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Electron surface layer at the interface of a plasma and a dielectric wall
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We study the plasma-induced modifications of the potential and charge distribution across the interface of a
plasma and a dielectric wall. For this purpose, the wall-bound surplus charge arising from the plasma is modeled
as a quasistationary electron surface layer in thermal equilibrium with the wall. It satisfies Poisson’s equation and
minimizes the grand canonical potential of wall-thermalized excess electrons. Based on an effective model for
a graded interface taking into account the image potential and the offset of the conduction band to the potential
just outside the dielectric, we specifically calculate the modification of the potential and the distribution of the
surplus electrons for MgO, SiO,, and Al,O; surfaces in contact with a helium discharge. Depending on the
electron affinity of the surface, we find two vastly different behaviors. For negative electron affinity, electrons
do not penetrate into the wall and a quasi-two-dimensional electron gas is formed in the image potential, while,
for positive electron affinity, electrons penetrate into the wall and a negative space-charge layer develops in the
interior of the dielectric. We also investigate how the non-neutral electron surface layer—which can be understood

as the ultimate boundary of a bounded gas discharge—merges with the neutral bulk of the dielectric.
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I. INTRODUCTION

Macroscopic objects in contact with an ionized gas acquire
a negative charge because the influx of electrons from the
plasma outruns the influx of ions. The collection of electrons
at the wall (the boundary of the object) gives rise to a repulsive
Coulomb potential which reduces the electron influx until the
wall charge reaches a quasistationary value. As a consequence
of the electron accumulation at the wall, an electron depleted
region, the plasma sheath, is formed adjacent to the wall.

Most of the voltage driving the discharge drops across the
sheath. Wall charges may however affect not only the spatial
structure of the plasma but also surface-supported elementary
processes such as electron-ion recombination and secondary
electron emission, which are particularly important in dusty
plasmas,' dielectric barrier discharges,*® and solid-state-
based microdischarges.””!! A macroscopic description of the
plasma-induced wall charge, sufficient for the modeling of
the plasma sheath,'? is clearly insufficient for quantifying
the effect wall charges might have on these processes. A
microscopic description of the plasma-induced wall charge
and the potential across the plasma-wall interface it leads to is

required.
Traditionally, plasma walls are treated as perfect
absorbers.!?"' Irrespective of the microscopic interaction, all

electrons and ions impinging on the wall are assumed to
recombine instantly. From this model, only the wall potential
just outside the wall can be obtained. This is the potential
that balances the electron and ion influx at the wall. A
first, qualitative step going beyond this model was taken by
Emeleus and Coulter,'>!® who envisaged the wall charge
as a two-dimensional surface plasma coupled to the bulk
plasma via electron-ion wall recombination. No attempt was
however made to put this appealing idea onto a formal basis.
Later the notion of a two-dimensional surface charge was
developed further by Behnke and coworkers'’~!? utilizing
phenomenological rate equations for the electron and ion
surface densities. In these equations, the microphysics at the
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wall is encapsulated in surface parameters, such as electron
and ion sticking coefficients, electron and ion desorption
times, and an electron-ion wall recombination coefficient.
In principle these parameters can be calculated. Assuming,
for instance, plasma electrons to adsorb and desorb in the
long-range image potential of the wall, we calculated in
our previous work electron sticking coefficients and electron
desorption times for uncharged metallic®® and dielectric
surfaces.”'~2* We also made a first attempt to estimate these two
quantities for charged dielectric plasma walls** and proposed
a physisorption-inspired microscopic charging model for dust
particles in a gas discharge.?’

In this work, we shift gears and focus on the potential
and charge distribution across the plasma-wall interface after
the quasistationary wall charge (the electron adsorbate in the
notation of our previous work?*°) has been established.
In other words, we extend the modeling of the plasma
sheath'>"'* to the region inside the solid and calculate the
plasma-induced modifications of the potential and charge
distribution of the surface. Although knowing the potential and
charge distribution across the interface may not be of particular
importance for present day technological plasmas, it is of
fundamental interest from an interface physics point of view. In
addition, considering the plasma wall as an integral part of the
plasma sheath may become critical when the miniaturization
of solid-state-based plasma devices’~!! continues.

In the model outlined below we specifically consider a
dielectric wall and treat the plasma-induced quasistationary
wall charge, that is, the surplus charge on top of the charge
distribution of the bare, free-standing surface, as an electron
surface layer (ESL) of a certain extent, which is trapped
by and in thermal equilibrium with the wall. In order to
determine the chemical potential, width, and spatial position
(relative to the crystallographic interface) of the electron
surface layer, which depend on surface as well as plasma
parameters, we employ a one-dimensional model for a graded
interface between a collisionless plasma sheath and a dielectric
surface which is assumed to be a perfect absorber; that is,
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the wall potential balances at a certain distance from the
crystallographic interface the electron and the ion influx from
the plasma.

The model of a graded interface encompasses two important
ingredients: the surface dipole of the bare surface responsible
for the offset of the conduction-band minimum to the potential
just outside the dielectric and the long-range image potential.
The former accounts for the charge redistribution of the
free-standing, uncharged surface arising from the truncation
of the crystal, and the latter supports polarization-induced
external surface states (image states), first predicted for liquid
helium?® and later studied for metallic and dielectric surfaces
with negative electron affinity,”’~>? which may trap the electron
surface layer in front of the crystallographic interface.

Originally proposed by Stern for the interface between
two dielectrics,’® and later used by others for semiconduc-
tor heterojunctions®* and electron trapping in nanopores,®
the graded interface model also guarantees continuity of the
electrostatic potential across the plasma-wall interface. The
model thus allows us to study the spatial distribution of the
plasma-induced wall charge across the interface. To insert
the surplus charge into the interface we follow Tkharev and
Danilyuk®® and minimize, in the spirit of density-functional
theory,*’= the grand canonical potential of wall-thermalized
excess electrons. We also investigate how the electron surface
layer merges with the neutral bulk of the dielectric which we
describe with the model of an intrinsic semiconductor.

Various improvements of the model are conceivable but the
increased mathematical complexity would mask the general
ideas we would like to convey. For instance, the model of
a collisionless sheath could be replaced by more realistic
models.'”'* Going beyond the perfect absorber model, on
the other hand, is an unsolved problem. It would require
the inclusion of electron desorption, electron sticking, and
electron-ion recombination, with the respective coefficients to
be self-consistently calculated for the quasistationary electron
adsorbate at the wall. Replacing the graded interface by an
ab initio theory for the surface, for instance, along the lines
given in Refs. 27,28,40 and 41, possibly taking adlayers of
the host gas’s atoms or molecules as well as impurities and
imperfections into account, is desirable but at the present stage
of the investigation impractical. It would require an expensive
atomistic characterization of the plasma-wall interface, either
experimentally via various surface diagnostics or theoretically
via ab initio simulations. As long as the atomistic details
affect however only the offsets of the dielectric constant,
the electron affinity, and the effective mass, the graded
interface model already incorporates these details by a suitable
parametrization. What is not well described is the nonuniversal
region a few atomic units below and above the crystallographic
interface. In particular, intrinsic surface states (Shockley and
Tamm states*?) and additional surface states which may arise
from the short-range surface potential due to impurities,
imperfections, and adlayers are not included. If unoccupied
these states could trap the electron surface layer in the vicinity
of the interface, even for surfaces with positive electron affinity
where image states are absent and cannot trap the surplus
charge in front of the surface.

