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Laser-induced periodic surface structures: Fingerprints of light localization
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The finite-difference time-domain (FDTD) method is used to study the inhomogeneous absorption of linearly
polarized laser radiation below a rough surface. The results are first analyzed in the frequency domain and
compared to the efficacy factor theory of Sipe and coworkers. Both approaches show that the absorbed energy
shows a periodic nature, not only in the direction orthogonal to the laser polarization, but also in the direction
parallel to it. It is shown that the periodicity is not always close to the laser wavelength for the perpendicular
direction. In the parallel direction, the periodicity is about λ/Re(ñ), with ñ being the complex refractive index of
the medium. The space-domain FDTD results show a periodicity in the inhomogeneous energy absorption similar
to the periodicity of the low- and high-spatial-frequency laser-induced periodic surface structures depending on
the material’s excitation.
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I. INTRODUCTION

Laser-induced periodic surface structures (LIPSSs) were
observed for the first time by Birnbaum in 1965.1 The
most common LIPSSs, also referred to as ripples, consist
of wavy surfaces which can be produced on metals,2,3

semiconductors,4,5 and dielectrics.6 When created with a
linearly polarized laser radiation at normal incidence, these
ripples have a periodicity close to the laser wavelength and a
direction orthogonal to its polarization. Ripples having these
properties can be produced with either cw lasers or pulsed
lasers and are usually referred to as low spatial frequency
LIPSSs (LSFLs). Ripples which are either orthogonal7–15 or
parallel16–19 to the polarization, with a periodicity significantly
smaller than the laser light, have been observed for laser
pulse durations in the picosecond and femtosecond regime.
These are often referred to as high spatial frequency LIPSSs
(HSFLs), and as for LSFLs, they were observed on metals,18,20

semiconductors,7–12,16,17 and dielectrics as well.13–15,19

The influence of polarization, angle of incidence, and
wavelength of a laser beam on LSFL formation strongly
indicates that the phenomenon is mainly governed by the
electromagnetic field. Emmony et al. suggested in 1973
that LSFLs were a consequence of interference between the
incident laser beam and surface-scattered waves.4 In 1983,
Sipe et al. established a first-principles theory for LSFL
formation, overcoming the physically inconsistent “surface-
scattered wave” concept, by modeling the effect of surface
roughness on the electromagnetic field.21 The theory of Sipe
et al., also referred to as the efficacy factor theory, or η theory,
in this article, was commonly accepted for the formation of
LSFLs. The η theory is not only limited to ripples since
it also predicts more complicated LIPSS patterns, usually
investigated experimentally in the frequency domain using a
diffraction setup.5 As Clark et al. stated with respect to the η

theory, it is “the most rigorous, comprehensive, and indeed the

only (theory) that, to our knowledge, can accurately explain
all of the observed LIPSSs.”22 Nevertheless the observation of
new phenomena, such as HSFL formation, renewed interest in
the topic since the early 2000s.

The origin of HSFL is still under debate and several
theories have been proposed to explain their formation, such
as self-organization,13,16 second-harmonic generation,7,8,12 or
the η theory extended with a modification of the optical
properties.12,19,23 It must be noted that the η theory was created
to explain LIPSS formation at a time when HSFLs had not yet
been observed. However, the η theory predicts the presence
of features which could explain the HSFLs parallel to the
polarization.12,19,23 HSFL is not the only phenomenon which
renewed the interest in LIPSSs. For example, with the use of
picosecond and femtosecond lasers, LSFLs with a periodicity
smaller than the laser wavelength have been observed on
different materials.24 The objective of this article is to present
results that are obtained numerically in order to overcome
some limitations of the analytical approach of Sipe et al.

In this paper, the η theory and its limitations are first sum-
marized. Second, the FDTD method is presented and is used
to address some limitations of the η theory. Third, the results
given by the FDTD method are shown in the frequency domain
to allow comparison with the η theory. Finally, the space-
domain results from the FDTD method are presented and
discussed. Both of these approaches suggest that LIPSSs are
a signature of the localization of light due to a rough surface.

