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Carrier confinement in Ge/Si quantum dots grown with an intermediate ultrathin oxide layer
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We present computational results for strain effects on charge carrier confinement in GexSi1−x quantum dots
(QDs) grown on an oxidized Si surface. The strain and free carrier probability density distributions are obtained
using the continuum elasticity theory and the effective-mass approximation implemented by a finite-element
modeling scheme. Using realistic parameters and conditions for hemisphere and pyramid QDs, it is pointed out
that an uncapped hemisphere dot deposited on the Si surface with an intermediate ultrathin oxide layer offers
advantageous electron-hole separation distances with respect to a square-based pyramid grown directly on Si.
The enhanced separation is associated with a larger electron localization depth in the Si substrate for uncapped
hemisphere dots. Thus, for dot diameters smaller than 15–20 nm and surface density of the dots (nQD) ranging
from about 1010 to 1012 cm−2, the localization depth may be enhanced from about 8 nm for a pyramid to 38 nm for
a hemisphere dot. We find that the effect in a hemisphere dot is very sensitive to the dot density and size, whereas
the localization depth is not significantly affected by the variation of the Ge fraction x in GexSi1−x and the aspect
ratio of the dot. We also calculate the effect of the fixed oxide charge (Qox) with densities ranging from 10−9 to
10−7 C/cm2 for 10-� cm p-type Si wafers on the carrier confinement. Although the confinement potential can
be strongly perturbed by the charge at nQD less than ≈4 × 1011 cm−2, it is not very sensitive to the value of Qox at
higher nQD. Since, to our knowledge, there are no data on carrier confinement for Ge QDs deposited on oxidized
Si surfaces, these results might be applicable to functional devices utilizing separated electrons and holes such as
photovoltaic devices, spin transistors, and quantum computing components. The use of hemisphere QDs placed
on oxidized Si rather than pyramid dots grown on bare Si may help to confine charge carriers deeper inside the
Ge/Si heterostructure in order to reduce the influence of surfaces and interfaces on transport properties of the
structures.
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I. INTRODUCTION

There has been a great interest in the preparation, character-
ization, and potential application of self-assembled quantum
dots (QDs) over the past few decades. Most often, the dots
have been overgrown with the matrix semiconductor and are
not directly on the surface. Less well understood is the effect
of uncapped QDs on the electronic properties of the subsurface
region. This region is altered importantly because a part of the
surface is composed of the dot material rather than the matrix,
and therefore a strong strain field is added.

Strain is a fundamental issue in semiconductor heterostruc-
tures. In particular, heterostructures on Ge/Si allow both
band gap and strain engineering using silicon technology.1,2

Strain influences the band structure by (1) imposing the
crystal lattice volume change, which shifts positions of energy
bands, and (2) lowering the crystal symmetry, which splits
degeneracies in bands. With carefully engineered strain, it is
possible to achieve a desired band offset between different
materials, create local confinement and periodic band-gap
modulation, improve charge carrier mobilities by eliminating
low-mobility channels, or reducing scattering via lowering the
band degeneracy.1,3–8

The possibility to tailor the mechanical and electronic
properties of semiconductor QD structures with strains renders
this research field interesting for several important techno-
logical fields. Germanium QDs grown on (or embedded in)
silicon have been successfully employed in solar cells9,10

and in electronic11 and optoelectronic devices12 due to their
simplicity in the band-gap engineering and compatibility with
Si-based integrated electronics. Ge/Si nanostructures with
long coherence times of free carriers are also promising
for spintronic applications.13–15 Application of strain-induced
effects to single Ge QD devices has recently been achieved.
In particular, the first example of a single-hole supercurrent
transistor based on SiGe has been successfully demonstrated.16

The applicability of strains originating from SiGe QDs
for the mobility enhancement in n-channel metal-oxide-
semiconductor field-effect transistors (MOSFETs) has also
been experimentally demonstrated.17

Recently, Ge nanodots deposited on oxidized Si have
become the subject of increasing interest with a perspective of
future pathways and potential new applications in the current
Si-based technology, including advanced silicon photonics and
oxide-on-silicon capacitors.18–23 With this technique, sphere-
shaped dots only contact the Si substrate through nanometer-
sized voids resulting in epitaxial growth of elastically strain-
relaxed QDs without misfit dislocations. The main advantage
of these techniques is that they provide a nearly uniform and
tunable size distribution, allowing us to achieve a dot density
(nQD) as high as 1012 cm−2. Both uncapped dots22,24 and
dots buried in Si (Ref. 25) have been realized on oxidized
Si surfaces.

Many theoretical studies have been carried out to investigate
the strain distributions around quantum dots. The computation
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of strains has been performed either analytically or numerically
in a number of cases of practical relevance. Finite-element
method26,27 (FEM) and Green’s function techniques28–33 have
been systematically employed. Strain gives rise to a defor-
mation potential around the dots, which affects the electronic
structure and thus the basic electrical and optical properties
of QD structures. The strain itself is particularly important
since it is used as input in efficient semiempirical approaches
to electronic-structure calculations, such as k · p, empirical
pseudopotential, or tight-binding methods.34–38 The effect of
strain on the electronic properties of GexSi1−x QDs grown on
oxidized Si surfaces are, however, little known. This, of course,
is not favorable for experiments and applications in strained
semiconductor devices.