The remaining paper is structured as follows. In Sec. I we
first construct a crude model for the plasma-induced electron
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surface layer at the interface between a plasma and a dielectric
wall. It does not account for the merging of the electron surface
layer with the bulk of the dielectric. As long as the primary
interest is in the region close to the crystallographic interface
and the band gap of the dielectric is large enough, the crude
model is sufficient. Section III describes a refinement of the
model which enables one to also investigate the crossover of
the electron surface layer to the bulk of the dielectric. This is
particularly important for dielectrics with small energy gaps.
Numerical results for the potential and the electron distribution
are given in Sec. IV, and a short summary is formulated in
Sec. V.

II. CRUDE ELECTRON SURFACE LAYER

As depicted in Fig. 1, we consider an ideal, planar interface
at z = 0 with the dielectric occupying the half space z < 0
and the discharge occupying the half space z > 0. Chemical
contamination and structural damage due to the burning
gas discharge are discarded. At the moment we focus on
the physical principles controlling the electronic properties
of the plasma-wall interface. In the model we propose the
plasma-induced wall charge to be treated as an ESL, which is
an interface-specific electron distribution on top of the charge
redistribution due to the truncation of the solid. The ESL is
assumed to be thermalized with the solid and to stretch from
the plasma sheath over the crystallographic interface to the
bulk of the dielectric.

The boundary between the ESL and the plasma sheath is
located in front of the surface at z = z¢. It is the position where
the attractive force due to the surface potential ¢q,¢ and the
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FIG. 1. (Color online) Qualitative sketch of an interface between a
plasma and a dielectric wall. Upper panel: band structure, microscopic
crystal potential merging with the image potential, and sheath
potential. Lower panel: effective potential for the graded interface
on which the model of an electron surface layer is based.
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repulsive force due to the sheath potential ¢gpneqn balance each
other. Thus, z¢ is given by

¢gurf(Z0) + ¢;healh(Z0) =0. (1)

It gives the position of an effective wall for plasma electrons
and ions at which, for instance, the flux balance condition of the
perfect absorber model, j, = j;, with j, and j;, respectively,
being the electron and ion flux toward the dielectric surface,
has to be fulfilled. For z < zy an electron is attracted to the
surface and thus contained in the ESL, while for z > zq it is
repelled back into the plasma. On the solid side, for z < 0, the
ESL is bounded because of the shallow potential well formed
by the restoring force from the positive charge in the plasma
sheath.

In this section we will outline the essential building blocks
of the ESL model. Putting together concepts from plasma
as well as surface physics, a detailed, self-contained account
seems to be helpful.

A. Plasma sheath

In the traditional view, electrons missing in the positive
space-charge region (SCR) in front of the plasma wall
accumulate on the wall and give rise to a wall potential. For
the construction of our one-dimensional interface model we
need the total number per unit area of missing sheath electrons
(that is, the total surface density of missing sheath electrons)
as a function of the wall potential because it is this number of
electrons which can be distributed across the ESL. Hence, we
require a model for the plasma sheath.

For simplicity, we use a collisionless sheath;'> more
realistic sheath models'>~'* make no difference in principle.
In the collisionless sheath, electrons are thermalized, that
is, the electron density n, = ngexp(e¢/kgT,), with ¢ being
the potential, ny being the plasma density, and 7, being the
electron temperature. The ions enter the sheath with a directed
velocity v;p and satisfy a source-free continuity equation,
d(nyvy)/dz =0, implying n;v; = ngv;p, and an equation of
motion M (v,j V) = —ey ¢ with n; being the ion density
and M being the ion mass " The potential ¢ satisfies Poisson’s

equation d’¢/dz?> = —4me(n; — n,). Thus, the governing
equations for the collisionless plasma sheath are'?
dv; d
v._v — _i_qs and (2)
dz M dz
d? Vo ep
d_z2¢ = —4meny [U_z — exp <kBTe)j| . 3)
Using dimensionless variables
p=—2 t=X and u=Y @)
kB Te )\D Cs
where
kB Te kB Te
Ap = d ¢ = , 5
b 4 nge? and ¢ M )
Egs. (2) and (3) become
uu' =n" and 6)
" MO
=" exp(—n). (N
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In the ESL model the plasma occupies not the whole half
space z > 0 but only the portion z > zo (see Fig. 1). The

integration of the first equation gives u = —,/2n + u§, where

1o = v;o/cs is the reduced velocity of ions entering the sheath,
so that the second equation becomes

Uo

0 = ———— —exp(—n).
J2n +u}d

Using the boundary condition that the potential and the field
vanish far inside the plasma, that is, n — 0 and n’ — 0 for
& — o0, Eq. (8) can be integrated once and we obtain

—\/—2140,/277 + u% + 2exp(—n) + 2u0,/u% — 2.

For ions entering the sheath with the Bohm velocity, ug = —1.
The field at the wall as a function of the wall potential 7n,, =
n(&o) is then given by

0, = _\/2\/m+ 2 exp(—ny) — 4. (10)

The total surface density of electrons in the ESL equals
the total surface density of missing sheath electrons, in other
words, the total surplus surface density of positive ions in the
sheath N which can be calculated from the electric field at the
wall. Integrating Poisson’s equation yields

®)

1 d*¢
N = dz(n; — n,) = d
[o Z(n 4 e ZdZZ
= L9y = —noron (11)
" dme dz 200 = 0D -

Combing Egs. (11) and (10) gives the total surface density of
electrons to be inserted into the ESL as a function of the wall
potential.

The wall potential itself is determined by the flux balance
condition, j, = j;, which, in the ESL model, is assumed to be
fulfilled at z = zo. Using the Bohm flux for the ions and the
thermal flux for the electrons,

. lkgT, d 1 8kpT 2 (12)
i=n an .= —-n eksTe
J 0 M I 4 0 Tm,

the wall potential is given by'?

L 1 M (13)
=—In
e =73 2am, )’
that is,
kT, M
w = ——1 . 14
¢ 2e f <2nme> (14

In the collisionless sheath model the wall potential depends
only on the electron temperature and the ion to electron mass
ratio.

B. Surface dipole

We now turn to the interface region in which the missing
sheath electrons will be inserted. This region is absent in
the traditional modeling of plasma walls. In our model it is
an extended region surrounding an ideal dielectric surface.
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In comparison to the electrons responsible for the chemical
binding within the dielectric the additional electrons coming
from the plasma are only a few. The electronic structure of
the surface, in particular, the charge redistribution due to
truncation of the solid and the offset of the energy bands in the
bulk with respect to the potential outside the dielectric, will
not be changed significantly by the presence of the surplus
electrons comprising the wall charge.