II. LOCALIZATION OF LIGHT AND ROUGH SURFACES

A. Efficacy factor theory

The η theory predicts the inhomogeneous energy absorption
of linearly polarized electromagnetic plane waves below a
material’s rough surface. The main assumption is that ripples
grow where the absorbed energy is the largest.21 The geometry
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FIG. 1. Geometry and notations used in the η theory.

of the problem is shown in Fig. 1. For z > 0, there is vacuum.
In a region of thickness ls , referred to as the “selvedge,” the
surface roughness is confined. The region z � 0 is the bulk
material. A plane wave of wavelength λ, �s or �p polarized, is
incident on the selvedge region at an angle of incidence θ .
The component of the wave vector parallel to the surface,
the (�x,�y) plane, is referred to as �ki . The inhomogeneous
energy absorption is studied in the frequency domain at z = 0,
spanned by a vector �k = (kx,ky) parallel to the surface and
normalized by the norm of the wave vector, 2π/λ. The η

theory predicts

A(�k) ∝ η(�k,�ki)|b(�k)|, (1)

where A(�k) is the inhomogeneous energy absorption at z = 0
in the frequency domain. The quantity η(�k,�ki) is referred to
as the efficacy factor and quantifies the efficacy with which
the roughness leads to an inhomogeneous energy absorption
at �k, while b(�k) is the Fourier component of the roughness.
An expression for η(�k,�ki) can be found in an article of Sipe
et al.21 For relation (1) to be valid, the thickness of the selvedge
ls must satisfy two inequalities. First, the selvedge thickness
shall be small compared to the laser wavelength:

2π

λ
ls � 1. (2)

Second, the selvedge thickness shall be small compared to
the periodicity of the inhomogeneous energy absorption:

||�k||ls � 1. (3)

The surface roughness is described by a b(x,y) binary
function. That is, b(x,y) = 0 or 1 for the unfilled and filled
parts of the selvedge, respectively. The efficacy factor is
calculated for a random rough surface, b(x,y) defined only
statistically by the set (F,s). The quantity F , referred to as
the filling factor, is the average of the b(x,y) function. The
quantity s, referred to as the shape factor, characterizes how
the filled part agglomerates. It is comparable to half of the
aspect ratio (the halfwidth divided by the height) of the filled
parts of the selvedge. The best couple (F,s) found by Young
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FIG. 2. (Color online) Two-dimensional (2D) η maps computed
for θ = 0, λ = 800 nm, ñ = 3.692 + 0.065i, and (F,s) = (0.1,0.4).
The polarization direction is indicated by the white arrow in (a). The
white square in (a) indicates a zoom presented in (b). The solid and
the dashed-dot ellipses enclose so-called type-s and type-d features,
respectively. The dotted and dashed circles have radii ||�k|| = 1 and
||�k|| = Re(ñ), respectively. A linear grayscale colormap is used, in
which the brightest areas have the largest values.

et al. to describe LIPSSs equals (0.1,0.4), which corresponds
to spherically shaped islands.5

An example of an η function for specific laser conditions
impinging silicon, also referred to as an η map, is shown
in Fig. 2. It is an η map corresponding to a beam at
normal incidence θ = 0 with a wavelength of λ = 800 nm,
the optical properties of silicon at room temperature ñ =
3.692 + 0.065i,25 a set (F,s) = (0.1,0.4), and a polarization
parallel to the y axis. In Fig. 2(a), only features for ky � 10
are easily visible. The inequality (3) is not valid for these
large values of ky , therefore it is invalid to conclude anything
concerning the influence of these features in the space domain.
Moreover, their amplitude continues to increase with ky , which
is physically impossible. These features are referred to as type
r in the rest of the article. In Fig. 2(b), two features can be
observed: the one enclosed by the solid ellipse, referred to as
type s,5,23 and the feature enclosed by the dashed-dot ellipse,
referred to as type d.23 In this article, the “type-s” and “type-d”
notations are used only for the frequency domain while the
“LSFL” and “HSFL” notations are used in the space domain.
For the sake of fluency, the word “features” may be omitted
after “type s,” “type d,” and “type r.” Since �k is normalized
by 2π/λ, type-s features which follow the outer part of the
||�k|| = 1 circle lead to a periodicity slightly smaller than λ

in the space domain. The maxima of the type d are on the
||�k|| = Re(ñ) circle which correspond to a periodicity about
λ/Re(ñ) in the space domain. The type s and their behavior
as a function of θ was extensively discussed in the past, since
these features are responsible for the formation of LSFLs.5 In
comparison, type d have been rarely investigated.12,19,23 The
reason for this is that LIPSSs matching these periodicities
have not been observed until the application of pico- and
subpicosecond lasers.

