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Plasmons and near-field amplification in double-layer graphene
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We study the optical properties of double-layer graphene for linearly polarized evanescent modes and
discuss the in-phase and out-of-phase plasmon modes for both, longitudinal and transverse polarization, and
for inhomogeneous dielectric media. We find an energy for which reflection is zero, leading to exponentially
amplified transmitted modes similar to what happens in left-handed materials. For layers with equal densities
n = 1012 cm−2, we find a typical layer separation of d ≈ 500 μm to detect this amplification for transverse
polarization, which may serve as an indirect observation of transverse plasmons. When the two graphene layers
lie on different chemical potentials, the exponential amplification either follows the in-phase or the out-of-phase
plasmon mode depending on the order of the low- and high-density layers. This opens up the possibility of a
tunable near-field amplifier or switch.
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I. INTRODUCTION

The optical properties of graphene recently have attracted
much attention.1 A hallmark is given by the universal absorp-
tion of 2.3% in the visible regime independent of the incident
wavelength.2,3 For infrared frequencies, the absorption can
be altered by varying the Fermi energy via an applied gate
voltage.4 For fixed chemical potential, the optical conductivity
then is characterized by three regimes: (i) the Drude peak
related to intraband transitions, (ii) a region with suppressed
absorption due to Pauli blocking, and (iii) the nearly constant
plateau with σ0 = π

2
e2

h
due to interband transitions.5,6

There also is a huge potential to use graphene in information
and communication technologies. Apart from applications as
the conductive and optically transparent electrodes in resistive
touch screens of transparent and flexible displays,7,8 there
are various examples for using graphene in optoelectronic
devices, such as a photodetector,9 a broadband absorber,10

or a mode-locked laser due to current saturation.11 There are
also interesting theoretical proposals not yet observed, such as
the dynamical generation of a gap12 or carrier multiplication
due to strong electron-electron interaction.13

Here, we analyze the optical properties of double-layer
graphene, which is of potential interest due to the recent
advances in fabricating graphene-boron-nitride structures.14,15

Our main result is that there is exponential amplification of
evanescent modes in gated double-layer systems of graphene,
first discussed by Pendry in the context of so-called left-handed
materials with a negative refraction index.16 The appearance
of exponential amplification in between two layers is related
closely to the existence of surface-plasmon polaritons as noted
by Pendry and as later discussed by Haldane.17 This effect
can be considered to be the evanescent equivalent of the
extraordinary transmission observed in perforated metal sheets
where plasmons are believed to be involved.18–20

In graphene, there are two types of (surface) plasmons,
longitudinal (or transverse magnetic)21,22 and transverse (or
transverse electric) modes,23 which give rise to different be-
haviors. Theoretically, these low-energy collective excitations
have attracted much interest,24–31 and recently, it was shown
that they can be excited via an attenuated total reflection
structure,32 paving the way for graphene plasmonics.33–35

Experimentally, they have been observed via electron-energy-
loss spectroscopy36,37 and near-field nanoscopy.38

Here, we discuss how the plasmon modes are modified in
a double-layer structure for both polarizations. In the case of
longitudinal polarization, the two plasmon modes split, if the
layer separation is small enough such that the plasmon modes
can still considerably interact electrostatically. This leads to
an ordinary two-dimensional plasmon with

√
q dispersion but

larger energy where the charges of the two layers oscillate in
phase and a linear (acoustic) plasmon mode where the charges
oscillate out of phase. Their dependence on the Fermi energy
of the two layers was discussed in Ref. 39 for T = 0, for
finite temperature in Ref. 40, and the plasmon interaction
and hybridization in pairs of neighboring nanoribbons in
Ref. 41. Here, we also discuss the scattering problem. In
the case of transverse polarization, plasmons are not formed
via charge accumulation and only are bound weakly to the
graphene layer. These collective excitations are linked to the
two-band structure of the electronic carriers and, thus, exist
in bilayer graphene where they become more localized.42

In a double-layer structure, we find either one mode (for
small-layer separation) or two plasmon modes (for large-layer
separation).

