e is the electronic charge. Evaluating this for dev2 gives
B1 = 0.32 T, in very good agreement with the peak position
in Fig. 1(f). We have studied such antidot lattices in detail
previously17 and have demonstrated a fine control over the
potential landscape in the 2DEG. As EF is lowered to E2

F

[Fig. 1(c)], the electrons become confined to the potential
minima arising from the antidots, thereby forming a QDL,
as depicted in Fig. 1(e). A measurement of the equilibrium
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conductance (G) shows signatures of such a transition for dev1.
We note that dev1 consists of smaller, more closely spaced
perforations, which should make Coulomb blockade related
effects more observable. We therefore focus on dev1 for the
remainder of this work. Figure 1(g) shows the behavior of G

(measured using standard low-frequency lock-in techniques)
as a function of Vtg for different voltages on the PG (Vpg).
As Vpg is reduced (EF is reduced) from 0 mV (top trace)
to −590 mV (bottom trace), the action of the TG becomes
significantly stronger. This suggests that when both Vtg and Vpg

are sufficiently negative, a QDL is realized, where the quantum
dots are formed between four adjacent antidots and are coupled
to each other through the high interdot tunnel resistances of
the resultant quasi-one-dimensional channels [see Fig. 1(e)].
The shaded region in Fig. 1(h) shows the portion of the Vtg-Vpg

phase space where such a situation is realized. Note that in this
region we always have G < e2/h, suggesting that the tunnel
resistance between dots is larger than the resistance quantum.

A similar transition from a delocalized state to a local-
ized one has been reported in semiconductor quantum dot
arrays.11,18 However, neither of these studies concentrated
on the I (V ) characteristics of the system. To validate our
description of the formation of a QDL outlined above, we
perform a systematic study of the I (V ) characteristics of the
device. We apply a symmetric bias across the device (+V/2 at
one end and −V/2 at the other), and the current is measured
using a Keithley 2400 source measure unit. When the device
is tuned to the QDL regime, we expect I (V ) to obey the MW
model15 and

I ∼ (V/VT − 1)ζ , (1)

where VT is the threshold voltage below which the current is
suppressed and ζ is the power-law exponent. Figure 2(a) shows
that the device is perfectly ohmic when Vpg = −570 mV
(indicating a relatively high EF ) and Vtg = 0 V (dashed line).
As Vtg is reduced to −21 V, there is an observable deviation
from linearity, characteristic of Coulomb blockade. A further
reduction in Vtg strengthens this nonlinearity. In Fig. 2(b) we
plot I vs V/VT − 1 (the normalized voltage). According to
Eq. (1), we expect multiple curves with different values of VT

to collapse onto a single trace with a unique ζ . Our curves show

a reasonable collapse, with a clear power-law characterized by
ζ ∼ 1.3. The absence of a sharp threshold in Fig. 2(a) makes
it difficult to directly identify VT . However, the shape of the
curves in Fig. 2(b) are highly sensitive to the choice of VT . We
therefore adopt the procedure followed by Rimberg et al.5 and
choose VT such that the traces exhibit a power law over the
largest possible range. This results in a relatively small (< 3%)
error in the estimation of VT . We note that at lower values of
Vpg , the threshold becomes more apparent and it is possible
to easily identify VT . However, as we will show later, the
effects of background disorder also become more pronounced
at lower Vpg , and it is not possible to obtain the collapse
observed in Fig. 2(b). At any rate, we can certainly conclude
that the introduction of the periodic potential using Vtg results
in I (V ) that exhibits a clear power law, characteristic of a
QDL. We note that sweeping the bias voltage up and down
did not result in any hysteresis, as observed in some previous
work.10 Also, there were no observable leakage currents (< 1
pA) for all the gate voltage configurations used in this study.

If our picture of the potential landscape is indeed correct,
we should also be able to induce a QDL by keeping Vtg

fixed and lowering Vpg . Figure 3(a) shows precisely this.
The dashed line indicates that the I (V ) is linear when EF is
high (Vpg = −540 mV), with Vtg = −35 V. As Vpg is reduced
from −560 mV to −590 mV, the nonlinearity becomes more
apparent, and we see the emergence of a clear VT . Figure 3(b)
shows that all the curves exhibit a clear power law; however, a
collapse according to Eq. (1) is only possible for higher values
of Vpg (shown separately in the inset for clarity). Again, we find
ζ ∼ 1.3, as observed in Fig. 3(b), reinforcing the fact that both
sets of gate voltage configurations yield a QDL with similar
characteristics. We also observe a slight upturn at higher values
of I , but are not certain about its origin at present. Below
Vpg = −570 mV, ζ steadily increases to ∼1.7. In addition,
VT increases quite rapidly from 3.0 mV to 18.5 mV as Vpg is
reduced from −570 mV to −590 mV [Fig. 3(c)].