The efficacy-factor theory has several drawbacks and some
of them were already pointed out by its authors.21 The transient
changes of the material properties during a laser pulse, and the
influence of the pulse duration itself, are not taken into account
in the theory. This problem was partly solved by Dufft,12

Bonse,25–27 and their coworkers. They used a combination of
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the Drude model with the η theory, also referred as to the Sipe-
Drude model, to explain how the transient optical properties of
ZnO and silicon can affect the LFSL characteristics. Several
other aspects of LIPSS formation, such as the interpulse
feedback mechanisms, remain unsolved in the η theory.
Moreover, the inequalities (2) and (3) forbid an investigation
of features present at large ky and any possible dependence
of the η maps with the depth z. The FDTD method is used in
Sec. II C to study these latter two issues.

B. FDTD method

The FDTD method can be applied to numerically solve
Maxwell’s equations. It was introduced by Yee in 1966 and
gained popularity with the increase of computational power.28

Yee’s algorithm is based on the two coupled Maxwell’s
curl equations. In the case of linear, isotropic, nondispersive
materials, with no magnetic loss, Maxwell’s curl equations can
be written as29

μ0
∂ �H
∂t

= −�∇ × �E, (4)

ε0εr

∂ �E
∂t

+ σ �E = �∇ × �H, (5)

where t is the time, μ0 is the free-space permeability, ε0 is
the free-space permittivity, εr is the relative permittivity, σ

is the electric conductivity, �E is the electric field, and �H is
the magnetic field. In Yee’s algorithm, Eqs. (4) and (5) are
expressed in a Cartesian frame. To numerically evaluate the
equations, central differences are used for the finite-difference
expressions of the space and time derivatives. The projection
of the discretized Eq. (4) along the x axis is, for example,
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where the superscript n indicates the time steps, 	t is the time
increment, 	x, 	y, and 	z are the space increments, and i,
j , and k are the discretized space coordinates.

One particularity of Yee’s algorithm is that each component
of �E and �H is respectively surrounded by four circulating
components of �H and �E, which makes the Yee mesh
divergence-free. Such an arrangement, also referred to as Yee
cell, is shown in Fig. 3. A so-called leapfrog arrangement is
used for the time derivatives, meaning that each component
of �H is computed and stored using a previous �E, then all the
�E components are updated thanks to �H and the cycle starts

again. Apart from having to be chosen in adequacy with the
considered problem, the Yee cell dimensions and the time
increment shall be 	t < 	tmax, with 	tmax equal to29

	tmax = c−1

(
1

	x2
+ 1

	y2
+ 1

	z2

)− 1
2

(6)
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FIG. 3. Example of Yee cell. Each �H component is surrounded
by four circulating �E components.

to ensure the algorithm’s numerical stability. Here, c is the
speed of light in vacuum.

In this article, the FDTD method is used to compute
the inhomogeneous energy absorption below the material’s
surfaces. The geometry of the problem was already presented
in Fig. 1. The study is performed for nonmetallic optical
properties (εr > 0) and at normal incidence of the laser light.
The first limitation comes from the FDTD algorithm itself,
which is not stable for metals without additional features. The
second limitation allows us to keep the boundary conditions
simple, while not significantly reducing the comparison with
HSFLs produced in the literature. The simulation grid is
terminated in the z direction by two so-called uniaxial
perfectly matched layers (UPMLs), ten Yee cells wide to avoid
nonphysical reflections.30 In the x and y directions, periodic
boundary conditions were used.29