As noted before, in the case of two plasmon modes, there
exists a frequency ωexp where the reflection is zero and the
transmission is amplified exponentially. For equal electronic
densities in the two layers, this frequency lies between the
two plasmon frequencies and is pinned to the out-of-phase
mode for small-layer separation. For large-layer separation,
the two plasmon modes merge and symmetrically sandwich
the frequency of the exponential amplification just as in the
original model proposed by Pendry.16 For different electronic
densities, ωexp can follow either the low- or the high-density
plasmon mode depending on the order of the layers.

We also discuss the amplification A proportional to the
ratio of the intensity at the second interface to one at the
first interface. The maximum of A lies between the two
plasmon frequencies but only coincides with ωexp in the case
of large-layer separation. This tunable plasmonic evanescent
amplification could be useful for near-field microscopies.

The paper is organized as follows. In Sec. II, we present
the scattering problem and discuss the general behavior. In
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Sec. III, we discuss the case of equal electronic density in the
two layers, and in Sec. IV, we discuss the density-imbalanced
system. We close with a summary and conclusions. In the
Appendix, the explicit formulas for the general setup with
different dielectric media are given. To model graphene, we
only depend on the current-current correlation function at zero
temperature, which was evaluated in Ref. 43 within the Dirac
cone approximation and in Ref. 44 for the hexagonal lattice.

II. SCATTERING PROBLEM

To discuss the scattering behavior of linearly polarized light
in a layered geometry, a convenient gauge condition is to
choose the scalar potential to be zero. We, thus, only have
to consider the vector potential.

In the following, we assume the graphene layers to be
parallel to the xy plane. For transverse-polarized light with,
say, q = qex , only the y component Ay is nonzero. Since
here we are interested in the scattering behavior of evanescent
modes, we define the real transverse-wave number q ′

i =√
q2 − εi(ω/c)2, where q denotes the conserved wave number

parallel to the plane and εi is the dielectric constant of the
corresponding medium. For two dielectric media separated by
graphene located at z = 0, the vector potential of an incoming
field reads

Ay(r,z) =
∑

q

eiq·r
{

e−q ′
1z + Req ′

1z, z < 0,

T e−q ′
2z, z > 0.

(1)

A similar expression holds for longitudinal polarization,45 see
also the Appendix.

For transverse polarization, the vector potential is contin-
uous at the interface, and the first derivative makes a jump
due to the current generated by the vector field inside the
graphene plane. A similar situation occurs for longitudinal
polarization (see the Appendix). The current is related to the
corresponding current-current susceptibility χ‖,⊥,43,44 where
‖ stands for longitudinal or p and ⊥ stands for transverse or s

polarization. This results in the following expressions for the
transmission amplitude:

T ⊥ = 2q ′
1

q ′
1 + q ′

2 + χ⊥(q,ω)
ε0c2

, (2)

T ‖ = 2ε1q
′
2

ε1q
′
2 + ε2q

′
1 − q ′

1q
′
2χ

‖(q,ω)
ε0ω2

, (3)

where ε0 is the electric permittivity of free space. We further
assumed the same magnetic permittivity for the two regions.
The reflected mode is given by R = T − 1.

The general case of several interfaces can be obtained
from the above result by summing up the (infinite) trajectories
leading to the total transmission and reflection, respectively.
The explicit expressions for two graphene layers sandwiched
by three dielectric media are presented in the Appendix,
solving the matching conditions directly.

A. Homogeneous medium

In the following, we discuss the special case of a homoge-
neous medium where the three dielectrica are the same in all

three regions ε = εi . This allows us to treat both polarizations
on the same footing. The general case is discussed in the
Appendix.

For two graphene layers separated by distance d and using
the notation of Eq. (1), we obtain

T = 1

1 + α1 + α2 + α1α2(1 − e−2q ′d )
, (4)

R = −α1 + α2e
−2q ′d + α1α2(1 − e−2q ′d )

1 + α1 + α2 + α1α2(1 − e−2q ′d )
, (5)

where αi = χ⊥
i /(2ε0c

2q ′) for transverse and αi =
−χ

‖
i q ′/(2εε0ω

2) for longitudinal polarizations.
At the energy h̄ωexp, with

α1 + α2e
−2q ′d + α1α2(1 − e−2q ′d ) = 0, (6)

there is no reflection R = 0, the evanescent equivalent to
perfect transmission. At this energy, we have exponential
amplification of the transmission amplitude,