In this work, we study the effect of strain on charge
carrier confinement for uncapped and buried GexSi1−x dots
with realistic structural and compositional parameters grown
on oxidized Si wafer surfaces. Numerical calculations are
performed for infinite arrays of quantum dots using the
continuum elasticity theory implemented by a finite-element
modeling scheme. These results can be used in a number
of ways. Possible strategies involve confining charge carriers
deeper inside a Ge/Si heterostructure to reduce the influence
of surfaces and interfaces on the electrical properties and
separating photogenerated electrons and holes in the strain
fields developed at oxidized Ge/Si interfaces able to improve
photovoltage performance of Ge/Si nanostructures. The results
described in this work should also be applicable to functional
devices utilizing electron and hole spins because increasing
electron-hole separation distance can lead to decreasing
exchange interaction between the electron and hole spins,
thus providing enhanced spin coherence times and offering
an important step toward the realization of spin transistors and
quantum computing components.

II. DETERMINATION OF THE STRUCTURE

We compare two different elementary structures, a hemi-
sphere GexSi1−x dot placed on an oxidized Si(001) surface
and a square-based pyramid grown on bare Si(001), either
uncapped or buried in Si. The structures are pseudomorphic
with abrupt interfaces between Si and GexSi1−x , when the
lattice mismatch strain is accommodated elastically without
plastic relaxation via misfit dislocations or stacking faults.

In many cases, the size distribution of hemisphere Ge dots
deposited on ultrathin SiO2 films is rather narrow, with a
mean diameter of 5–10 nm and a height of 2–3 nm,18,23

providing a small aspect ratio (AR = height/base) varying
between 0.2 and 0.6. As the growth temperature increases
from about 300 ◦C to 500 ◦C, nQD decreases from ≈4×1012

to 2×1012 cm−2 while the lateral diameter increases from ≈2
to 10 nm.39 On the other hand, two-dimensional arrays of Ge
QDs with a periodicity of about 40 nm (nQD ≈ 6×1010 cm−2)
and an average dot diameter of 25 nm have been achieved by a
selective growth in holes fabricated in thick SiO2 films by the
block copolymer patterning technique.40,41 Furthermore, using
the ultrathin SiO2 film technique and a patterning technique
yields nanoarrays of high-quality epitaxial QDs having a
diameter of about 10 nm and separated by ≈25 nm (nQD ≈
2×1011 cm−2).42 Therefore, in a realistic case, ensemble of

hemispherical Ge dots may be described by the lateral size
and surface density ranging from 5 to 25 nm and from 1010 to
4×1012 cm−2, respectively.

In Ge dots grown on bare Si(001) by molecular beam
epitaxy (MBE), a bimodal distribution of Ge QDs with
multifaceted domes and square-based pyramids is commonly
observed.43 The base side of a pyramid is typically greater than
20–40 nm, while its AR is 0.1–0.15.44

An important problem connected with the growth of
self-assembled dots is the intermixing between Ge dots and
their neighborhood during growth45–47 and overgrowth,48,49

determining the vertical composition profile of uncapped
and buried dots. Obviously, nominally pure Ge domes on
Si(001) are intermixed already after growth, with a Ge content
increasing from the dot base to the apex. Depending on
the growth temperature, the maximum Ge concentration in
a GexSi1−x alloy can reach values ranging from 70% to
100%, while the Ge content at the dots base is usually around
30%–50%. During overgrowth at temperatures above 600 ◦C,
the maximum value drastically decreases down to about 40%.
If domes are covered by a low-Ge concentration layer, their
shape and high-Ge content can be preserved.

However, direct evidence of the real Ge concentration in
QDs deposited on SiO2 is still lacking. We address this issue
here by using Raman scattering to analyze the optical phonon
region and extract the Ge content in the hemisphere QDs
studied in this work.

The growth of uncapped GexSi1−x QDs on the oxidized
(001)-oriented p-Si wafer surface was performed by MBE
within the scheme proposed by Shklyaev and Ichikawa.20

In order to distinguish between the Raman lines arising
from the substrate and those from the QD layer, we also
analyzed strained uncovered GexSi1−x layers under the same
experimental conditions. These were grown on (100) Si
substrates by a combination of rapid thermal processing and
chemical vapor deposition (RTCVD), resulting in 100-nm-
thick strained Ge0.25Si0.75 layers. The growth procedure is
described elsewhere (see, e.g., Dutartre et al.50).

Raman scattering measurements were carried out in
backscattering geometry with a JobinYvon T64000 triple
spectrometer equipped with a confocal microscope and a
nitrogen-cooled charge-coupled device detector. A 100×
microscope objective was used to focus the light to a 1-μm
spot on the sample surface and collect the scattered signal to
the spectrometer. The samples were excited with the 514.5-nm
line of an Ar+ laser. To minimize sample heating effects on
the Raman spectra,51 the power on the sample surface was set
to 1–2 mW. This excitation produced no detectable sample
heating as observed in the variation of the Raman frequencies
and linewidths with changing power. Reference samples were
prepared from Si(001) wafers used for Ge deposition. At a
wavelength of about 500 nm, the optical absorption coefficient
of Si is α ≈ 18.5×103 cm−1,52 and the light penetration depth,
which is tested in Raman measurements, 1/2α ≈ 270 nm.
Raman spectra were recorded at room temperature.