To allow an easy comparison of FDTD results with the η

theory, the geometry of Fig. 1 was followed for the simulation
domain, as shown schematically in Fig. 4. The random
roughness was introduced via the binary function b(x,y),
which indicates the filled and unfilled part of the selvedge,
as described in Sec. II A. The filling factor F was set to
0.1 here while the shape factor s was taken into account
by choosing carefully the volume occupied by one Yee cell
and the number of layers describing the selvedge region. It
is important to keep in mind that the Yee cell dimensions
must be small compared to the laser wavelength and the
studied phenomena. The Yee cell dimensions chosen were
	x = 16 nm, 	y = 16 nm, and 	z = 5 nm. With four layers
describing the selvedge, the half aspect ratio of a filled area
of the selvedge is equal to 	x/(2 × 4	z) = 0.4. With these
parameters set, the roughness of the surface is comparable
to the one described by the “best” couple (F,s) = (0.1,0.4),
discussed in Sec. II A. According to Young et al.,5 “except for
a factor independent of �k, in the case of s-polarized light, the
(η) theory predicts no dependence of η(�k) on s and F .” Hence,
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FIG. 4. Schematic of the simulation domain employed with the
FDTD method. Note that the image is not to scale. The gray layers
represent the UPML, while the black plane is the one from which the
plane waves are sent.

the couple (F,s) is not critical for the features in the η maps at
normal incidence.

The optical properties of the Yee cells follow the geometry
of Fig. 1. That is, at z � 0 the optical properties of the Yee
cells are set to that of the bulk material. For 0 < z � 4	z, the
optical properties of the Yee cells are governed by the b(x,y)
function and, for z > 4	z, there is vacuum. The number of
Yell cells Nx in the x direction were chosen such that Nx	x

is enough to resolve several wavelengths of the laser radiation
λ. The same holds for Ny . More specifically, Nx = Ny = 421
were chosen, which implies a simulation domain larger than
8λ. The optical properties, εr and σ , were kept constant during
the simulations. The number of Yee cells in the z direction Nz

was set to 50. As mentioned in Sec. II B, the first ten and the
last ten layers were occupied by the UPMLs (gray layers in
Fig. 4). The thirtieth layer corresponds to z = 0. Hence, from
the eleventh layer to the thirtieth layer, the inhomogeneous
absorption can be studied up to 100 nm below the material’s
rough surfaces. The energy absorbed per wavelength below
the selvedge was computed as the sum of the electric losses at
each time step, σ	t || �E||2, and was stored for each Yee cell.
The time increment 	t = 10−17 s satisfies inequality (6). The
number Nt of time steps employed for a simulation depends
on the optical properties of the considered medium and were
chosen large enough to reach the steady state (constant energy
absorbed per wavelength for each Yee cell). A two dimensional
(2D) fast Fourier transform (FFT) was applied to the absorbed
energy for (x,y) planes at different z locations in the bulk.
Next, the results, referred to as FDTD-η maps, were compared
to the η maps obtained. As in the η theory, only relative values
were considered.

C. Comparison of η theory and FDTD simulation results

Figures 5(a) and 5(b) show FDTD-η maps at z = 0 nm for
laser conditions comparable to the η maps presented in Fig. 2.
FDTD-η maps are noisy compared to their counterpart. The
reason is the FDTD method is used with a “real” roughness
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FIG. 5. (Color online) FDTD-η maps computed with θ = 0, λ =
800 nm, ñ = 3.692 + 0.065i, 	x = 	y = 16 nm, 	z = 5 nm, 	t =
0.01 fs, Nx = Ny = 421, Nz = 50, and Nt = 133295. For (a) and (b)
z = 0 nm and for (c) and (d) z = −15 nm. The polarization direction
is indicated by the white arrow in (a). The white squares in (a) and (c)
indicate zooms presented in (b) and (d), respectively. The dotted and
dashed circles represent ||�k|| = 1 and ||�k|| = Re(ñ), respectively. A
linear grayscale colormap is used, the brightest areas have the largest
values.

profile while an η map is an averaged solution.21 The presence
of the type-d features is confirmed by the FDTD-η maps,
which means that ripples parallel to the laser polarization can
be expected on materials showing suitable optical properties
during the laser pulses. The shape and the position of the type
d are in agreement with the η maps. However, the maximums
of the type d are slightly shifted toward the inner part on the
||�k|| = Re(ñ) circle instead of being perfectly on the circle.
In contrast to Fig. 2(a), type-r features are less spread and
have bounded intensities. However, type-s features can be
hardly observed for these chosen optical properties and this
z location. Interestingly, for z = −15 nm and identical optical
properties, the intensity of the type r is decreasing, while type-d
features become the brightest and less spread, and type-s
features start to be visible, as shown in Figs. 5(c) and 5(d).
With increasing depth (not shown here), type-r features vanish
and type-d features are more and more sharply defined. They
loose progressively their extension outside the ||�k|| = λ/Re(ñ)
circle while their maximum stays at the same position, close
to the inner part of the circle. The designation “type r” was
chosen because their appearance in the FDTD-η maps depends
on the distance between the investigated (x,y) plane and the
roughness layers. In other words, type-r features are strongly
“roughness dependent.”