Texp = −α1

α2
e2q ′d = −σ1

σ2
e2q ′d , (7)

where we introduced the (scalar) conductivities σi of the
two layers well defined for Fermi energies less than
1 eV.44 We also discuss the amplification related to the ratio
of the two intensities at the two interfaces; see Eq. (14).
The maximum then is centered around R = −1 where the
expression divergences. This corresponds to the condition,

1 + α2(1 − e−2q ′d ) = 0. (8)

Let us now introduce the dielectric matrix ε̄(q,ω), which,
for a homogeneous medium, is given by39

ε̄(q,ω) =
(

1 + α1 α1e
−q ′d

α2e
−q ′d 1 + α2

)
. (9)

Genuine plasmons correspond to the zeros of the determinant
det ε̄,

ε(q,ω) = (1 + α1)(1 + α2) − α1α2e
−2q ′d . (10)

This quantity was discussed in Ref. 39. For two undamped
plasmon modes (Im αi = 0), the slopes around the two zeros
are opposite, and the corresponding δ functions obtained by
Im ε−1(q,ω + i0), thus, have weights of different signs. In fact,
also in the dissipative region, the two modes can be related to
opposite signs of the so-called loss function Im ε−1(q,ω + i0),
contrary to the results presented in Ref. 39.

The sign change in ε(q,ω) does not violate causality
since it is only the determinant of a 2 × 2-matrix response
function. Apart from its zeros, it does not have any further
physical interpretation. In this paper, we, thus, prefer to discuss
the eigenvalues of the 2 × 2-matrix current-current response
function defined as j = −e2χ̄Aext where j = (j1,j2)T denotes
the current in layers one and two. We obtain the following
expression:

χ̄(q,ω) = −1

dε(q,ω)

(
α1(1 + α2) α1α2e

−q ′d

α1α2e
−q ′d α2(1 + α1)

)
, (11)

where d = q ′e2/(2εε0ω
2) for longitudinal polarization and

d = −e2/(2ε0c
2q ′) for transverse polarization. In the
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following, we discuss the sum of the two eigenvalues or,
equivalently, the trace of χ̄ (q,ω):

χ (q,ω) = −1

dε(q,ω)
(α1 + α2 + 2α1α2). (12)

We call −Imχ (q,ω + i0) the energy-loss function as it
provides the total plasmonic spectral weight.

III. LAYERS WITH EQUAL DENSITIES

Let us discuss some basic properties of the double-layer sys-
tem in a homogeneous medium for the case of equal electronic
densities, i.e., α = α1 = α2. This situation is realized easily by
applying a potential difference between the two layers, which
results in an equal density of electrons and holes in the two
layers, respectively. Since the carrier type is irrelevant for the
optical properties as long as particle-hole symmetry is retained,
this experimental setup is equivalent to the one with equal polar
doping.

The plasmonic excitations are given by the zeros of ε(q,ω);
see Eq. (10). For Im α = 0, this yields the following conditions
satisfied by the plasmon frequency ω±

p (q):

1 + α(1 ± e−q ′d ) = 0, (13)

where the plus (minus) sign refers to the in-phase (out-of-
phase) plasmon mode. We will use these conditions to find
resonances also in the case of so-called Landau damping
(Im α �= 0 due to particle-hole excitations), thus, formally
setting Im α = 0 also in the region of interband transitions
(ω/vF > 2kF − q). For large-layer separation d and/or large-
wave number q ′, the two plasmon modes, thus, converge to
the plasmon condition for a single layer. This is expected
from physical grounds since, for q ′d � 1, the two layers are
decoupled and each layer has the same plasmonic properties.
In Refs. 39 and 40, the imaginary part of α is considered
throughout, and the two branches disperse when they cross the
region of interband transitions. Both methods (setting Im α =
0 or not) produce similar results for weak damping, the only
relevant limit to still be able to speak of a collective excitation.
Still, we have found, from comparison with −Im χ (q,ω + i0),
that also setting Im α = 0 in the region of interband transitions
provides a better procedure to obtain the maximum of the
plasmonic spectral function. Also, the energies corresponding
to R = 0 and R = −1 will be obtained by setting Im α = 0.