In order to quantify the above statement let us first consider
the electrostatic potential and the electronic structure of a free-
standing, uncharged dielectric surface. According to Tung,*
it has to minimize the thermodynamical potential and satisfy
Poisson’s equation, implying that the potential is continuous
across the surface. Strictly speaking, the continuity of the
potential only applies to the microscopic crystal potential
which has to merge continuously with the surface potential
outside the crystal. The averaged long-range potential, in
contrast, can be discontinuous at the interface. It is this offset
which is encoded in the surface dipole.

The energy of an electronic state in the bulk of the dielectric
can be referenced to the vacuum level V(oc0) = 0, that is, the
potential far outside the crystal, in the following way:*

Ep(F) = €ix — eVeen — eVy(F), (15)

where €;; is the quantum-mechanical contribution to the
energy, Veen is the averaged potential of a cell due to the
charge distribution within the same cell, and V,(¥) is the
long-range potential due to the surface dipole, space charges,
and external fields. In the simple two-band model depicted in
Fig. 1,i = v,c. Vi(F) contains the surface dipole arising from
the truncation of the solid and responsible for the potential
offset at the surface and a slowly varying component due to
external fields and internal and plasma-induced space charges.
External fields and internal space charges will be neglected
in the following, and plasma-induced space charges will be
accounted for by Poisson’s equation (see below).

In order to judge whether the surplus charge arising from
the plasma affects the surface dipole it is useful to consider
first the typical strength of the surface dipole of a free-standing,
uncharged dielectric surface. It results from a charge double
layer in immediate proximity to the surface. Depending on
the material it can have various origins. For an ionic crystal,
for example, it is the lattice relaxation at the surface which
makes anions or cations protrude and the other species retract
(e.g., protruding oxygen and retracted cations for magnesium
oxide?’), while for semiconductors it is the regrouping of
covalent bonds which leads to charge redistribution at the
surface. Even in the absence of these effects the minimization
of the thermodynamic potential of the surface’s electrons leads
already to an electron density leaking out into the vacuum.
This is particularly important for metals. As a result a charge
double layer is formed over a length on the order of a lattice
constant.

The dipole layer is usually characterized by a dipole
strength:

eD = eV(i,) — eV (i), (16)

where V,(7") is the limit of the long-range potential just inside
the crystal at the surface position 7, and V(") is the limit of
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the potential at that position just outside the surface. Usually
these two potentials, which characterize the discontinuity of
the long-range potential at the surface, are termed the potential
just inside and the potential just outside, respectively.*>**
Here, just outside denotes a distance that is small compared
to variations of the long-range potential due to external fields
or space charges but large compared with the width of the
charge double layer. Note also that, in the definition of the
potential just outside the image potential is assumed to have
already decreased to zero.** This point will be important
later.

The strength of the dipole layer is a microscopic property of
the surface which is relatively insensitive against the additional
charges from the plasma. The reason for this lies in the small
number of additional electrons from the plasma compared to
the number of displaced electrons involved in the formation of
the dipole layer. To prove this statement we give a simple
estimate. Typical surface dipoles eD are on the order of
electron volts. For a double layer of 1 A to each side of
the crystallographic interface a potential difference of 1 V
requires a surface charge density of 5.5 x 103cm™2. The
surface charge density at the wall of a helium discharge
with plasma density ny = 10’cm™2 and electron temperature
kgT, = 2eV amounts, however, only to 4.4 x 10° cm~2. For
typical plasma densities, the number of additional electrons
is thus far too small to lead to a change of the surface
dipole. Even for semiconductor-based microdischarges,®!°
which can have much higher plasma densities, we expect the
surface dipole of the plasma wall not to be modified by the
plasma.

In view of the preceding estimate, we have to revise an
assumption in our previous work,”> where we assumed the
surface charge accumulating on the wall would increase the
dipole energy eD by e¢,,, leading to the image states being
pushed from the band gap into the energy region of the
conduction band. The numbers given in the previous paragraph
indicate, however, that the band lineup of the conduction band
and the potential just outside the solid will not be affected
much by the wall charge. Hence, if a negative electron affinity
supports image states in front of the uncharged surface, these
states remain in the band gap for the charged surface. Electron
trapping as investigated in Refs. 21 and 22 is thus possible
even for charged plasma walls.

Instead of the dipole strength e D which cannot be measured
directly, it is more convenient to characterize the dipole layer
by the electron affinity x which is a measurable quantity
for a dielectric surface.** The electron affinity is the energy
released when an electron is moved from just outside the
surface to the bottom of the conduction band. It accounts for
charge redistribution in the vicinity of the surface due to the
truncation of the crystal. While many surfaces have positive
electron affinity such as Al O3 or SiO,, there are also materials
with negative electron affinity, for instance, diamond,* boron
nitride,*® or the alkaline earth oxides.?”*® The electron affinity
depends also on adatoms. In some cases this is even used
to control the electron affinity of a surface. Terminating,
for instance, a surface with weakly electronegative elements
such as hydrogen induces a negative electron affinity,*’” while
termination with strongly electronegative elements can lead to
a positive electron affinity.*3
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From Eq. (15) it is clear that x equals eD plus a bulk
contribution:

x = —eVi(7) = Ea(iy) = eD — Ec + eVean,  (17)

where E¢c = €., denotes the minimum of the conduction band.
We can thus use y to characterize the potential offset at the
surface. There is however a caveat. The long-range potential
inside the solid is only specified up to a constant.** Typical
choices are the cell-averaged potential or the intersphere
potential of the muffin-tin approximation. For our purpose
it will be however more convenient to take the conduction-
band minimum as the long-range potential inside the solid.
This choice is motivated as follows. We are considering
a dielectric with a large energy gap. The valence band is
thus fully occupied and the conduction band is essentially
empty. Hence, only the conduction band can be populated by
additional electrons coming from the plasma, and referencing
the electrostatic potential inside the solid to the conduction-
band minimum allows us to relate the total surplus electron
density in the interface region to the potential in the interface
region, in analogy to what we have done for the plasma sheath
in the previous subsection.

Adopting the above discussion to the one-dimensional
model shown in Fig. 1 and assuming a quadratic dispersion
for the conduction band, the energy of an electron in the
conduction band is given by

272

E(z) =
2m.

— ePgurt(2), (18)

where ¢g,(z) is the total surface potential to be determined in
the next subsection, and the offset of the electrostatic potential
at the surface,

e¢surf(07) - e(psurf(OJr) =X (19)

encompasses the surface dipole as well as the unspecified bulk
contribution.

C. Image potential

The surface potential of the bare, uncharged surface com-
prises at least the surface dipole and a long-range contribution,
the image potential, resulting from the mismatch of the
dielectric constants at the surface. Far away from the surface
the image potential is given by*’

e—1 e

Oim(2) = Het Dz

(20)

But this expression cannot be employed for our purpose
because the singularity at z = 0 prohibits a smooth electron
distribution across the interface. In reality the image poten-
tial has to continuously merge with the crystal potential.
Equation (20) is thus also unphysical.