The explanation of these differences between the FDTD-η
and the η maps lies in the η theory approximations (2) and
(3). Assuming ls to be very small compared to λ in all the
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calculations induces a loss of information for small depths,
while the second inequality does not allow us to treat “high”
values of ||�k|| correctly. It must be noticed that the FDTD-
η maps are based on the inhomogeneously absorbed energy
while the η function is showing the efficacy with which the
roughness leads to this inhomogeneous energy absorption. It is
possible to calculate η(�k,�ki)|b(�k)|, which is proportional to the
inhomogeneous absorbed energy, for the same b(x,y) function
used by the FDTD method. However, this includes just “noise”
on top of the shapes of the η function and none of the structure
locations and general trends will be changed.

It is impractical to compare the results given by the η theory
and the FDTD method for all λ, ñ, F , and s. Therefore, other
comparisons presented in this section are carried out using the
same approach as Bonse et al., while testing the Sipe-Drude
model.25 That is, λ = 800 nm, θ = 0, F = 0.1, and s = 0.4.
The optical properties of the excited silicon are computed via
the complex permittivity ε̃∗ = ε̃ + 	ε̃Drude where 	ε̃Drude is
given by

	ε̃Drude = −e2Ne

ε0m
∗
optmeω2[1 + i(ωτD)−1]

. (7)

where e, Ne, m∗
opt, me, ω, and τD are respectively the electron

charge, the electron density in the conduction band, the optical
effective mass of the carriers, the free electron mass, the
angular frequency, and the Drude damping time. The values
m∗

opt = 0.18 and τD = 1.1 fs for femtosecond-laser-excited
silicon were chosen in accordance with the article of Bonse
et al.25 The complex refractive index of the excited material
ñ∗ = √

ε̃∗ is used to compute the η maps while εr = Re(ε̃∗)/ε0

and σ = Im(ε̃∗)ω are used for the FDTD-η maps.
Figure 6 shows the η maps and the FDTD-η maps for

Ne = 2 × 1027 m−3 [Figs. 6(a) and 6(b)], Ne = 3 × 1027 m−3

[Figs. 6(c) and 6(d)], and Ne = 4 × 1027 m−3 [Figs. 6(e) and
6(f)]. The map for Ne = 1 × 1027 m−3 was omitted because
it does not bring more information than the map for Ne = 0
m−3 nor for the map of Ne = 2 × 1027 m−3. The FDTD-η
maps are shown for z = −15 nm instead of z = 0 nm since it
allows the best comparisons between the two approaches. The
location and the relative intensities of the type-s and type-d
features follow the same trends as in the η maps. As in the
case of Ne = 0 m−3 [Fig. 5(d)], the maxima of the type d
in the FDTD-η maps are slightly shifted toward the inner
part of the ||�k|| = Re(ñ) circle for Ne � 3 × 1027 m−3, as
shown in Figs. 6(b) and 6(d). In the η theory, the type r are
unbounded for all Ne. Interestingly, the η and the FDTD-η
maps behave similar to the type r for not-too-high ||�k||. In
the case where Ne � 2 × 1027 m−3, the type-r structures never
enter the ||�k|| = Re(ñ) circles. Even if the type-s and type-r
structures seem to merge in the case of Ne = 3 × 1027 m−3,
the type r vanish with increasing depths (not shown here).
Regarding this, Ne = 3 × 1027 m−3 gives similar results as
Ne � 2 × 1027 m−3. The case where Ne = 4 × 1027 m−3