For q ′d � 1, Eq. (6) coincides with the plasmon condition
for uncoupled layers (d → ∞), i.e., 1 + α = 0. For q ′d � 1,
for the out-of-phase mode, we have the simplified condition
1 + αq ′d = 0. In this limit, this coincides with the condition
for zero reflectivity given in Eq. (6). The branch of ωexp,
thus, shifts from ω−

p to ω+
p as the layer separation d is

increased. For d → ∞, ωexp is located in between the two
plasmonic resonances ω±

p just as in Pendry’s original model
with a left-handed lens.46 The reason why this is not the case
for small-layer separation is just because the two oscillators
have different oscillator strengths, which shifts the resonance
condition.

In Fig. 1 (longitudinal polarization) and Fig. 2 (transverse
polarization), the in-phase (upper blue curve) and out-of-phase
(lower blue curve) plasmon mode for two different layer
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FIG. 1. (Color online) The in-phase (upper blue curve) and
out-of-phase (lower blue curve) longitudinal plasmon mode for two
different layer separations d = 2,10 nm are shown together with
the single-layer plasmon mode obtained for d → ∞ (dashed-dotted
curve). Also shown are the energies corresponding to R = 0 (dashed
magenta curve) and R = −1 (dashed red curve). Density of the two
graphene layers is n1 = n2 = 1012 cm−2 with the same dielectric
medium for the three regimes ε = 1 (vacuum), and we set Im α = 0.

separations d are shown together with the single-layer plasmon
mode obtained for d → ∞ (dashed-dotted curve). We also
show the energies corresponding to R = 0 and R = −1. For
both polarizations, we choose n1 = n2 = 1012 cm−2, which
corresponds to kF ≈ 0.177 nm−1 and the same dielectric
medium for the three regimes with ε = 1 (vacuum).

As already discussed, in the above figures, we have only
considered the real part of the susceptibility and, thus, have
neglected the possibility of damping. At zero temperature,
damping will occur at wave numbers q > 2kF − ω/vF due to
interband transitions. This is indicated by one of the dotted
lines in the two figures. In Fig. 1, the limiting dispersion for
the acoustic mode ω = vF q also is shown. Even though the
approximate analytical formula of Ref. 39 for longitudinal
polarization states that the slope is proportional to the Fermi
wave vector, which could be chosen to be arbitrarily small, the
square-root singularity of the susceptibility at ω = vF q forces
the acoustic plasmon velocity to remain greater than vF .
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FIG. 2. (Color online) The in-phase (upper blue curve) and
out-of-phase (lower blue curve) transverse plasmon mode for two
different layer separations d = 50,100 μm are shown together with
the single-layer plasmon mode obtained for d → ∞ (dashed-dotted
curve). Also shown are the energies corresponding to R = 0 (dashed
magenta curve) and R = −1 (dashed red curve). Density of the two
graphene layers is n1 = n2 = 1012 cm−2 with the same dielectric
medium for the three regimes ε = 1 (vacuum), and we set Im α = 0.
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FIG. 3. (Color online) (Left-hand side) The energy-loss function
−Im χ (q,ω + i0) in units of h̄ = vF = 1 for longitudinal polariza-
tion. (Right-hand side) The amplification A of longitudinal polar-
ization together with the plasmonic dispersion of the in-phase and
out-of-phase plasmon modes (solid blue curves). Also, the energies
corresponding to R = 0 (dashed magenta curve) and R = −1 (dashed
red curve) are shown. The density of the two graphene layers is
n1 = n2 = 1012 cm−2 with the same dielectric medium for the three
regimes ε = 1 (vacuum).

For transverse polarization, usually the long-wavelength
approximation of the susceptibility is used assuming an
infinite speed of light. This yields a logarithmic divergence
for ω/vF kF = 2.23 Including the full q dependence, we see
two finite maxima at ω/vF kF = 2/(1 ± vF /c) when the light
cone crosses the regions defined by the straight lines ω/vF =
2kF ± q.

A. Damping and amplification of evanescent modes

To discuss the damping of the plasmonic mode, we plot the
energy-loss function, −Im χ (q,ω + i0). The results are shown
on the left-hand side of Fig. 3 (longitudinal polarization) and
Fig. 4 (transverse polarization). Introducing an infinitesimal
imaginary part to the frequency ω → ω + i0, gives rise to
δ functions defining the plasmonic frequencies in the region
where there is no damping. These are shown as solid blue lines,
which broaden for q > 2kF − ω/vF .