To obtain a realistic image potential without performing an
atomistically accurate calculation we employ the model of a
graded interface. It also has the virtue of being parameterizable
with experimentally measured values for the electron affinity,
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the dielectric mismatch, and the mismatch between effective
electron masses. The model incorporates therefore important
properties of a surface; most importantly, it accounts for the
charge redistribution due to the truncation of the solid.

Initially proposed by Stern*’ to remove the unphysical
singularity of the image potential at the interface of two
dielectrics, the graded interface model assumes the dielec-
tric constant € to vary over a distance on the order of a
lattice constant. Later the model was extended to variations
of other physical quantities and applied to semiconductor
heterostructures and nanopores.>¥ Clearly, because of the
interpolation the model cannot account for effects associated
with intrinsic surface states (Shockley and Tamm states**) and
additional surface states which may arise from the short-range
surface potential. Nevertheless, the graded interface model is
a reasonable description of a surface.

In the spirit of a graded interface, we assume the dielectric
constant €, the electron mass m, and the potential offset at the
surface to vary smoothly according to the grading function

c 7z < —a
-yt -t .

8e.c+(2) = % — =5 sin (%) —a<z<a, @21
ct z>a

where a is the half width of the graded interface and c¢*
stands for the quantity that varies across the interface. We
use the value a = 5 10\, which is an estimate used in previous
applications of the graded interface.*> While the grading
parameter a is not based on definite experimental or theoretical
results it is motivated by the assumption that the bonding and
the electron density at the surface change over one to two
lattice constants, implying a transition layer for the effective
potential and the dielectric constant that is somewhat larger.
Hence, across the interface the electron mass, the dielectric
constant, and the offset potential are given by

m(z) = gmz.m,(2), €(2) = ge1(2), (22)

and

1
Pofrset(2) = ;gx,o(Z), (23)

respectively, with m. being the effective mass of the conduc-
tion band.

Within the model of the graded interface, the image
potential is the change in the self-energy of an electron due
to the proximity of the dielectric mismatch. Positioning the
electron at 7y it is given by™3

Pim(Fo) = 5[9™ (o) — °(Fo)], (24)

where ¢™(7) is the potential in the medium with dielectric
mismatch arising from the electron at 7y and ¢O(7) is the same
quantity in a homogeneous medium with dielectric constant
€(zo). Hence, ¢™(#) is the solution of

Vie(x)Ve™(¥)] = dmed(F — 7o), (25)
while ¢°(7) is the solution of
V20F) = S 55 7y (26)
€(20)
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To solve Egs. (25) and (26) we follow Stern®* and make the
ansatz

m,0 _L - /OO
9" 0(2.0.9) = 1:2_:; i dqqJi(pq)Ji(poq)

x &1~ AmO(), 27

Placing the electron on the z axis, pp = 0, which implies
Jo(pog) = 1 and Ji(ppg) = O for [ > 0. Hence, we need to
keep only the / = 0 term, so that

1 o0
0" 0Gp.9) = 5 f daqlo(p) AT ), (28)
0

where A)(z) is given by

-2
AYR) = —— i 29)
€(z0)g
and AZ’ (z) is the solution of
A2y + S qmy g amy = 5 ) G0)
Z —_— ) — Z) = ——o\Z — 20),
‘ @) TR E 0

which has to be obtained numerically. The image potential is
then given by

; _ ! ood A" A° 31
$im(20) = 7— fo qq[A](z0) — AYz0)].  (B1)

In contrast to Eq. (20) it is now smoothly varying across the
interface with a deep well on the low-¢ side and a small bump
on the high-¢ side.

The total surface potential comprises the graded offset
potential Eq. (23) and the graded image potential. Hence,

Gsurt(2) = Gim(2) + Pofteet(2)- (32)

It is continuous across the crystallographic interface at z = 0
and enables us thereby to also calculate a smoothly varying
electron distribution in the ESL. The band structure and the
total surface potential at the graded interface are visualized in
the lower panel of Fig. 1.

Using Eq. (1) we can now determine the position zg of
the effective wall, that is, the maximum extent of the ESL on
the plasma side. The derivative of the bare surface potential
iS @l = Obseer + Pipy- Due to the relatively weak field in the
sheath compared to the image force, the boundary zo will be so
far away from the interface that ¢, vanishes and the image
potential obeys Eq. (20). Thus, the boundary between the ESL.
and the plasma sheath is given by

(e — e
= [——, 33
TV e+ D, Gy
with ¢, = —(kgT,n,,)/(elp) and 1, given by Eq. (10).

D. Electron distribution

The plasma-induced wall charge is assumed to be in thermal
equilibrium with the wall. Hence, the distribution of the excess
electrons in the ESL has to minimize the excess electron’s
grand canonical potential in the external potential due to the
surface. The coupling to the sheath is maintained by the
constraint that only as many electrons can be filled into the
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ESL as are missing in the sheath and the boundary conditions
to the Poisson equation, which links the electron distribution
in the ESL to the (internal) electrostatic potential.

To minimize the grand canonical potential of the surplus
electrons we follow Tkharev and Danilyuk®® and apply
density-functional theory®”*® to the graded interface. While
more refined schemes of density-functional theory®® could, in
principle, be employed, we will use for the purpose of this
exploratory calculation density-functional theory in the local
approximation. Quite generally, the grand canonical potential
of an electron system in an external potential V (7) is given in
the local approximation by

Q= / V(@En@)dr — g / be(PnE)dr

+GInl— / n()dF, (34)

where G[n] is the grand canonical potential of the homoge-
neous system with density n(¥) and the Coulomb potential is
determined by

VIe(#)Vopc ()] = dmen(¥). 33

The ground-state electron density minimizes €2; that is, it
satisfies

V(F) — epc(F) + ' (n) — u =0, (36)

where w1/ (n) = §G[n]/6n is the chemical potential for the
homogeneous system.

Specifically for the excess electrons in the one-dimensional
graded interface Eq. (36) reduces to

—ep(z) + 1'(2) — n =0, 37
where 1/ (z) = ' [n(z),T] and the electrostatic potential,
D(2) = Pourt(2) + ¢c(2), (33)

consists of the potential of the bare surface given by Eq. (32)
and the internal Coulomb potential which satisfies Poisson’s
equation:

j—z [E(Z)j—zdk(z)} - (39)

with the graded dielectric constant €(z) given by Eq. (22)
and the boundary conditions ¢¢(zo) = ¢y and ¢ (z0) = @], to
guarantee continuity of the potential at zy and to include the
restoring force from the positive charge in the sheath. Note that
the Coulomb potential derived from this equation includes the
attraction of an electron to the image of the charge distribution.

For the functional relation u’(z) = u”[n(z),T] we take
the expression adequate for a homogeneous, noninteracting,
nondegenerate electron gas:

1 [m(kT | el
n(z)_ﬁ[ g } ersT (40)
This is justified because the density of the excess electrons is
rather low and the temperature of the surface is rather high,
typically a few hundred Kelvins.

