
PHYSICAL REVIEW B 85, 075313 (2012)

Mechanical vibration of a cylindrically rolled-up cantilever shell in microelectromechanical
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The mechanical vibration of a cylindrically rolled-up cantilever shell is studied for possible use as micro-
and nano-electromechanical systems. The system is modeled as an isotropic open circular cylindrical shell of
rectangular planform that is clamped along one straight edge and is free on the other three edges. The mechanical
vibration is calculated using both numerical and analytical methods. The frequencies of the axial wave modes
strongly increase when the curvature of the shell increases because the curvature induces in-plane extension.
The frequencies of the bending in the circumference direction and twisting modes show weaker curvature
dependence. Frequencies as a function of the curvature for the axial wave modes obey a scaling law different
from that for the bending and twisting modes. Several possible electromechanical coupling mechanisms in micro-
and nano-electromechanical systems are considered.
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I. INTRODUCTION

Microfabricated freestanding semiconductor structures
have been investigated for use as micro- and nano-
electromechanical systems (MEMS and NEMS).1–10 Free
electrons embedded in semiconductors, such as a high-
mobility two-dimensional electron gas (2DEG), couple to
the mechanical motion of the freestanding structure. This
electromechanical coupling enables freestanding semiconduc-
tors to be used as force and displacement sensors based
on transport measurements2,3 and also to be used as tools
for measuring semiconductor electronic properties such as a
magnetization.4–6 The dynamic back-action induced by the
electron motion has been investigated because it enables not
only the frequency and amplitude of the vibration modes to
be changed but also the mechanical vibration to be dynami-
cally amplified or cooled to enable the quantum mechanical
behavior of mechanical systems to be studied.7–10

At the same time, the self-rolling of thin pseudomorphically
strained semiconductor bilayer systems based on epitaxial
heterojunctions grown by molecular-beam epitaxy have been
proposed by Prinz and co-workers.11,12 The optics in microtube
ring resonators13,14 and the transport of electrons on cylindrical
surfaces15–18 represent remarkable demonstrations of the
new physical properties on curved surfaces. The rolled-up
semiconductors, as well as nanocarbon materials of carbon
nanotubes,19 folded graphene,20,21 and carbon nanoscrolls,22,23

enable investigation of fundamental physical properties in a
nontrivial geometry on curved surfaces.

Rolled-up structures are advantageous for sensitive me-
chanical sensors24 because the curvature hardens the system.
Moreover, rolled-up semiconductors containing 2DEG15–18

are promising as new types of MEMS and NEMS. However,
their mechanical vibration might create noise in the electron
systems. Furthermore, the electrons could be a vibration
damping source.25 To control the vibrational and electronic

properties and to avoid unfavorable effects such as a noise,
it is important to understand the quantitative properties
of mechanical vibration and electromechanical coupling
mechanisms.

Mechanical vibration of curved plates, called shells, has
been of interest mainly in the mechanical engineering research
field for a long time. The vibrational properties of shells
are much more complicated than those of flat plates because
the curvature of shells generally induces coupling between the
in-plane and out-of-plane modes. The curvature enters into
the vibration problem not only by means of more complex
equations of motion but through the boundary conditions
as well. A huge number of articles on shell vibration have
been published. An excellent summary of the work on shell
vibration was presented in a monograph26 by Leissa in 1973.
Research developments related to shell vibration can be found
in several review articles.27–31 Circular cylindrical shells have
been of particular interest in many studies. Many studies
focused on the closed structures, i.e., the hollow tubes. For
instance, most of Leissa’s monograph26 is devoted to closed
circular cylindrical shells. There are many combinations of
boundary conditions for an open circular cylindrical shell
of rectangular planform, and each combination creates a
distinct problem. There is no exact solution except for the
case in which all edges are simply supported. In this case the
displacements are represented by simple sinusoidal functions.
The calculation of the mechanical vibration for each boundary
condition of engineering interest has mainly been performed
using numerical calculation.

Surprisingly, there has been little work on the mechanical
vibration of an open circular cylindrical shell of rectangular
planform that is clamped along one straight edge and free on
the other three edges.32–34 That is the structure focused on
in the present paper. Although bending and twisting modes
in the circumference direction have been shown to have little
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curvature dependence, modes involving waves in the axis di-
rection show a considerable frequency increase when curvature
is induced.32 However, the numerical calculations have been
done for very limited parameter cases.32–34 Therefore, we are
still far from a quantitative and comprehensive understanding
of the mechanical vibration of a cantilevered open circular
cylindrical shell of rectangular planform. That is, there is still
limited knowledge about the functional form of the frequency
for various parameters.

In this paper we report on our theoretical study of the
vibrational properties of a cylindrically rolled-up cantilever
shell. We focus on the effects of the curvature on mechanical
vibration. Several electromechanical coupling effects are also
discussed.

The rolled-up structure is modeled as an isotropic one-
straight-edge-clamped open circular cylindrical shell using
Flügge shell theory. The mechanical vibrations are calcu-
lated numerically by the Rayleigh-Ritz method. Analytical
calculations with perturbation analysis and simplified effective
one-dimensional equations of motion are also performed
as complementary methods. Modes involving waves in the
cylinder axis direction, called here axial wave modes, have
higher frequencies when the curvature of the structure is larger
because the curvature induces in-plane extension. In contrast,
bending in the circumference direction and twisting modes
have weaker curvature dependence because of inextension.
The axial wave modes obey a scaling law different from
that of the bending and twisting modes. The theoretical
study of vibrational properties described in this paper is
applicable not only to micro- and nanomechanics but also to
macroscale isotropic one-straight-edge-clamped open circular
cylindrical shells. Capacitive coupling, deformation potential,
and magnetically induced coupling are briefly discussed for
the electromechanical coupling effects.