Let us now discuss the amplification of evanescent modes.
For this, we introduce A proportional to the ratio of the field
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FIG. 4. (Color online) (Left-hand side) The energy-loss function
−Im χ (q,ω + i0) in units of h̄ = vF = 1 for transverse polarization.
(Right-hand side) The amplification A for transverse polarization
together with the plasmonic dispersion of the in-phase and out-
of-phase plasmon modes (solid blue curves). Also, the energies
corresponding to R = 0 (dashed magenta curve) and R = −1 (dashed
red curve) are shown. The density of the two graphene layers is
n1 = n2 = 1012 cm−2 with the same dielectric medium for the three
regimes ε = 1 (vacuum).

intensity at the second interface with respect to the one at the
first interface,

A =
∣∣∣∣ T

1 + R

∣∣∣∣
2

. (14)

The amplification diverges for R = −1, and the corresponding
energy lies in between the two plasmon modes as seen from
Eq. (8) but does not coincide with the exponential amplification
given in Eq. (6) (only in the limit d → ∞, do the two
expressions converge). This can be seen on the right-hand
side of Fig. 3 (longitudinal polarization) and Fig. 4 (transverse
polarization), where the amplification A is shown together
with the energies corresponding to R = 0 (dashed magenta
curve) and R = −1 (dashed red curve). We note that, even
after including a small finite-damping term, the amplification
is peaked strongly around the red dashed curve (R = −1) and
only the graphical cutoff (in Fig. 3 it is set to 20) makes A
appear to be smeared out.

For large-layer separation, though, the two plasmon modes
coincide, and the maximum of A is centered around this curve
as well as ωexp. This is not shown here in the case of equal
densities, but the situation is similar to the one shown on the
right-hand side of Figs. 6 and 7.

B. Detecting transverse plasmons

For transverse polarization, the plasmon modes are close
to the light cone.23 We, therefore, introduced the adimen-
sional variable Q = cq/(vF kF ) and showed the difference
Q − ω/vF kF in Figs. 2 and 4. The fact that they are almost
pinned to the light cone makes them difficult to observe.
Recently, it was proposed to use strained graphene to detect
them since strain slightly changes the dispersion relation.47

An alternative detection method is based on fluorescence
quenching of graphene, which is determined entirely by
transverse plasmons in an appropriate energy window.48 Here,
we also want to stress that the double-layer geometry could
be used to indirectly detect these collective excitations that are
linked to the two-band structure of the carriers of graphene.

The main idea is that exponential amplification is linked to
the two plasmon modes. By increasing the interlayer distance
d, the amplification can become arbitrarily large; see Eq. (7).
But for large separation, the interaction between the two layers
decreases, and dissipative effects eventually render the effect.

Let us conclude with some numbers. For n = 1012 cm−2,
the layer separation should be larger than d � 50 μm, the
distance where the second (out-of-phase) mode appears. For
larger separation d � 1 mm, the two plasmon modes almost
coincide, and the exponential amplification ωexp lies almost
on top of these modes. Thus, we would expect an optimal
separation to lie around the two limiting separations, i.e., d ≈
100 ∼ 500 μm, suitable to observe strong amplification.

IV. LAYERS WITH DIFFERENT DENSITIES

Let us now assume a density difference between the two
layers. For longitudinal plasmons, we investigate the case
where one layer has a typical density of n1 = 1012 cm−2,
and the other layer has a (slightly) lower doping level with
n2 = 1011 cm−2. We note that, even at the neutrality point,
there are (damped) plasmons at finite temperatures, which can
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FIG. 5. (Color online) (Left-hand side) The energy-loss function
−Im χ (q,ω + i0) in units of h̄ = vF = 1 for longitudinal polarization
and two different layer separations d = 2 nm (left) and d = 50 nm
(right). (Right-hand side) Also shown is the plasmonic dispersion of
the in-phase plasmon mode as obtained without the imaginary part of
αi (black line). The density of the two graphene layers is n1 = 1012

and n2 = 1011 cm−2 with the same dielectric medium for the three
regimes ε = 1 (vacuum).

be treated with the analytical formulas given above for finite
kF → kT

h̄vF
2 ln 2.49 At room temperature, this corresponds

approximately to n = 1011 cm−2, but in this case, strong
damping terms also are present.