[Fig. 6(f)] is completely different: the type s and type r merge
and going deeper does not change it. It is worth mentioning
that, the higher the Ne, the slower the decrease of the type-r
intensity with depth. Roughly, the type-r features lose almost
completely their brightness at z ≈ 25 nm for Ne = 0 m−3 and
z ≈ 60 nm for Ne = 4 × 1027 m−3. Before disappearing, the
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FIG. 6. (Color online) η and FDTD-η maps computed with θ = 0,
λ = 800 nm, and (F,s) = (0.1,0.4). The FDTD-η maps are obtained
with 	x = 	y = 16 nm, 	z = 5 nm, 	t = 0.01 fs, Nx = Ny =
421, Nz = 50, and z = −15 nm. For panels (a) and (b), Ne = 2 × 1027

m−3, Nt = 26794, ñ∗ = 2.868 + 0.382i. For panels (c) and (d), Ne =
3 × 1027 m−3, Nt = 13436, and ñ∗ = 2.401 + 0.679i. For panels (e)
and (f), Ne = 4 × 1027 m−3, Nt = 13421, and ñ∗ = 1.943 + 1.116i.
The polarization direction is indicated by the white arrow in (a).
The dotted and dashed circles represent ||�k|| = 1 and ||�k|| = Re(ñ∗),
respectively. A linear grayscale colormap is used, the brightest areas
have the largest values.

type-r features evolve with the depth as follows: they lose their
intensity, their spreading, and get progressively closer to the
center. One last difference between the η and the FDTD-η
maps is observed by comparing Figs. 6(e) and 6(f). The inner
part of the ||�k|| = 1 circles is always forbidden in the η maps,
while the FDTD-η maps show the possibility to have an energy
deposition with a periodicity larger than the wavelength of
the laser light. The intensity of this energy deposition is
slightly increasing with depth and with Ne, but remains small
in comparison to the type s. Following these observations,
one can expect LIPSSs with a periodicity above λ for higher
excitation levels. It is important to notice that features, which
are referred to as grooves, have been observed experimentally
by Bonse and Krüger.26 The grooves were found parallel to
the polarization with a periodicity between approximately 1.9λ
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FIG. 7. Schematic representation of FDTD-η maps for Ne � 3 ×
1027 m−3. The polarization is indicated by the black arrow.

and 3.1λ. If an inhomogeneous energy absorption with such a
periodicity would be present in the results of the simulation,
the number of periods contained would be between 2.7 or
4.5. It means that the simulation domain is too small to study
this phenomenon accurately. More simulations are required
to confirm or invalidate the hypothesis that grooves can be
explained with this approach. Nonetheless, the polarization
dependence of grooves strongly suggest that, as for HSFL
parallel to the polarization, this phenomenon is related to the
inhomogeneous energy absorption below the material’s rough
surfaces.

Figure 7 shows a schematic representation of the FDTD-
η map features for Ne � 3 × 1027 m−3. To summarize, the
type s follow the outer part of the ||�k|| = 1 circle (dotted
circle) which mean a periodicity slightly smaller than λ in
the space domain. The type d follow the inner part of the
||�k|| = Re(ñ∗) circle (dashed circle) leading to a periodicity of
about λ/Re(ñ∗). The type r are confined to the ||�k|| > Re(ñ∗)
region. The relative intensity of the type s and type d is stable
at z ≈ −15 nm and the FDTD-η and the η maps are similar.
The type r evolve from dominant at z = 0 nm to absent for
higher depths, the evolution of their intensity depending on
Ne. For the case where Ne = 4 × 1027 m−3, it differs from
Fig. 7. The type d are almost absent from the FDTD-η map,
while the type r enter the ||�k|| = Re(ñ∗) circle. This feature is
discussed in more detail in the following part. The inner part
of the ||�k|| = 1 circle is not empty anymore.

III. SPACE-DOMAIN RESULTS

One of the advantages of the FDTD method, when studying
LIPSSs formation, is its ability to study space-domain results.
It allows us to determine which of the frequency domain
features is dominant, while it is not always clear with
the η theory. Figure 8 shows space-domain simulations of
the absorbed energy per wavelength in an (x,y) plane for
three different levels of excitation and two different depths
below the material’s rough surfaces. These pictures were ob-
tained using the same simulation domain and conditions as in
Sec. II C. As expected, the energy profile seems more “noisy”
for z = −25 nm than for z = −50 nm. This is in agreement
with the FDTD-η maps which shows stronger type r for lower
depths. The lower level of excitation Ne = 2 × 1027 m−3 is
characterized by an inhomogeneous energy absorption prefer-
entially parallel to the polarization for both depths. It is actually
the case for Ne � 3 × 1027 m−3 (Ne = 0 m−3 and Ne =
1 × 1027 m−3 are not shown here). However, one can notice
that, for 50 nm depth, the energy absorption for Ne = 3 × 1027

m−3 [Fig. 8(b)] along the polarization direction is more regular
than for Ne = 2 × 1027 m−3 [Fig. 8(d)]. This phenomenon is
even more pronounced when Ne decreases. This observation
seems in contradiction with the type d being brighter at lower
Ne. While being indeed brighter, the type d occupy mainly the
frequency region between ||�k|| = 1 and ||�k|| = Re(ñ) (dotted
curves in Fig. 7). Hence, they are more spread in the frequency
domain, so less regular in the space domain.