Figure 1 shows Raman spectra of GexSi1−x QDs (spectrum
1) and a Si reference sample (spectrum 2). In accordance
with previous results from bulk silicon, the substrate spectrum
consists of three peaks at 225, 302, and 435 cm−1 in the region
of interest, which originate from the two-phonon scattering of
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FIG. 1. (Color online) Raman spectra of uncapped GexSi1−x QDs,
epitaxially grown on oxidized Si with no capping layer (spectrum 1)
and a Si reference sample (spectrum 2). Spectrum 3, arbitrary shifted
in vertical direction for the Ge-Ge and higher-wave-number ranges,
corresponds to a 100-nm-thick Ge0.25Si0.75 layer.

2TA(L), 2TA(X), and 2TA(�), respectively.53 It is well known
that some spectral lines in the Raman spectrum of GexSi1−x

dots grown on Si are related to the Si substrate, complicating
the interpretation of the measurements.54 Si substrate peaks
appear at ≈225 and 435 cm−1 in spectrum 1 of the QD sample
but seemingly broadened and slightly shifted to lower wave
numbers compared to those in spectrum 2. Most generally,
epitaxial growth of a lattice-mismatched system leads to the
built-in strains. The strain originated from the lattice mismatch
induces a shift of phonon energies. For example, in the case
of in-plane S‖ strain, the phonon frequency shift is given by
�ω = bS‖, where b is the phonon strain-shift coefficient or
phonon deformation potential.55 Since the lattice constant
of SiGe is larger than that of Si, irrespective of the alloy
composition, and b < 0,56 GexSi1−x is compressed (S‖ < 0).
In contrast, a tensile strain with S‖ > 0 is introduced in the Si
substrate, resulting in lower phonon frequencies with �ω < 0.
The Raman peak broadening and shift to lower wave numbers
can at least in part explain the fact that the substrate peak at
302 cm−1 is smeared in spectrum 1 of Fig. 1 and disappears
on the higher-wave-number side of a stronger Ge-Ge peak
at about 297 cm−1.57–59 This is more clearly illustrated by
examining the Ge-Ge peak in the Ge0.25Si0.75 layer (spectrum
3 in Fig. 1), which is composed of the overlapping Ge-Ge optic
phonon and Si substrate acoustic phonon modes.

The absence of the substrate mode at about 300 cm−1 in
spectrum 1 of Fig. 1 can also be merely explained by the
fact that the energy of the laser line (2.41 eV) is in resonance
with the electronic level (E1 + �1) of the GexSi1−x alloy.60,61

The Ge-Ge phonon mode has been found to exhibit a strong
enhancement in the energy range from ≈2.2 to 2.6 eV,61 thus
decreasing the light penetration depth.

It is also evident from spectra 1 and 3 in Fig. 1 that there
are distinct peaks centered near 410 cm−1, which are due the
scattering from optic phonons involving Si-Ge vibrations.57–59

There are also weak structures at 447 and 479 cm−1 in
spectrum 1, and a weak peak centered near 486 cm−1 in

spectrum 3. These additional peaks, observed between 420
and 500 cm−1, have been attributed to either the localized Si-Si
motion in the neighborhood of one or more Ge atoms62 or to
a long-range ordering in strained epitaxial layers SiGe/Si.63

The frequencies of the localized Si-Si modes are lowered with
respect to a Si substrate peak at about 520 cm−1 because of
the large mass of neighboring Ge atoms.

The principal conclusion from the experimental results is
therefore that the peak positions of the Ge-Ge and Si-Ge
vibrations can be determined precisely since most Raman
signals at these positions are from the GexSi1−x-related
vibration modes. It is seen that the Si-Si mode is rather weak
in spectrum 1 of Fig. 1, as expected for a Ge-reach alloy in the
dot. The frequencies of the other two, ωGe-Ge and ωSi-Ge, can
be fitted via varying the Ge fraction x and strain as follows64:

ωGe-Ge = 284 + 5x + 12x2 + bGe-Ge〈S‖〉, (1)

ωSi-Ge = 400 + 29x − 95x2 + 213x3 − 170x4 + bSi-Ge〈S‖〉,
(2)

where 〈S‖〉 is the average in-plane strain, bGe-Ge is the phonon
strain-shift coefficient for the Ge-Ge mode, and bSi-Ge is that
for the Si-Ge mode.

Taking bGe-Ge = −400 cm−1, bSi-Ge = −575 cm−1,65,66 and
using ωGe-Ge = 297.4 cm−1, ωSi-Ge = 409.7 cm−1 deduced
from Fig. 1 yields x = 0.73 and 〈S‖〉 = −0.82%.

In a larger set of experimental samples, the value of x

ranged from 0.72 to 0.91. From this consideration, it follows
that the strains and carrier confinement effects in oxidized
GexSi1−x/Si QD structures can be characterized fully by
varying x from 0.7 to 1.