Due to the lesser lateral confinement of the plasmon on
the layer with lower density, larger-layer separations are now
possible until convergence of the two plasmon modes sets in.
By convergence, we now mean that the two plasmon modes are
defined by the free conditions 1 + α1 = 0 and 1 + α2 = 0 in
their respective energy windows without interband transitions.
In Fig. 5, we show the energy-loss function for two different
layer separations d = 2 and d = 50 nm. Thus, there are two
regimes: in the first regime with d � 20 nm, there are acoustic
and plasmoniclike modes. Both modes are only undamped in
the region where no interband transitions are present. When
interband transitions due to the lower-density layer set in, both
modes are damped, but the plasmonic one reaches up to the
region where interband transitions due to the higher density set
in. For the second regime with d � 20 nm, there is an almost
free plasmon with 1 + α1 ≈ 0 for q > 2k2

F − ω/vF limited
only by interband transitions related to the higher density. Also,
the free plasmon 1 + α1 = 0 is shown as a dashed black line,
set as a guide for the eyes. On the other hand, the acoustic mode
has become plasmonic with 1 + α2 ≈ 0, limited by interband
transitions related to the lower density.

The condition for exponential amplification depends on
whether the electromagnetic wave first passes the high-density
layer or the low-density layer; see Eq. (6). In Fig. 6, the
amplification A is shown for the first case, choosing the layer
densities as n1 = 1012 and n2 = 1011 cm−2. The amplification
A follows the out-of-phase mode and terminates at the region
where interband transitions related with the lower density
set in.

Also shown is the condition for exponential amplification
(magenta curve for Im αi = 0), which yields a low- and a
high-energy solution. The low-energy solution follows the
low-energy plasmon mode for both regimes (left and right
panels). The high-energy solution starts at ω/(vF k1

F ) = 1.667
and then disperses toward higher energy roughly following the
plasmonic in-phase mode.
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FIG. 6. (Color online) The amplificationA for longitudinal polar-
ization and two different distances d = 2 nm (left) and d = 200 μm
(right) choosing n2 = 1011 and n1 = 1012 cm−2. The plasmonic
modes (black curves) and the conditions for exponential amplification
(magenta curves) with Im αi = 0 are also shown.

In Fig. 7, the the amplification A together with the plasmon
modes (setting Im αi = 0) is shown for the opposite-layer
densities, thus, choosing n1 = 1011 and n2 = 1012 cm−2. For
(very) small-layer separation d � 20 nm, the maximum of A
is centralized in the vicinity of the out-of-phase mode (not
shown) then crosses the region between the two plasmonic
modes (left-hand side) until it reaches the in-phase mode for
large-layer separation d � 20 nm (right-hand side).

The amplification now only terminates at the region defined
by interband transitions related with the higher density. This
can be understood from Eq. (8), which only contains the
physical properties of the second (higher-energy) layer. This
condition is shown for Im α2 = 0 as a dashed red curve on
the left-hand side of Fig. 7 and is slightly shifted toward
higher energies than the maximum of A due to the neglect
of damping terms. Again, we stress that A has a pronounced
resonance close to the energy corresponding to R = −1 and
only appears smeared out due to the chosen graphene cutoff.

The condition for exponential amplification (magenta curve
for Im αi = 0) now yields different solutions depending on the
layer separation. For d � 20 nm, we again find a low- and
a high-energy solution. For the second regime d � 20 nm,
the two solutions for exponential amplification split. There
is a branch that only exists at small wave vectors and
within an energy window reaching from ω/(vF k>

F ) ≈ 1.667 to

d = 2 nm
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FIG. 7. (Color online) The amplification A for longitudinal
polarization and two different distances d = 2 nm (left) and d =
200 nm (right) choosing n1 = 1011 and n2 = 1012 cm−2. The plas-
monic modes (black curves) conditions for exponential amplification
(magenta curves) with Im αi = 0 are also shown. Additionally, on
the left-hand side, we present the energy corresponding to R = −1
(dashed red curve).