In order to calculate the quasistationary distribution of
the surplus electrons, Egs. (37) and (39) have to be solved
self-consistently with the additional constraint that the total
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electron surface density in the ESL equals the total surface
density of electrons missing in the sheath, that is,

/ " dzn(z) = N, @1)

with N given by Eq. (11). In the above equation we introduced
a cutoff z; < O at which the ESL terminates inside the
dielectric. As long as |z is chosen large enough it does not
affect the numerical results close to the surface. An improved
treatment of the ESL, avoiding the ad hoc cutoff, is given in
the next section.

Within the crude ESL model developed in this section the
computation is performed iteratively in the interval z; < z <
zo according to the following scheme:

(i) We start with the potential of the empty surface given by
Eq. (38) with ¢¢(z) obtained from Eq. (39) with n(z) = 0 but
with the boundary conditions at zg as specified.

(i) We integrate both sides of Eq. (40) over z with w'(2)
given by Eq. (37). Enforcing the constraint (41) determines .

(iii) Using u we calculate from Eq. (37) a new u”(z) which
gives with Eq. (40) a new electron density n(z).

(iv) Lastly, we determine from Eq. (39) the electrostatic
potential associated with the updated n(z).

Steps (ii)—(iv) are iterated until w, which is far below the
conduction-band edge because of the nondegeneracy of the
excess electrons, converges.

III. REFINED ELECTRON SURFACE LAYER

In the previous section we have taken into account only
the electron concentration in the conduction band of the
dielectric due to the electrons coming from the plasma. For
wide band-gap materials this is justified, especially near the
surface, as their concentration is much larger than the intrinsic
carrier concentration. Deep inside the dielectric, however,
charge neutrality is not enabled by a vanishing electron density
but by the electron density decreasing to its intrinsic value,
which is then balanced by the intrinsic hole concentration in
the valence band.

To take this effect into account, which is particularly
important when the additional electrons accumulate deep
inside the bulk of the dielectric, we divide the ESL into
two regions: a very narrow interface-specific region (ISR)
and a wide space-charge region (SCR) in the bulk of the
dielectric. The parameter z; denotes now no longer an ad
hoc cutoff but the boundary between the two regions. It has
to be chosen so that the ISR includes the major effect of
the image potential in the dielectric implying z;, < —z¢. The
electron distribution and the potential in the ISR are calculated
using the density-functional approach outlined in the previous
section. In the SCR we use for simplicity the model of an
intrinsic semiconductor to describe electron and hole densities
as well as the long-range potential. As the energy bands in
the dielectric follow the long-range potential the refined ESL
also captures the band bending which might be induced by
the presence of the wall charge. It is however only significant
when most of the excess electrons are trapped in the SCR and
not in the ISR.

Figure 2 schematically shows the electron and hole densities
for the refined ESL model. The boundary between the plasma
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FIG. 2. (Color online) Sketch of the refined model of the interface
between a plasma and a dielectric wall. In the plasma, equal densities
of electrons and ions ensure quasineutrality. The positive space charge
in front of the effective wall defines the plasma sheath. The ESL
contains a very narrow interface-specific region (ISR), where the
model of the graded interface is used, and a wide space-charge region
(SCR), which allows a continuous merging with the neutral bulk of
the dielectric, where intrinsic electrons and holes balance each other
to guarantee charge neutrality. Note that the widths of the various
regions are not to scale.

sheath and the ESL is still located at zo. As our model does
not encompass the electron and ion flux from the plasma for
Z < Zo, the densities n, and n; are discontinuous at z. This is
obvious for the ions which are not allowed to enter the solid.
The discontinuity of the electron density, in contrast, arises
because we ensure only the total number of missing sheath
electrons per unit area to be conserved. This global constraint
cannot guarantee continuity of the electron density at zo. At
the boundary between the ISR (z; < z < z9) and the SCR
(z < zy) the electron density and the potential are continuous.
In principle, also the hole density p should be continuous. As
p(zs) K n(zs) for the materials we are considering, we can
however neglect holes in the ISR.

For the modeling of the SCR it is convenient to use ¥ (z) =
@(z) — dpuik for the long-range potential, which vanishes for
charge neutrality in the bulk. Here, ¢p,x = ¢(—00) (see below
for an explicit relation for ¢yyx). Then, Poisson’s equation is
given by

Y 4n

dz2 —— [=en(@) +ep()]. (42)

where the electron and hole densities for an intrinsic semi-
conductor with parabolic bands whose extremal points are,
respectively, Ec and Ey are given by’

3
1 m*ckBT>2 - Ectey ()]
ng)=—|———| e’ -, 43
@) ﬁ< s 43)

3
1 (m3kgT \? _ 1\ (v_Eyte
o= dy (Y

From a comparison of the exponents in Egs. (43) and (40),
where u; is given by Eq. (37), we find

Vv=pu+ Ec + epoux. (45)
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Far from the surface, ¢ = 0 and n = p = n,,. This gives the
chemical potential

Ey+Ec 3 *
LR S o (46)
2 4 m*

c
and the bulk carrier concentration

1 (ksT\? . . E,
ﬁ ) (memy)* exp _ZkBT . 47

where E, = Ec — Ey. Hence, Poisson’s equation becomes

np =

dzdLZgZ) = %nb[e%? —e ], (48)
and using dimensionless variables
y = ];_‘”T and ¢ = L= (49)
with Lp = \/m we obtain
n' =e"—e". (50)
This equation can be integrated once, which gives
(")? = 4 cosh(n) + C. (51)

The boundary conditions in the bulk 7 =0 and ' = 0 for
& — —oo imply C = —4 so that Eq. (51) becomes

n' = /8sinh (g) ) (52)

Integration with the boundary condition at z,, that is, at £ = 0,
n(0) = n, and requiring n — 0 for £ — —oo gives

+
75 (&) = 21n [:t tanh (T/—; n %)] , (53)

with
¢t = +2artanh |:exp <:F2m >i| R (54)

where the upper sign is for n; > 0 and the lower sign is for
ns < 0.

In analogy to what we have done at the boundary of the ESL
with the plasma sheath at z = z( we relate the potential 7, to the
total electron surface density in the space-charge region. From
Poisson’s equation we obtain for the total electron surface
density in the SCR

s d s
NSR = / dz(n — p) = L%nb a
o dz|_4

= Lpnyn'(0), (55
where 1’ is given by Eq. (52), so that

NSCR — /8L pny sinh (%) (56)
or

NSCR
s = 2arsinh | — ] . 57
1 <\/§LDnb>

For a negative space charge n, > 0, so that the potential is
given by ¥ (z) = (kgT/e)n™[(z — z5)/Lp] and the electron
and hole densities are given by n(z) = nye” [@=2)/Lol and
p(z) = npe " 1G=2)/Lo] " respectively. The relation between
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¥ and ¢ is given by ¢puk = ¢(z) — ¥ (z). Since Y (zy) =
(kT /e)ns we obtain gou = ¢(z5) — (kT /e)n;.

Now, quite generally, the excess electrons in the ESL are
distributed over the ISR and SCR according to

N = N®®(u) + N5R(pw), (58)

where NSR is the surface density of electrons in the ISR, u is
the chemical potential in both regions, and N is the total surface
density of missing sheath electrons given by Eq. (11). The
total surface density in the ISR is given by N™R = [* dzn(z),

s

where 7(z) is calculated with the density-functional approach
for the graded interface. Requiring continuity of the electron
density at z;,

1 (mEksT\? 1 (resie
E(mch—i ) enT T = e (59)
b

gives 1, as a function of x. From n, we finally obtain, using
Eq. (56), NSR(w).