III. COMPUTATIONAL DETAILS

We have carried out computations for a system composed
of a periodically repeated unit cell shown in Fig. 2. Consider
hemisphere GexSi1−x dots with height H and a base diameter
D. The interdot distance is LID. According to recent trans-
mission electron microscopy results, Si oxide film remains
under GexSi1−x nanocrystals, but ultrasmall voids with a size
below 1 nm are formed in the film just under the nanocrystals,
thus allowing them to grow epitaxially on the Si substrate.42

Based on this finding, we assume that the dot on oxidized Si
is modeled as a crossover of two primitive shapes, including a
hemisphere and a cylinder neck of diameter d, which is spacing
between a GexSi1−x dot and the substrate. In our calculations,
the dots are either uncovered by a cap layer or covered by a Si
cap with a thickness of up to 10 times greater than the height
of the dot.

To determine the distribution of the electron and hole
wave functions in the strain field induced by QDs, the
two-dimensional (2D) steady-state effective-mass Schrödinger
equation can be written as(

− h̄2

2m
e,h
‖

∂2

∂y2
− h̄2

2m
e,h
⊥

∂2

∂z2

)
�e,h (y,z)

+Ue,h (y,z) �e,h (y,z) = Ee,h�e,h (y,z) , (3)

where m
e,h
⊥ and m

e,h
‖ are the effective masses in the growth

and lateral directions, respectively, �e,h (y,z) and Ee,h are
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FIG. 2. (Color online) Geometry of the problem including three
unit cells of epitaxially grown hemisphere GexSi1−x dots (height H

and base diameter D) grown on (001)-oriented Si substrate with an
intermediate SiO2 layer of thickness h and a cylinder neck of diameter
d between the QD and the substrate. The z axis is the [001] crystal
direction.

the electron (e) and hole (h) wave functions and energies,
respectively, Ue (y,z) and Uh (y,z) are the confinement poten-
tials of electrons and holes, which are the sum of the carrier
confinement in the dot potential and the strain-induced carrier
confinement, i.e.,

Ue (y,z) = �EC + acSh (y,z) + �0

3
+ bcSb (y,z)

3
, (4)

Uh (y,z) = �EV + avSh (y,z) + �0

3
− bvSb (y,z)

2
, (5)

where �EC and �EV are the conduction- and valence-band
offsets, ac and av are the hydrostatic deformation potentials
for the conduction and valence bands, respectively, bv is
the corresponding shear deformation potential, bc is the
deformation potential at the � point of the conduction-band
valley, �0 is the spin-orbit splitting, and Sh and Sb are the
hydrostatic and biaxial strains, respectively. In accordance
with linear elasticity, we can write

Tij (y,z) = Cijkl[Skl (y,z) − S0kl (y,z)], (6)

where Tij is the stress tensor, Cijkl is the elastic module tensor,
Skl is the strain tensor, and S0kl (y,z) are the components of
the initial strain tensor due to a lattice mismatch. The initial
strain is assumed nonvanishing only inside the dot and can be
calculated from the lattice parameters in the dots (ai) and the
Si substrate (am) as follows:

S0kl (y,z) = am − ai

am

δkl, (7)

where δ is the Kronecker delta.
We notice that the contracted notations 11→ 1, 22→ 2,

33→ 3, 23→ 4, 13→ 5, 12→ 6 can be used for elastic module
indexes ij and kl. Then, taking into account a cubic crystal
structure of Si and Ge, the Cijkl tensor can be given in terms
of three independent components C1111 = C11, C1122 = C12,
and C2323 = C44.67 In the isotropic SiO2 material, the elastic

module tensor has two independent components C11 and C12,
whereas C44 = (C11 − C12)/2.

In modeling an infinite array of quantum dots, composed of
a periodically repeated unit cell, we apply a periodic boundary
condition on the left- and right-hand sides of the unit cell
(dotted-line rectangle in Fig. 2). With respect to a coordinate
system introduced in Fig. 2, this condition is given by

uy |y=−LID/2 = uy |y=LID/2 = 0, (8)

where uy is the elastic displacement component.
Next, along all the external boundaries, including the open

surface of an uncapped QD and the top surface of substrate
excluding the part covered by an uncapped dot, the traction-
free condition is imposed, i.e.,

Tijnj = 0 (9)

with nj the j component of the unit vector normal to the
boundary and summation over j = 1,2.

Furthermore, in solving Eq. (6), the continuity conditions
of mechanical displacement and traction are imposed across
interfaces, including GexSi1−x-Si, GexSi1−x-SiO2, and Si-
SiO2 interfaces, i.e.,

ui

∣∣I
z=0 = ui

∣∣II
z=0,ui

∣∣I
z=0 = ui

∣∣III
z=0,ui

∣∣II
z=0 = ui

∣∣III
z=0, (10)

Tijnj

∣∣I
z=0 = Tijnj

∣∣II
z=0,Tijnj

∣∣I
z=0 = Tijnj

∣∣III
z=0,

Tijnj

∣∣II
z=0 = Tijnj

∣∣III
z=0, (11)

where superscripts I, II, and III refer to the substrate, dot, and
oxide layer, respectively, and ui is referred to as the uy and uz

displacement components.
Finally, the condition of a rigid boundary is imposed on

the bottom surface of the cell (at z = −Lz) shown in Fig. 2.
This reflects the fact that the thickness of the area of interest
near the GexSi1−x-Si interface is much less than the substrate
thickness. Then,

uy |z=−Lz
= uz|z=−Lz

= 0. (12)

The strain is computed from Eq. (6) using finite elements68

(quadratic triangular elements with six nodes). Finer meshes
are used inside the dot and near the interface. The FEM solution
is produced for meshes with about 20 000 nodes with two
degrees of freedom per node. Equation (3) is also solved using
the FEM and the same mesh as for the strain is used. This gives
rise to a sparse matrix and the computation is performed using
standard solvers for sparse systems.