075410-5
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ω/(vF k<
F ) ≈ 2. The second branch starts at ω/(vF k<

F ) ≈ 2 for
q = 0 and then follows the in-phase mode when it crosses the
region of interband transitions coming from the lower-density
layer. The third branch first follows the in-phase mode for small
q wave vectors and then disperses toward smaller energies at
the (avoided) crossing point with the second branch. We note
that this crossing happens at the energy ω/(vF k<

F ) ≈ 1.667.
The repeated occurrence of the value ω/(vF ki

F ) ≈ 1.667 is due
to the fact that, at this energy, the response of the ith graphene
sheet becomes zero, which obviously affects the response of
the other graphene sheet.

Let us close with a comment on transverse plasmons. For
this polarization, there generally is only a small window in
which undamped plasmons can exist, i.e., 1.667 < 
 < 2 with

 = ω/(vF kF ).23 Since, for exponential amplification, the two
plasmons of the two layers have to exist at the same frequency,
this limits the density difference to k>

F /k<
F � 1.2. But from

Fig. 2, we see that the plasmon with lower energy exists
in an even smaller energy window, and we obtain solutions
for typical densities n = 1012 cm−2 only for k>

F /k<
F � 1.02.

Nevertheless, there is a rich phenomenology also in the case
of a larger-density difference. We leave this analysis for when
detailed experimental setups are available.

V. SUMMARY AND CONCLUSIONS

We have discussed the optical properties of double-layer
graphene for linearly polarized evanescent modes and focused
on the plasmon dispersion and (exponential) amplification of
evanescent modes. We considered longitudinal as well as trans-
verse polarizations and especially the detection of exponential
amplification for transverse-polarized modes might, at last,
yield evidence of transverse plasmons, uniquely related to the
chirality of the electronic carriers of graphene and not found
in other materials.

For systems with different densities for the two layers, we
observe that the transmission crucially depends on the order
of the two layers. If the first layer is the high-density layer, the
amplification of the evanescent modes follows the dispersion
of the low-energy solution, whereas, for the other case, the
high-energy solution is relevant. By varying the relative density
of the two layers, one can switch from amplifications based
on the out-of-phase mode to ones based on the in-phase mode.
This might give rise to interesting applications where the
modulation of an external gate can be used for an optical
switcher or, more generally, for a tunable near-field amplifier.
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APPENDIX: GENERAL FORMULAS FOR THREE
DIFFERENT DIELECTRICA

Here, we present the general formulas of the reflectivity and
transmissivity for a structure with three different dielectrica
and graphene in their interfaces, i.e., there are three dielectric

FIG. 8. (Color online) Schematic of the double-layer graphene
structure. The two graphene layers, characterized by α1 and α2 and
separated by a distance d , are sandwiched by the three dielectric
media characterized by ε1, ε2, and ε3. The income wave (normalized
to one) is reflected (R) and is transmitted (T ).

media separated by graphene located at z = 0 and z = d. The
graphene layers are parallel to the xy plane. A schematic of
the setup is shown in Fig. 8. We discuss the scattering problem
only for the vector potential. We, thus, work with a gauge in
which the scalar potential is set to zero.

For transverse polarized light with, say, q = qex , only
the y component Ay is nonzero. Since we are interested
in the time evolution of evanescent modes, we define the
real transverse-wave number q ′

i =
√

q2 − εi(ω/c)2, where q

denotes the conserved wave number parallel to the plane and εi

denotes the dielectric constant of the corresponding medium.

1. Transverse polarization

The vector potential for a transverse-polarized field with
q = qex is given by

Ay(r,z) =
∑
qx

eiqxx

⎧⎪⎨
⎪⎩

e−q ′
1z + Req ′

1z, z < 0,

ae−q ′
2z + beq ′

2z, 0 < z < d,

T e−q ′
3z, z > d.