For the calculation of the electron distribution and the
potential in the refined ESL we use the iteration cycle described
in the last section with one modification. In step (ii) we solve
Eq. (58) instead of Eq. (41) to fix . From u we obtain, using
Eq. (59), ns, which in turn determines the electron distribution
and the potential in the SCR. This gives for each iteration step a
continuous potential and electron distribution at z,;. As before,
the steps (ii)—(iv) are iterated until u converges.

At the end of this section let us finally mention two
simplifications of the refined ESL model, which could be
used, respectively, for large band-gap dielectrics irrespective
of the electron affinity and dielectrics with small band-gap and
positive electron affinity. In the former case the intrinsic carrier
concentration n, is very low and the merger with the bulk
occurs very deep in the dielectric. Almost all surplus electrons
are however much closer to the surface where the holes can be
neglected. This can be seen from the differential equation for
n. For small n, Eq. (57) gives a large 7,. As n satisfies a highly
nonlinear differential equation (50), a large 1, implies a steeper
gradient of n near the surface so that almost all electrons are
concentrated close to the surface where neglecting the holes
has little effect. Hence, for large band-gap dielectrics surplus
electrons can be filled into a sufficiently large ISR for which
the crude ESL model of the previous section will be sufficient
provided the cutoff z, is large enough. The merger with the
bulk is of course not correctly captured by such an approach.

For dielectrics or semiconductors with small energy gaps
and positive electron affinity, on the other hand, almost all
surplus electrons are deep inside the material. It is thus a good
approximation to neglect the ISR and to fill all electrons in
a SCR. Neglecting the surface potential has little effect in
this case and using the SCR already for z < 0 gives a good
description of the electron distribution inside the ESL. The
electron density and potential at the surface and in front of
it can of course not be captured by such an approach. As
before ¥(z) = ¢(z) — Ppui With dpux = ¢(z5) — (kT /e)n
where ¢(z,) is now the limit of the long-range potential just
inside the dielectric given by ¢(z;) = ¢y + x/e.
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IV. RESULTS

We now use the ESL model to calculate for a helium
discharge in contact with a MgO, Al,O3, and SiO, surface
the potential and the density of excess electrons across the
plasma wall. Our main focus lies in the identification of
generic types of electron distributions in the ESL depending
on plasma and surface parameters. Unless otherwise stated,
we use for the plasma density no = 10’ cm™ and for the
electron temperature kg7, = 2 eV. The parameters of the
dielectric surfaces are given in Table I. Preferentially we
used experimental data for the various quantities; only if not
available, we employed theoretical values.?33!-6

First we give typical values for zo, the position where
the ESL merges with the plasma sheath. It is calculated
from Eq. (1) and should thus depend not only on plasma
but also on surface parameters. Our results for MgO (zo =
6.08 x 107> cm), Al30;3 (z9 = 6.09 x 107> cm), and SiO,
(zo = 5.14 x 1073 cm) indicate however that z, is relatively
insensitive to €, which is the only surface parameter affecting
zo when the sheath is assumed to be collisionless. Even the
significantly smaller € of SiO, does not alter zg considerably.
For the helium discharge considered z is irrespective of the
dielectric always on the order of a micron.

Of particular importance for the distribution of the excess
electrons in the ESL is the electron affinity x, characterizing
the offset of the conduction band to the potential just outside.
For x < 0 (MgO) the conduction-band minimum lies above
the potential just outside. It is thus energetically favorable
for electrons to be located in the image potential in front of
the surface. Figure 3, showing the electron density and the
potential in the ESL of MgO, verifies this. The energy of an
electron in the image potential —e¢ indeed reaches a minimum
just in front of the surface at the beginning of the graded
interface. For negative electron affinity, the excess electrons
coming from the plasma thus form an external surface charge
in the image potential in front of the crystallographic interface.
The band bending associated with it is negligible. The external
surface charge is very narrow; it can thus be considered as
a quasi-two-dimensional electron gas, similar to the surface
plasma anticipated by Emeleus and Coulter.'>6

For x > 0, on the other hand, the conduction-band mini-
mum is below the potential just outside. It is thus energetically
favorable for electrons to accumulate inside the dielectric. This
can be seen in Fig. 4, which shows the electron density and
the potential in the refined ESL (red line) and simplified ESL
(open green circles and blue triangles) for an Al,O; surface.
The surface potential consists of an attractive well in front of

TABLE 1. Material parameters for the dielectrics considered in
this work: dielectric constant €, electron affinity x, conduction-band
effective mass m{., valence-band effective mass mj,, and band

gap E,.

[ x (eV) m¢ (m,)  my, (m,)  Eg (eV)
MgO  9.8[51] —0.4([28] 0.4][52]
ALO; 9.9 [53] 2.5[54] 0.41[55] 4.0[55] 8.8[56]
Si0, 3.78[571 1.3[54] 0.5[58]  0.58[59] 9.2[54]
GaAs 13.1[60] 4.07 [60] 0.067 [60] 0.45[60] 1.42 [60]
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FIG. 3. (Color online) Plasma-supplied excess electron density n
(upper panel) and the potential —¢ (lower panel) it gives rise to, for a
MgO surface in contact with a helium discharge with ny = 10" cm™>
and kpT, =2 eV calculated without accounting for a SCR in the
dielectric (crude ESL model). The cutoff of the interface region is
zs = —zo. As can be seen, almost all of the plasma-induced wall
charge is located in the well of the image potential in front of the
surface.

the surface, but the minimum potential energy for electrons
—e¢ is reached inside the dielectric. Excess electrons coming
from the plasma are thus mostly located inside the wall and the
electron distribution extends deep into the bulk. This extended
negative space charge also leads to a band bending near the
surface. Note the different scales of the axes for the left and
right panels of Fig. 4. On the scale where variations in the SCR
are noticeable the ISR is basically a vertical line.

If one neglects the SCR and fills all excess electrons into the
ISR (the crude ESL), the potential and the electron distribution

©0000000°
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FIG. 4. (Color online) Plasma-supplied excess electron density
n (upper panel) and the potential —¢ (lower panel) it gives rise
to, for an Al,O5 surface in contact with a helium discharge with
no = 107 cm™ and kzT, = 2 eV. The red lines show data obtained
from the refined ESL model accounting for an ISR and a SCR, the
boundary between the two was put at z; = —3z, the green circles
show data for a model which consists only of an ISR with cutoff
Zs = —0.9cm (crude ESL model), and the blue triangles show data
for a model consisting only of a SCR for z < 0. Irrespective of the
approximation, the plasma-induced wall charge extends deep into the
bulk. Note the different scales of the axes for the left and right panels.
On the spatial scale of the SCR shown in the left panels the ISR of
the right panels becomes a vertical line.
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FIG. 5. (Color online) Electron density n and hole density p ata
GaAs surface in contact with a helium discharge with ny = 107cm™3
and kT, = 2 eV calculated with the refined ESL model without
ISR. The plasma-induced wall charge sits inside the GaAs wall. Deep
inside the bulk charge neutrality is achieved by an equal density of
electrons and holes.

are correctly described at and close to the surface but not far
inside the dielectric (open green circles) because the ad hoc
cutoff z,; of the crude ESL leads to an unphysical pileup of
electrons near z;. Hence, only if z; is large enough does the
crude ESL model give reliable results for the electron density
and potential in the vicinity of the surface. Filling all electrons
in the SCR, on the other hand, cannot describe the immediate
vicinity of the surface correctly, which is however on the scale
of the SCR an infinitesimally narrow region. It gives only for
7 < —z¢ a good description, that is, in the region where for
x > Oindeed most of the electrons are located (blue triangles).