The general solution to Eq. (3) is then expressed as a linear
combination of shape functions ξ

e,h
i (y,z), i.e.,

�e,h (y,z) =
6∑

i=1

ϕ
e,h
i ξ

e,h
i (y,z) . (13)

We choose the shape functions to be second-order polynomials
that have the value 1 in an ith single node of the mesh and 0
in other nodes. Substitution in Eq. (3) gives us

[He,h][ϕe,h] = Ee,h[Me,h][ϕe,h], (14)
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TABLE I. Material parameters used in the calculations.

Si Ge SiO2

Lattice parametersa (Å) 5.43 5.65
Elastic constantsb (GPa)
C11 165.7 128.9 85.9
C12 63.9 48.3 17.6
C44 79.6 67.1 34.2
Effective massesc,d

me⊥/m0 0.98 1.6 0.5
me‖/m0 0.19 0.08 0.5
mh⊥/m0 0.49 0.33 5.0
mh‖/m0 0.49 0.33 5.0
Electron deformation potential
constantsa (eV)
ac 4.18 −1.54
av 2.46 1.24
bv −2.35 −2.55
bc 9.16 9.42
�0 0.04 0.3

aReference 70.
bReference 71.
cReference 72.
dReference 73.

where the matrix components are given by

H
e,h
ij = h̄2

2

∫
Se

1

m
e,h
‖

∂ξ
e,h
i

∂y

∂ξ
e,h
j

∂y
dy dz

+ h̄2

2

∫
Se

1

m
e,h
⊥

∂ξ
e,h
i

∂z

∂ξ
e,h
j

∂z
dy dz

+
∫

Se

Ue,hξ
e,h
i ξ

e,h
j dy dz (15)

and

M
e,h
ij =

∫
Se

ξ
e,h
i ξ

e,h
j dy dz. (16)

In Eqs. (15) and (16), the integration extends over the surface
area Se of the finite element.

Our approach to solving the eigenvalue problem given
by Eq. (14) exploits the FEAST algorithm.69 In Table I, we
give an overview of the numerical parameters used in the
calculations. The values for a GexSi1−x alloy are calculated by
linear interpolation from the respective values for Ge and Si.

IV. RESULTS AND DISCUSSION

A. Strain distribution

The principal results of the strain variation for an un-
capped hemisphere GexSi1−x dot are summarized in Fig. 3.
The strain components are plotted for the middle cross
section of the dot. The modeled dot is hemisphere shaped
with height H = 2.5 nm and a base diameter D = 7 nm,
similar to experimentally available dots described above. In
this calculation, a 0.3-nm-thick SiO2 layer is used with a
1-nm-diameter neck connecting the QD and the substrate (see
Fig. 2).

S||

S⊥

FIG. 3. (Color online) Strain distribution at a middle cross-
sectional [001]-[010] plane (24 × 25 nm2 in size), through the center
of an uncapped hemisphere Ge0.73Si0.27/Si dot. S‖ is the in-plane
strain equal to S11, whereas the out-of-plane strain S⊥ is S22. The
negative and positive strain values correspond to compressive and
tensile strains, respectively. The interdot distance LID = 24 nm,
corresponding to the dot density of 1.7 × 1011 cm−2.

It is apparent that the bottom layer of a GexSi1−x dot is
compressed parallel to the interface since the in-plane lattice
constant of the dot material is forced to be equal to that of
the substrate. Due to a greater lattice constant of Ge compared
to that of Si, the compressive interfacial strain (negative S‖
above the interface in Fig. 3) causes an expansion along the z

direction, due to a Poisson effect. This results in positive S⊥
values within the QD. Consistent with this qualitative picture,
both S‖ and S⊥ components are positive in outer layers of a
hemisphere dot.

It is obvious that the character of the strain and effects of
strain on charge carrier confinement are not determined by the
separate components of the strain tensor, but by decomposing
it into the hydrostatic and shear strain components. Thus, the
shift of the conduction-band extremum can be expressed in
terms of strains and deformation potentials as

δEC = acSh + (bc/3)Sb (17)

with Sh = 2S‖ + S⊥ and Sb = 2(S⊥ − S‖). The conduction-
band shift is then given by

δEC =
(

2ac − 2bc

3

)
S‖ +

(
ac + 2bc

3

)
S⊥. (18)

From the values of ac and bc given in Table I, we find that δEC

is much more affected by the S⊥ strain component than by S‖.
We can now try to bring theory into agreement with

experiment using the strain estimates given in Sec. II. Clearly,
the calculated strain distributions displayed in Fig. 3 may not
be directly compared to Raman data for GexSi1−x shown in
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Fig. 1. To make a comparison, the computed in-plane strain
can be averaged over the cross-sectional area S of the dot
according to

〈S‖〉 = 1

S

∫
S

S‖(y,z)dy dz, (19)

which yields 〈S‖〉 = −0.79%. This is clearly in accord with
the value 〈S‖〉 = −0.82% obtained from the Raman spectrum.