It has been shown that an increase in background charge
disorder can significantly enhance VT .19 In a 2DEG, such
disorder arises primarily due to potential fluctuations from
the dopant layer. As EF is reduced, the ability of the 2DEG
to screen the disorder becomes progressively weaker, thereby
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FIG. 2. (Color online) (a) Introduction of nonlinearity in I (V ) with a reduction in Vtg from −21 V to −35 V, with Vpg fixed at −570 mV.
The dashed line shows that I (V ) is linear when Vtg = 0. (b) I vs V/VT − 1 on a log-log plot showing a power law scaling for the curves in (a).
The dotted line indicates ζ = 1.3. The inset shows the variation of the threshold voltage (VT ) with Vtg .
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increasing the amount of charge variation within the QDL.
We believe that this accounts for the observation of the rapidly
increasing VT . We expect VT ≈ NECβ, where N is the number
of quantum dots in the direction of transport, EC is the charging
energy of each dot, and β is a factor which depends on the
lattice geometry and the relevant capacitances in the system.15

In the limit of weak interdot coupling, β = 0.338 for a square
lattice. In the absence of a precise knowledge of the potential
landscape, we use the lithographic dimensions as a guide to
estimate VT ∼ 2 mV [dashed line in Fig. 3(c)], assuming a
quantum dot radius of 100 nm. This is sketched as a (to scale)
schematic in the inset of Fig. 3(c). Note that VT increases by
almost 10 times as Vpg is reduced from −560 mV to −590 mV.
Assuming that all other parameters remain constant, this would
imply that the dot radius reduces by a factor of 10 and
approaches ∼10 nm, which seems unlikely. Thus, the behavior
of VT cannot be explained by just a variation in the properties of
the quantum dots and their coupling. This supports the scenario
where, at significantly low values of EF , transport through
the previously uniform QDL has an added contribution from
disorder. This effectively increases the energy required for an
electron to move from one end to the other, thus increasing VT .

To test this hypothesis, we set Vtg = 0 and take Vpg to large
negative values, where the zero bias conductance is zero. Under
these circumstances, when we have driven the system well
below the percolation threshold, there should be no significant
contribution from the QDL. Instead, we expect the transport to
be completely dominated by an array of disconnected electron
puddles with a distribution of sizes.20 Figure 4(a) shows I (V )
for different values of Vpg . Not only do these curves have a very
well defined VT , but all of them can be characterized by a single
ζ ∼ 2.5 [Fig. 4(b)]. This indicates that the observed increase
in ζ and VT in Figs. 3(b) and 3(c), respectively, is directly
related to the increasing effect of disorder. From the inset of
Fig. 4(b) it is clear that in this transport regime it is impossible
to collapse the traces using the standard MW model described
by Eq. (1). However, a universal curve is obtained if each
trace is translated by an amount −VT [Fig. 4(b)]. Furthermore,
Fig. 4(c) shows that VT varies linearly with Vpg , with much
larger values of VT . It is worth noting that these results are
strikingly similar to those of Parthasarathy et al.,2 the only
difference being that they observed a similar dependence of
the I (V ) on temperature (T ), rather than gate voltage. They
ascribed the linear dependence of VT on T to the existence of a
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distribution of charging energies in a highly disordered QDL.
As the temperature increases, certain quantum dots become
transparent and do not contribute to VT . A detailed analysis
based on results from percolation theory was able to explain
the linear relationship between VT and T , and a collapse of I

vs (V − VT ) traces. A similar distribution of charging energies
is quite probable in a highly inhomogeneous 2DEG. When EF

is increased, certain interdot barriers are effectively overcome,
resulting in a reduction in VT . We expect this to continue up to
some characteristic EF , above which the system looks fairly
homogeneous. Though this description is qualitatively in line
with our observations, more detailed calculations are required
to verify the validity of the model. An alternative explanation
for the linearity in VT may lie in the fact that at extremely low
values of Vpg , the Fermi level lies well below the conduction
band minimum. The application of a large bias voltage then in-
duces carriers, resulting in the onset of conduction at VT . In this
scenario, one would also expect VT to be proportional to Vpg .
Further experiments are required to understand this scaling of
the I (V ) characteristics at significantly lower values of Vpg .

IV. CONCLUSIONS

In conclusion, we have studied nonequilibrium transport
through an electrostatically defined quantum dot lattice. Our
dual gated device structure has a significant advantage over
previous designs in that it allows us to decouple the effects of
strong background disorder from those arising solely due to the
QDL. These effects are reflected in an increase in the threshold
voltage as well as a deviation from the standard MW scaling.
Our results are particularly important for semiconductor-based
QDL architectures which aim to probe collective phenomena
using transport.
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