While the crude ESL model containing only an ISR gives
the correct electron density near the surface provided z; is
large enough, the merger of the ESL with the bulk can only be
described with the refined ESL model including the SCR. This
is particularly relevant for materials with smaller band gaps
and larger intrinsic carrier concentrations than MgO, Al,O3,
and SiO,. To exemplify this we show in Fig. 5 the electron
and hole densities (upper panel) as well as the potential
—y (lower panel) for a GaAs plasma wall, calculated for
an ESL containing only a SCR. At the surface the electron
density is about three orders of magnitude larger than the hole
concentration. Thus, the gas phase plasma offers the possibility
to manipulate the electron-hole plasmas by controlling the
charge-carrier density—tantamount to doping—in the near
surface region of a semiconductor. Deep inside the material,
electron and hole concentrations are equal, leading to charge
neutrality and a constant potential. The band bending due to
the extended space charge in the ESL is about 0.09 eV.

Our results for the electron and hole densities and the
potential in the dielectric depend of course on the model
for the SCR. We have used for simplicity the model of an
intrinsic semiconductor which is appropriate for an undoped
semiconductor without impurities. Depending on doping or
impurities a variety of models*? could be used to take material-
specific aspects into account. In our exploratory calculation we
obtain a rather wide SCR. Including the effect of impurities,
acting as trapping sites in the band gap would probably reduce
the depth of the SCR considerably.
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FIG. 6. (Color online) Center of gravity Z of the plasma-supplied
excess electron distribution at a MgO surface (upper panel) and
the zogq value for the electron distribution at an Al,O; and a
SiO, surface (lower panel), all in contact with a helium discharge
with nyg = 107cm™> and kz7, = 2 eV, as a function of the surface
temperature Ts. The data shown in the upper and lower panel were
obtained, respectively, from the crude ESL model and the refined ESL
model without an ISR.

To summarize our results up to this point, we find that
for negative electron affinity the plasma-induced electronic
surface charge is located in front of the surface forming a
quasi-two-dimensional electron gas, while for positive electron
affinity the surplus electrons form a space-charge layer in the
dielectric leading to a small bending of the energy bands.

The two distinct types of charge distributions in the ESL
are also reflected in the dependence of the width of the plasma-
supplied electron distribution on the surface temperature.
Figure 6 shows the center of gravity z of the electron
distribution for the MgO surface (x < 0) and the zgpg value
for the surfaces of Al,O3 and SiO; (x > 0), where zggg is
implicitly defined by

0
/ dzln(z) — p(2)] = 0.9N. (60)

290%

We use the zgg9, value because it captures the depth of the SCR
better than Z, which depends too strongly on the few electrons
that penetrate very deep into the bulk.

For negative electron affinity (MgO, shown in the upper
panel of Fig. 6) the external surface charge is strongly trapped
in the deep image potential so that Z changes very little with
surface temperature. The width of the internal surface charge
for dielectrics with positive electron affinity (Al,O3 and SiO»,
lower panel), however, increases dramatically with surface
temperature. This can be understood as follows. The restoring
force from the positive ions in the sheath binds internal surface
charges only weakly to the surface. With increasing surface
temperature, however, high-lying states in the conduction band
get more and more populated. Hence, some electrons have
rather high kinetic energies, are thus less confined near the
surface by the weak restoring force, and penetrate therefore
deeper into the bulk. As a result, the zgpg, value decreases
strongly with surface temperature.

Let us now turn to the discussion of the influence of the
electron temperature kp7, and the plasma density no on the
properties of the ESL. These two parameters enter through
the total surface density of electrons N depleting the sheath
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TABLE II. Surface density of electrons in the ESL N, wall
potential ¢y, plasma sheath ESL boundary zg, and the zgyg value
for SiO; in contact with a helium discharge with k37, = 2 eV for
different values of the plasma density .

PHYSICAL REVIEW B 85, 075323 (2012)

TABLE III. Surface density of electrons in the ESL N, wall
potential ¢y, plasma sheath ESL boundary zg, and the zgyq value
for SiO, in contact with a helium discharge at ny = 107cm™ for
different values of the electron temperature kg7,.

ng (10°%cm™) N (10°%m™)  ¢w (V) 20 (107%em) = zg05 (cm)  kpT, (€V) N (10°cm™)  ¢w (V) 2o (107%cm)  zogg (cm)
10 4.38 ~7.07 5.14 0222 05 2.19 ~1.77 7.27 —0.444
20 6.20 ~7.07 4.32 —0.157 1 3.10 ~3.53 6.11 ~0.314
50 9.80 ~7.07 3.44 —0.09 2 4.38 ~7.07 5.14 ~0.222
100 13.9 ~7.07 2.89 -0.070 5 6.93 -17.7 4.086 —0.140

and accumulating in the ESL. How k37, and n( affect the
interface depends therefore on the sheath model and the model
used for the interaction between plasma particles and the
surface. For simplicity we have used a collisionless sheath
model and assumed the surface to be a perfect absorber for
plasma electrons and ions. The results for the properties of
the ESL as a function of the plasma parameters are thus to be
taken as only indicative.

The effect of a variation of ny and kg 7T, is most significant
for surfaces with positive electron affinity. Table II shows
the effect of the plasma density ng for a SiO, surface. If ng
increases, the boundary zp between sheath and ESL moves
closer to the surface. This, however, does not affect the charge
distribution much as most of the electrons occupy the SCR
inside the dielectric (as shown in Fig. 4 for Al,O3). More
important is the fact that an increase in n( leads to an increase
of the total surface electron density N. This entails a stronger
restoring force from the plasma sheath so that the potential
well confining the space charge inside the dielectric becomes
steeper and the electrons in the SCR of the ESL are shifted
toward the surface; in other words, the zggg value increases
with ny. Mathematically, the steeplelike shape of the electron
distribution arises because a larger N leads through Eq. (57) to
a larger n, which makes the potential steeper at the surface so

T
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—— = kgl=TeV R
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FIG. 7. (Color online) Plasma-supplied surplus electron density
n at a SiO, surface in contact with a helium discharge as a function of
the electron temperature (upper panel, ng = 10’cm™3) and the plasma
density (lower panel, kT, = 2 eV) for Ts = 300 K. The refined ESL
model without an ISR was employed to produce the data.

that the electron distribution is more peaked there. This trend
can be seen in the lower panel for Fig. 7.