B. Electronic structure

The detailed spatial distribution of the electron wave
functions for the lowest localized state, which is denoted
by E0 below, is shown in the left-hand images of Fig. 4 for
uncapped hemisphere [Fig. 4(a)] and pyramid [Fig. 4(b)] Ge
dots, and that for holes are displayed in the right-hand images.
Figure 4(c) plots the distributions for a pyramid dot buried
in a Si matrix. From Fig. 4 we see the following trend: In
a buried dot, the electrons are localized just above the apex
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FIG. 4. (Color online) Probability density function |ψ |2 profiles
(24 × 28 nm2 in size) for energy levels of the ground state corre-
sponding to conduction band (left-hand side) and heavy-hole band
(right-hand side) for (a) hemisphere uncapped Ge dot, epitaxially
grown on oxidized Si surface [(a) in Fig. 2], (b) pyramid uncapped
Ge dot grown on a bare Si surface [(c) in Fig. 2], and (c) pyramid Ge
dot buried in a Si matrix. Base diameter in (a) and base side in (b),
(c) are 7 nm, the dot heights are 2.5 nm in all cases, the thickness
of the SiO2 layer in (a) is 0.3 nm, and the interdot distance is 24 nm
(nQD = 1.7 × 1011 cm−2).

of the pyramid, as has been reported so far.15 In contrast, the
hole wave function is confined inside the dot in all three cases,
causing the holes to be closer to the top of uncapped dots
in Figs. 4(a) and 4(b). Finally, the lowest electron states for
uncapped dots are located below the bottom of the dots, which
more or less come close to the interface [left-hand images in
Figs. 4(a) and 4(b)].

Comparing Figs. 4(a) and 4(b), one sees how the qualitative
trend comes about: The electron ground state can be squeezed
deeper inside the Si substrate due to insertion of an intermedi-
ate ultrathin oxide layer, thus providing a greater distance for
the separated electrons and holes.

In order to understand this trend in greater detail, Fig. 5
shows the electron localization depth as a function of the dot
density for varying parameters of the dot. By inspection of
curves 1 to 3 in Fig. 5, it is apparent that varying density of
the dots is playing a major role; we see significant increases
in electron localization depth for uncapped hemisphere QDs
with decreasing nQD in the range ≈1012 to 1010 cm−2 and
decreases as the dot size increases from D = 7 nm (curve 1)
to D = 22 nm (curve 3). In the plot, the variation of the dot
density is limited to the values for the realistic cases given
in Sec. II. It turns out that the depth is not very sensitive
to Ge fraction x (circles and squares in Fig. 5). To test the
dependence upon the aspect ratio, calculations are performed
for varying AR (open and closed diamonds in Fig. 5), keeping
other parameters the same, and for varying dot size (curves 2
and 3), keeping the aspect ratio fixed. From these, we can draw
the conclusion that the localization depth is not significantly
affected by varying the aspect ratio.

In marked contrast, the localization depth for an uncapped
pyramid QD does not significantly change (by less than 1%)
when taking into account a realistic density of QDs (curve
4 in Fig. 5). Our numerical solutions show that, similarly
to an uncapped pyramid, the localization depth for a buried
pyramid QD exhibits only a weak dependence on nQD (curve
6 in Fig. 5). For buried hemisphere dots, the localization depth
seems to increase only slightly with increase in the dot density
from 1010 to 1012 cm−2 (curve 5 in Fig. 5), as opposed to
the data for uncapped hemisphere QDs (curves 1 to 3). It is
interesting to note that the depths for uncapped and buried
pyramid QDs given by curves 4 and 6, respectively, are quite
similar in magnitude, whereas the ones for hemisphere QDs
(curves 1 and 5) are significantly different in both magnitude
and dependence on nQD. This is to be expected since a necked
hemisphere shape, realized on oxidized surfaces, implies the
strain situation under the dot is somewhat more complicated
compared with that developed both above and under the dot
deposited on an initially bare surface. Consequently, in the
neighborhood of a small neck, even deeper inside the Si
substrate, the electron density distribution clearly differs from
that above the dot.

We therefore conclude that enhanced electron localization
depths in the Si substrate and, consequently, greater electron-
hole separation distances can be realized for uncapped hemi-
sphere QDs with diameters smaller than 15–20 nm over a range
of dot densities, which extends from 1010 to (1–2)×1012 cm−2