The case where Ne = 3 × 1027 m−3 is particular, because
it shows a competition between two directions in the inhomo-
geneous energy absorption. At z = −50 nm, the LIPSSs for
Ne = 3 × 1027 m−3 looks like a transition state between Ne =
2 × 1027 m−3 with the absorption parallel to the polarization
and the case for Ne = 4 × 1027 m−3 with a strong absorption
in the perpendicular direction. Considering that ripples grow
where the absorbed energy is the largest,21 this switch of
direction shows how important the type d are in the η theory.
Moreover, it now seems possible to understand the existence
of HSFLs in the silicon sample of Costache et al.16 Costache
observed a periodicity of �HSFL ≈ 200 nm, which is close to
the periodicity predicted in the Ne = 0 m−3 case �HSFL =
λ/Re(ñ) = 217 nm. The value of 200 nm, even if mentioned
approximately, is low compared to the predictions. Especially,
during a laser pulse, the silicon sample is inevitably excited and
Ne 	 0 which means that �HSFL will more likely be between
λ/Re(ñ) = 217 nm and λ/Re(ñ∗(Ne = 3 × 1027)) = 333 nm.
This first consideration is somewhat biased, though. The type
d spread slightly outside the ||k|| = Re(ñ) circle for small
depths, decreasing the periodicity of ripples in the space
domain. This leads to an even more important consideration:
neither the z location nor Ne are known since the method used
suffers some of the problems of the Sipe-Drude model.12,25–27

The electron density in the conduction band is assumed to be
homogeneous and constant in the material. This is clearly not
the case under ultrashort pulse processing because, even for
Ne = 0 m−3, the absorbed energy is inhomogeneous. Hence,
Ne is neither homogeneous and varying in time as well. Other
issues such as diffusion phenomena or the simple roughness
model are affecting the energy absorption. Concerning the z
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FIG. 8. (Color online) Results of FDTD simulations performed with the same parameters as in Fig. 6 for different depths and levels of
excitation. For panels (a) and (b), Ne = 2 × 1027 m−3; for panels (c) and (d), Ne = 3 × 1027 m−3; and for panels (e) and (f), Ne = 4 × 1027 m−3.
For panels (a), (c), and (e), z = −25 nm; and for panels (b), (d), and (f), z = −50 nm. The polarization is indicated by the black arrow in (a).
Each picture is shown with a colormap ranging from blue to red for the lowest to the highest value, respectively.

location, the melting and ablation processes should be modeled
to know which thickness of the material surface is going to be
removed and which part is molten and resolidified. Last but not
least, the feedback mechanisms involved in LIPSS formation
are not considered here. However, the simulations still provide
qualitative predictions and an explanation for the existence of
ripples parallel to the polarization. The fact that both type of
ripples (perpendicular and parallel to the polarization) can be
understood within a same theory makes it stronger. Moreover,
when a silicon sample is machined with a Gaussian laser beam,
HSFLs are supposed to be found in the outer part (low Ne) of
the spot on the surface while LSFLs occupy the center if the
fluence chosen allows them to coexist. This is also in agreement
with the observations of Costache et al.16

Figures 8(e) and 8(f) show that, for the same level of
excitation Ne = 4 × 1027 m−3, but two different depths, the
periodicity of the inhomogeneous absorbed energy can be
different. This is again consistent with what was mentioned
in part II C: the type s are not the only features contributing
to the periodicity in the direction perpendicular to the po-
larization. The type r, which have a location, intensity, and
spreading depending on the depth, are strongly influencing
the periodicity seen in the space domain. This variation of
periodicity with depth may explain the fact that LSFLs can
have a periodicity much smaller than λ. The most recent theory
involving electromagnetic waves to explain LSFL properties
were mainly developed by Bonse et al. and Huang et al.24–26