A variation of the electron temperature kg7, has similar
effects as the variation of the plasma density. If k5 T, increases,
the total surface density of electrons increases also, as can be
seen from Table III. As shown in the upper panel of Fig. 7,
this leads again to a steeplelike electron distribution which
is more concentrated at the surface the higher the electron
temperature is.

For a surface with negative electron affinity (MgO) the
surplus electrons are strongly bound in the image potential.
While a variation of kg7, or ny changes the total number of
surplus electrons per unit area in the same way as for a surface
with positive electron affinity, the distribution of the surplus
electrons within the ESL is not affected significantly because
of the strong image interaction.

So far we have shown the potential and the electron
distribution in the ESL. Now, we will compare potential
and charge distribution in the ESL with the ones in the
plasma sheath. The electron distribution at the interface is the
quasistationary electron gas on top of the charge redistribution
due to the truncation of the solid that guarantees flux equality
at the sheath-ESL boundary zo. As already mentioned, not
included in this simple model is the flux of plasma electrons
and ions in the ESL before the electrons are trapped at
the surface and the ions recombine with the negative wall
charge. The electron and ion densities in this model are
thus discontinuous at zo. The potential, however, which has
been obtained from the integration of Poisson’s equation is
continuous and differentiable everywhere. Between the well
of the image potential and z the electron and ion flux from
the sheath would be important. The neglect of the charge
densities associated with these fluxes does however not affect
the potential because they are too small to have a significant
effect.

Figure 8 shows the ESL and the plasma sheath in front
of a MgO surface. Due to the negative electron affinity, the
plasma-supplied surface electrons are bound by the image
potential in front of the surface. In Fig. 8, we plot the electron
and ion density (upper panel), as well as the electric potential
(lower panel) over the distance from the surface z. Far from
the surface, the potential approaches the bulk plasma value
chosen to be zero. In the sheath the potential develops a
Coulomb barrier and reaches the wall potential ¢, at zo,
the distance where the sheath merges with the surface layer
(vertical dotted line). The wall potential is the potential just
outside to which the energies of the bulk states are referenced.
Closer to the surface the potential follows the attractive image
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FIG. 8. (Color online) Density of plasma-supplied surplus elec-
trons trapped in the ESL as well as electron and ion density in
the plasma sheath (upper panel) and potential (lower panel) for a
MgO surface in contact with a helium discharge (79 = 10’cm~3 and
kpT, = 2 eV). The data were obtained from the crude ESL model.

potential while at the surface the repulsive potential due to the
negative electron affinity prevents the electron from entering
the dielectric (only scarcely seen on the scale of the figure).

In Fig. 9 we finally plot the electron and ion densities (upper
panel) as well as the electric potential (lower panel) for SiO,.
Note the linear z axis in contrast to the logarithmic z axis of
Fig. 8. Due to the positive electron affinity, the excess electrons
constituting the wall charge penetrate deep into the dielectric
and occupy therefore the SCR of the ESL. Compared to the
variation of the electric potential in the sheath the band bending
in the dielectric induced by the wall charge is rather small, as
indicated by the variation of ¢ inside the dielectric. This is
because € is large and the width of the SCR is narrow on the
scale of the sheath. Only on the scale of the ISR (a vertical line
at z = 0), the SCR of the ESL is wide.
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FIG. 9. (Color online) Density of plasma-supplied excess elec-
trons in the ESL as well as electron and ion density in the plasma
sheath (upper panel) and potential (lower panel) for a SiO, surface in
contact with a helium discharge (np = 107cm™ and k3T, = 2 eV).
The refined ESL model without an ISR was employed to produce the
data.
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V. CONCLUSIONS

We have studied the potential and the charge distribution
across the interface of a plasma and a dielectric wall, treating
the plasma-induced wall charge as a quasistationary electron
gas trapped by and in thermal equilibrium with the dielectric.
Our approach is based on a model for a graded surface
including the offset between the potential just outside the
dielectric and the conduction-band minimum arising from the
redistribution of charge due to the truncation of the solid as
well as the image potential due to the dielectric mismatch at
the boundary. The missing electrons from the sheath populate
the interface potential and thereby form an electron surface
layer (ESL) which minimizes the grand canonical potential
of wall-thermalized excess electrons and satisfies Poisson’s
equation.

Within this model the boundary between the plasma sheath
and the ESL is given by the distance from the crystallographic
interface where the potential for the excess electrons turns
from the repulsive sheath potential into the attractive surface
potential. This distance is typically on the order of a micron. It
gives the position of an effective wall for plasma electrons and
ions and thus of the portion of the ESL which lays in front of
the surface. Most of the surplus electrons trapped in the ESL,
that is, the plasma-induced wall charge, will be, however, much
closer to the surface or even inside the dielectric depending on
the electron affinity.

We presented numerical results for the potential and the
distribution of the plasma-supplied surplus electrons at the
interface between a helium discharge and the surfaces of MgO,
Al»,O3, and Si0,, respectively. The electron distribution within
the ESL strongly depends on the electron affinity. For negative
electron affinity, the conduction-band minimum is above the
potential just outside the dielectric. Hence, it is energetically
unfavorable for electrons to penetrate into the bulk and the
surface electrons are bound in the image potential in front of
the surface. In this case, their spatial profiles change little
over a variation of the surface temperature or the plasma
parameters. For positive electron affinity the conduction-band
minimum is below the potential just outside the dielectric and
the surface-bound electrons accumulate inside the wall. The
space charge in the bulk broadens if the surface temperature
is increased and becomes more peaked if the total surface
density of the electrons missing in the sheath is raised through
an increase in either the plasma density or the electron
temperature.

Separating the ESL into an interface-specific and a space-
charge region and modeling the bulk of the dielectric as an
intrinsic semiconductor, we also investigated how the ESL
merges with the bulk of the dielectric. This is particularly
important for dielectrics with small energy gaps and posi-
tive electron affinities, where excess electrons coming from
the sheath accumulate not in the image potential in front of the
surface but deep inside the wall. In this case the wall charge
may also induce a significant band bending.

Whereas the crude ESL model we proposed neglects the
space charge deep inside the bulk of the wall and is thus
only applicable to large band-gap dielectrics with negative
electron affinity, where basically the whole plasma-induced
wall charge is trapped in the image potential in front of the

075323-12



ELECTRON SURFACE LAYER AT THE INTERFACE OF A . ..

surface, the refined ESL model, keeping the interface-specific
region as well as the space-charge region of the ESL, provides
a quantitative description of the whole spatial structure of
the extended charge double layer which forms at a dielectric
plasma wall as a result of the electrons in the ESL and the
positive space charge in the plasma sheath.

The ESL can be regarded as that part of the plasma sheath
which is inside the plasma wall. It is thus the ultimate boundary
of a bounded gas discharge and constitutes, depending on

PHYSICAL REVIEW B 85, 075323 (2012)

the electron affinity, either a quasi-two-dimensional electron
plasma in front of the wall or an electron(-hole) plasma inside
the wall.
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