in curves 1 and 2 of Fig. 5, in striking contrast to pyramid
QDs (curves 4 and 6). Hence, under certain experimental
circumstances, the effect may be considerably large, giving
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FIG. 5. (Color online) Electron localization depth (distance from
the QD and substrate interface plane to the |ψ |2e maxima in the left-
side images of Fig. 4) as a function of the dot density for an uncapped
(curves 1 to 4) and Si-capped (curves 5 and 6) GexSi1−x alloyed
pyramid QD with a base length of 50 nm, height of 7 nm, x = 0.7
(curves 4 and 6), and hemisphere QDs with D = 7 nm, H = 2.5 nm
(AR = 0.4), d = 1 nm (curve 1) for x = 0.7 (closed circles), 0.8 (open
circles), 0.9 (closed squares), 1.0 (open squares); D = 10 nm, H =
8 nm (AR = 0.8, closed diamonds) and H = 3.6 nm (AR = 0.4, open
diamonds), d =2 nm, x = 0.7 (curve 2); D = 22 nm, H = 18 nm
(AR = 0.4), d = 2 nm, x = 0.7 (curve 3); D = 7 nm, H = 2.5 nm
(AR = 0.4), d = 1 nm, x = 0.7 (curve 5). Points are calculated data,
curves 1 to 6 are drawn as a guide to the eye. Inset: |ψe|2 profile
(10 × 28 nm2) for a hemisphere QD with D = 7 nm, H = 2.5 nm
(AR = 0.4), d = 1 nm, x = 0.7, and nQD = 1012 cm−2.

rise to the depths increasing from about 8 nm for a pyramid
to 38 nm for a hemisphere dot in curves 4 and 1 of Fig. 5,
respectively.

Going further through the numerical derivation of uncapped
hemisphere QDs, we find that, as nQD is increased to a value
above (1–2) ×1012 cm−2, the electron density eventually
evolves into delocalized states (inset in Fig. 5). Comparison
of curves 1 and 1′ in Fig. 5 shows that this effect is slightly
sensitive to the value of x.

To interpret this, it is tempting to consider the strain-
induced confinement potentials for electrons and holes. These
potentials, taken along the z direction and intersecting the
maxima of |ψe|2 and |ψh|2, are displayed in Fig. 6. It is seen
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FIG. 6. (Color online) Distributions of the strain-induced shifts of
the conduction (δEC) and valence (δEV ) bands around an uncapped
hemisphere GexSi1−x QD (D = 7 nm, H = 2.5 nm, d = 1 nm, x =
0.7) for linescans in the z direction intersecting the maximum of |ψe|2
[left-hand image in Fig. 4(a)] for δEC [upper inset in (a)], and going
through the top of the dot for δEV [lower inset in (a)] at nQD = 1011

(a), 4×1011 (b), 1012 (c), 2 × 1012 (d), and 4 × 1012 (e) cm−2. Panel
(f) enlarges the δEC linescans at nQD = 1012 (curve 1) and 2 × 1012

(curve 2) cm−2 with the corresponding ground-state energies E0.
Effect of varying neck diameter d is illustrated by dotted and dashed
curves in (b) computed for d = 3 and 5 nm, respectively.

that, in contrast with the valence-band potential (δEV in Fig. 6),
the one for electrons exhibits sizable changes in both shape and
depth upon varying nQD [δEC in Figs. 6(a) to 6(e)]. The effect
of varying neck diameter, illustrated by dotted and dashed
curves in Fig. 6(b), shows that the shape and depth of δEC do
not vary by a large amount with d for a given diameter range.

Comparison of δEC in Figs. 6(a) to 6(e) shows that the
strain-modified confinement potential for electrons becomes
deeper and narrower with increasing nQD. This may open a
bypass channel through which the electrons can flow from
the ground state E0 in the dot into the continuum states
lying deeper inside the Si substrate. The flow will increase
continuously with narrowing the potential, as the narrowing
lifts E0 up. To summarize this behavior, Fig. 6(f) plots two
enlarged δEC profiles and marks the corresponding ground-
state energies E0. One sees that, for nQD ranged between
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1 × 1012 and 2 × 1012 cm−2, the E0 level touches electron
states in the continuum (at z � −15 nm), which empties the
localized states in the dot by populating the continuum states.
The existence of this crossover point for the energy levels
seems to explain naturally the fact that the electron density
becomes delocalized at nQD greater than (1–2) ×1012 cm−2,
as pointed out above.

Thus far, we have not yet addressed the influence of
the band bending at the Si/SiO2 interface (i.e., the fixed
oxide charge density Qox and the bulk doping level) on
confinement of free charge carriers. To understand this, here
we consider an oxidized p-type Si substrate with fixed bulk
doping shown in the inset of Fig. 7. It is known that the
Si/SiO2 interface contains positive charges in the oxide
with Qox ranging from about 10−9 to 10−7 C/cm2,74,75

which is balanced by an opposite space charge in a layer
of width W underneath the interface (inset in Fig. 7). The
charge distribution produces an electric field within the space
charge region and a corresponding downward band bending at
the silicon surface (eϕsc in the inset of Fig. 7, where e is the
electron charge), following from Poisson equation. Assuming
depletion, the induced Si charge density −Qsc consists of
ionized acceptors in the space charge region Qox = |Qsc| =
eNAW , where NA is the acceptor doping density. Then, the
interface potential and the thickness of the depletion layer
are76

ϕsc = Q2
ox

2εε0eNA

(20)

and

W =
√

2εε0ϕsc

eNA

, (21)

respectively, where ε =11.9 (Ref. 77) is the dielectric function
and ε0 is the permittivity of free space. Taking Nox = Qox/e =
1010 cm−2 and NA = 1.3 × 1015 cm−3 [for a wafer resistivity
of 10 � cm (Ref. 78)], a minimum value of W = Nox/NA is
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section and band diagram of a Si/SiO2 system showing the band
bending eϕsc in the space charge region of width W .

about 100 nm, which extends well beyond the region of interest
in Fig. 6.