It is proposed that surface plasmon polaritons (SPPs) are

responsible for the early-stage formation of LSFLs when the
optical properties of the semiconductor reach the metallic state
during femtosecond pulses. The excitation of SPPs is leading
to have LSFLs with a periodicity smaller than λ. The fact that
LSFL periodicity decreases with the number N of laser pulses
applied is explained by a grating-assisted SPP mechanism,
which triggers a redshift in the SPP resonance. The explanation
involving SPPs in the early-stage formation of LSFLs seems
consistent with the experimental results of Bonse et al. and
Huang et al.24–26 However, it is shown in Fig. 8(e) and 8(f)
that an inhomogeneous energy deposition perpendicular to the
polarization is possible without reaching metallic properties.
Moreover, the SPP theory does not explain the switch of the
LIPSS direction from parallel to perpendicular relative to the
polarization, as observed by Costache et al.16 It is proposed
here that LSFLs can be produced with or without reaching the
metallic state Re(ñ∗) < Im(ñ∗).

Bonse and Krüger presented three different origins for
the decrease of LSFL periodicity.26 Two origins are not
addressed in this article: the grating-assisted SPP mechanism
mentioned above24 and the change in the local angle of
incidence.8 The grating-assisted SPP mechanism is beyond
the scope of this article because it involves a metallic state
Re(ñ∗) < Im(ñ∗) of the material as well as interpulse feedback
mechanisms. The change in the local angle of incidence
is not considered, since this study is performed at normal
incidence of the laser light. The third origin for the decrease of
LSFL periodicity, mentioned by Bonse and Krüger, concerns
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the position and the width of the type-s features in the η

maps as function of Ne.25 It was shown that a variation of
Ne, linked to a variation of fluence, can affect significantly
the type-s features. Since the type s are considered to
be responsible for the LSFL formation, a variation of fluence
impacts the LSFL periodicity. As mentioned previously, the
type-r features influence also the periodicity seen in the space
domain in the direction perpendicular to the polarization.
Hence, the variation of LSFL periodicity as a function of
the fluence involves not only the type-s features, but also
the type-r features. It is worth mentioning that, even if the
Re(ñ∗) < Im(ñ∗) range cannot be computed with the FDTD
method employed, the η theory shows the presence of type-r
features. Since, the η theory is limited by inequality (3), a
conclusion is not allowed but one can expect an influence
of the type-r features on LSFL periodicity even when metallic
optical properties are reached. However, it is hard to determine
how large the influence is of the type r on LSFL periodicity
compared to the type s without considering interpulse feedback
mechanisms.

IV. CONCLUSION

The FDTD method has been applied to study the inhomo-
geneous absorbed energy of linearly polarized laser radiation
below a rough silicon surface. The numerical results, referred
to as FDTD-η maps, show good agreement with the analytical
solutions provided by the Sipe-Drude model. However, there
are mainly three differences between the FDTD-η maps and
the η maps. The first one concerns the type-r features, which
are not described correctly by the η theory. These features are

important because they modify the periodicity of the absorbed
energy in the direction orthogonal to the polarization. The
second difference is that the FDTD method allows calculations
of the depth dependence of the FDTD-η maps, which was
discussed in Sec. II C. The third difference is related to the
||�k|| < 1 region of the frequency domain. While the η theory
forbids the energy deposition with a periodicity larger than
the wavelength of the laser light, the FDTD-η maps show that
it is possible for sufficiently large Ne. Additional simulations
are needed to know if the “grooves” observed by Bonse and
Krüger can be understood in the frame of an electromagnetic
approach.26

The study of the inhomogeneous absorbed energy in the
space domain reveals that HSFLs parallel to the polarization
can be expected at moderate excitation levels. Above a certain
fluence threshold, LIPSSs with a periodicity perpendicular
to the laser polarization should replace the HSFL parallel
to the polarization. It was also proposed that LSFLs can be
produced with or without reaching Re(ñ∗) < Im(ñ∗) since
the inhomogeneous energy absorption can be periodic in
the direction perpendicular to the polarization without this
inequality being satisfied. It is worth mentioning that the
FDTD method can be used to study, at least qualitatively, the
interpulse feedback mechanisms involved in LIPSS formation.
Further work will be carried out in this direction.
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