(A1)

The vector field is continuous at the interface. From ∇ × B =
μ0j, it follows that the first derivative of Ay is discontinuous at
the interface due to the current of the form j = jieyδ(z − zi)
with zi = 0,d. Since the current is generated by the vector
field, i.e., ji = −χ⊥

i Ay(zi) where χ⊥
i is the current-current

response function of the graphene layer at z = zi , the set of
equations closes, and we obtain the following expressions:

a = 2q ′
1(q ′

2 + q ′
3 + 2α2)

N
, (A2)

b = 2e−2q ′
2dq ′

1(q ′
2 − q ′

3 − 2α2)

N
, (A3)

N = (q ′
1 + q ′

2 + 2α1)(q ′
3 + q ′

2 + 2α2)

− (q ′
1 − q ′

2 + 2α1)(q ′
3 − q ′

2 + 2α2)e−2q ′
2d , (A4)

where αi = χ⊥
i /(2ε0c

2). This leads to

T ⊥ = 4q ′
1q

′
2e

(q ′
3−q ′

2)d/N, R⊥ = a + b − 1. (A5)

At the energy h̄ωexp, with

(q ′
2 − q ′

1 + 2α1)(q ′
3 + q ′

2 + 2α2)

= (q ′
1 + q ′

2 − 2α1)(q ′
2 − q ′

3 − 2α2)e−2q ′
2d , (A6)
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there is no reflection R = 0. At this energy, we have exponen-
tial amplification of the transmission amplitude,

T ⊥
exp = q ′

2 − q ′
1 + 2α1

q ′
2 − q ′

3 − 2α2
e(q ′

2+q ′
3)d . (A7)

The amplification A diverges for

(q ′
2 + q ′

3 + 2α2) = −(q ′
2 − q ′

3 − 2α2)e−2q ′
2d . (A8)

2. Longitudinal polarization

For longitudinal polarization, the general vector field also
has a component in the normal direction to the interfaces,

A(r,z) =
∑

q

eiq·r[A‖(q,z)eq + A⊥(q,z)ez], (A9)

where with q ′
i =

√
q2 − εi(ω/c)2, we make the ansatz

(i =‖ , ⊥),

Ai(q,z) =

⎧⎪⎨
⎪⎩

e−q ′
1z + Rie

q ′
1z, z < 0,

aie
−q ′

2z + bie
q ′

2z, 0 < z < d,

Tie
−q ′

3z, z > d.

(A10)

The components A⊥ are obtained from A‖ via the condition
for a transverse field ∇ · A = 0. In the following, we drop the
index i and evaluate the coefficients for i =‖.

The vector field is continuous at the interface, but the normal
component of the displacement field makes a jump due to the
presence of graphene and the corresponding charge density in
the layer. This component is related to the vector field via the
relation Dz = ε0εiωAz. With the continuity equation ωρ − q ·

j = 0 and the linear response j = −χ
‖
i Aq, the set of equations

closes. Assuming the same notation as in the case of transverse
radiation, we obtain the following expressions:

a = 2q ′
2ε1(q ′

3ε2 + q ′
2ε3 + 2α2)

N
, (A11)

b = 2e−2q ′
2dq ′

2ε1(q ′
3ε2 − q ′

2ε3 − 2α2)

N
, (A12)

N = (q ′
2ε1 + q ′

1ε2 + 2α1)(q ′
2ε3 + q ′

3ε2 + 2α2)

−(q ′
2ε1 − q ′

1ε2 + 2α1)(q ′
2ε3 − q ′

3ε2 + 2α2)e−2q ′
2d ,

(A13)

where α1 = −χ
‖
1 q ′

1q
′
2/(2ε0ω

2) and α2 = −χ
‖
2 q ′

2q
′
3/(2ε0ω

2).
This leads to

T ‖ = 4q ′
2q

′
3ε1ε2e

(q ′
3−q ′

2)d/N, R‖ = a + b − 1. (A14)

At the energy h̄ωexp, with

(q ′
1ε2 − q ′

2ε1 + 2α1)(q ′
2ε3 + q ′

3ε2 + 2α2)

= (q ′
2ε1 + q ′

1ε2 − 2α1)(q ′
3ε2 − q ′

2ε3 − 2α2)e−2q ′
2d,

(A15)

there is no reflection R = 0. At this energy, we have exponen-
tial amplification of the transmission amplitude,

T ‖
exp = q ′

1ε2 − q ′
2ε1 + 2α1

q ′
3ε2 − q ′

2ε3 − 2α2

q ′
3

q ′
1

e(q ′
2+q ′

3)d . (A16)

The amplification A diverges for

(q ′
3ε2 + q ′

2ε3 + 2α2) = −(q ′
3ε2 − q ′

2ε3 − 2α2)e−2q ′
2d . (A17)
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