Within this model, the effect of oxide charges is accounted
for by adding the value of eϕ(z) in Eqs. (4) and (5). The
potential ϕ as a function of distance z is obtained by integrating
the one-dimensional Poisson equation from the substrate bulk
toward the interface, which gives76

(
dϕ

dz

)2

=
(

2kT

e

)2(
epoβ

2εε0

)
F 2

(
βϕ,

ni

po

)
, (22)

where k is the Boltzmann constant, T is the temperature,
β = e/kT , po is the hole concentration in the bulk of the Si
substrate, ni is the intrinsic carrier concentration in the bulk,
and

F 2

(
βϕ,

ni

po

)
= (e−βϕ + βϕ − 1) + ni

po

(eβϕ − βϕ − 1).

(23)
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Equation (22) is solved with the boundary condition, ϕ(z =
0) = ϕsc, where ϕsc is related to Qox as76

Qox = ∓
√

2εε0kTpoF

(
βϕsc,

ni

po

)
. (24)

The corresponding Qox versus ϕsc dependence, calculated for
po = NA, is shown in Fig. 7. The results demonstrate that
Qox can be split into three charge contributions: accumulation,
depletion, and inversion charge.76 The hatched area shows the
range of ϕsc (from 0 to 480 mV), which corresponds to reported
values of Qox (dotted lines in Fig. 7) and is used to study
the effect of the oxide charge on confinement of free charge
carriers. For the purpose of comparison we will also discuss
the consequences that follow from the negative oxide charge
(for the values of ϕsc ranging from 0 to −200 mV).

To demonstrate the effect of the oxide charge on the strain-
induced confinement potentials for electrons, we plot in Fig. 8
a series of δEC curves computed at different ϕsc. As ϕsc is
increased from 0 to +400 mV, the δEC curves shift downward
[Figs. 8(a), 8(c), and 8(e)]. In turn, decreasing ϕsc from 0 to
−200 mV shifts the curves upward, as Figs. 8(b), 8(d), and 8(f)
illustrate. Similar shifts are also observed for the valence-band
potential shown in Fig. 9. This is clearly due to a downward
and upward band bending induced by Qox > 0 and Qox <

0, respectively, which in turn cause significant curve shifts
observed in Figs. 8 and 9.

By inspection of the curves in Fig. 8, it is also apparent
that the higher +ϕsc and lower −ϕsc result in shallower
confinement potentials on their right-hand sides [Figs. 8(a) and
8(c)] and left-hand sides [Figs. 8(b) and 8(d)], respectively.
This, again, is due to either a downward (+ϕsc) or upward
(−ϕsc) band bending at the Si/SiO2 interface. Consequently, a
positive oxide charge +Qox would cause confined electrons to
move toward the Si/SiO2 interface. In contrast, the electrons

are swept out from the confinement region deeper into the
substrate when the negative charge −Qox is formed in the
oxide. The trend with varying nQD is also obvious in Fig. 8:
At moderately low density of the dots (nQD ≈ 1011 cm−2),
the confinement potential minimum is clearly destroyed if the
oxide charge Qox is greater than ≈4 × 10−9 C/cm2 [|ϕsc|
exceeds a value of ≈60 mV in Figs. 8(a) and 8(b)]. However,
it turns out that the confinement potential is much less affected
by the oxide charge at higher QD densities (greater than
≈5 × 1011 cm−2). This is best seen in Figs. 8(e) and 8(f).

V. CONCLUSIONS

In conclusion, we have studied electronic properties of
GexSi1−x quantum dots grown on oxidized Si surfaces. An
account of strain distributions and electron localization depths
in the strain-induced potential has been given in the framework
of the continuum elasticity theory. Using realistic parameters
and conditions for uncapped and buried dots, it is found that
uncapped hemisphere dots grown on the Si surface with an
intermediate ultrathin oxide layer offer advantageous electron-
hole separation distances with respect to square-based pyramid
dots grown directly on Si. For an uncapped hemisphere dot,
the electron ground state can be squeezed deeper inside
the Si substrate compared with the case of a pyramid dot,
thus providing a greater distance for the separated electrons
and holes. The resulting electron localization depth for a
hemisphere dot is up to five times greater than that for a
pyramid dot. The effect is very sensitive to the dot density
and size, whereas the localization depth is not significantly
affected by Ge fraction x in GexSi1−x alloyed dots and by
changing the aspect ratio of the dot. Model calculations have
been extended further to investigate the relationship between
the electron confinement potential in Si and the Si/SiO2

interface band bending induced by oxide charges Qox. For
a 10-� cm p-type Si wafer, it has been found that Qox should
be moderately low (∼10−9 C/cm2) in order to avoid large
perturbations of the confinement potential if the dot density is
smaller than nQD ≈ 4×1011 cm−2. We expect that the oxide
charge with densities ranging from about 10−9 to 10−7 C/cm2

does not play a significant role in determining the modified
electronic properties in confinement potentials at higher nQD.
We believe that the results presented here are applicable to
functional devices utilizing separated electrons and holes,
including photovoltaic devices, spin transistors, and quantum
computing components.
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