This paper is organized as follows. In Sec. II, the
system is formulated. In Sec. III, numerical results are
shown as a function of the curvature. To enable the cur-
vature effects to be better understood, analytical results
are presented. In Sec. IV, possible electromechanical cou-
pling mechanisms are briefly discussed. Discussion of ex-
periments and summary of the key points are given in
Sec. V. Explanations of the derivation of strain energy,
the boundary conditions of the system, and the perturba-
tion analysis are given in Appendices A–C, respectively.
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x

FIG. 1. Model of cantilevered circular cylindrical shell of rectan-
gular planform. Cylindrical coordinates are denoted by (x,θ,z), and
surface coordinates at middle surface are denoted by (x,y,z). The x

axis is in the axis direction, the y axis is in the circumference direction,
and the z axis is in the direction normal to the cylinder surface.

II. STRAIN ENERGY AND EQUATION OF MOTION

In this section we show the strain energy and the equation
of motion for our system using Flügge shell theory. The
formulation is well described elsewhere, e.g., in Leissa’s
monograph.26 Explanations of the formulation for the strain
energy and the boundary conditions are given in Appendices
A and B, respectively.

The rolled-up structure is modeled as a one-side clamped
open circular cylindrical shell with constant thickness h. The
structure is made by rolling up a rectangular cantilevered
plate. The geometry of the system is schematically shown
in Fig. 1. Here we introduce cylindrical coordinates (x,θ,z).
The x axis is in the cylinder axis direction, θ is the angle in
the circumference direction, and the z axis is in the direction
normal to the cylinder surface. The origin of the z coordinate
is the middle surface of the shell. The radius of curvature at the
middle surface is R. The length along the x direction is �x , and
the arc length of the middle surface along the θ direction is �y .
The clamped end is located at θ = 0 along the x axis, the three
free boundaries are located at x = ±�x/2, and θ = �y/R. We
also introduce coordinate y = Rθ on the middle surface.

Using the theory of thin shells for small displacement and
the Kirchhoff-Love approximation, we write the strain energy
with displacements u, v, and w in the x, y, and z directions,
respectively, at the middle surface as
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where C = Eh/(1 − ν2), D = Ch2/12, E is the Young
modulus, and ν is the Poisson ratio. The present theory is
based on the continuum theory and is applicable to vibrations
of wavelength much larger than atomic scale. Although there
is anisotropy for materials such as semiconductors, here we
treat our structure as being made of an isotropic elastic
material for simplicity. The vibrational properties are well
described by a model of an isotropic single material even for
semiconductor MEMS and NEMS containing multiple layers.
(See for example the reports by Yamaguchi et al.25,35) The
strain energy of Eq. (1) is known as Flügge strain energy. For
the infinitely small curvature case (1/R → 0), Eq. (1) gives
the strain energy for a flat plate. The first line of Eq. (1)
shows the extended terms for the in-plane strain energy, and
the second and third lines show the extended terms for the
out-of-plane strain energy. Eliminating the underlined terms
in Eq. (1) gives the strain energy for the shallow shell (or
Donnell’s) approximation. A typical rolled-up structure of
the pseudomorphically strained semiconductor is relaxed by
self-rolling, and its equilibrium structure is a cylinder.36 That
is, the total initial stress has already been relaxed and the strain

energy for small displacements is written with the second order
of expansion of the displacements from the static position, as
shown in Eq. (1).37 The kinetic energy is given by

T = 1

2

∫
dx

∫
dθ

∫ h/2

−h/2
(R + z)dzρ(u̇2 + v̇2 + ẇ2)

= 1

2

∫
dxdyρh(u̇2 + v̇2 + ẇ2), (2)

where ρ is the mass density. Both U and T are expressed with
the displacements on the middle surface. That is, the problem
is reduced to a two-dimensional problem on a curved surface
of xy coordinates.

By using Hamilton’s principle, i.e., minimizing action
δ
∫

dt(T − U ) = 0 for a given geometrical configuration, one
gets the equation of motion and the boundary conditions for
(u,v,w). The equation of motion is written as

ρ
∂2

∂t2
u(r,t) = − E

1 − ν2
(L̂0 + L̂′)u(r,t), (3)

where u = (u,v,w)T , and
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)
⎞
⎟⎟⎠ , (4)

L̂′ = L̂D + L̂F, (5)
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12R2

⎛
⎜⎜⎝

1−ν
2

∂2

∂y2 0 −R ∂3
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As shown in Eqs. (5)–(7), L̂′ is the curvature-induced term.
Eliminating L̂F in L̂′ gives the equation for the shallow shell
approximation. The boundary conditions for our system are
summarized in Appendix B.

For the oscillating solution, u(r,t) = u(r)eiωt , the equation
of motion, Eq. (3), is written as an eigenvalue equation:

(L̂0 + L̂′)u(r) = 	u(r), (8)

where

	 = ρ

E/(1 − ν2)
ω2. (9)

Instead of solving Eq. (8) with the boundary conditions, the
Rayleigh-Ritz method, a variational method to minimize the
action with a finite number of bases, has often been used for

complicated models. In this paper, we use the Rayleigh-Ritz
method to calculate the eigenfunctions and eigenfrequencies
numerically. As complementary methods, we also analytically
calculate the eigenfunctions and eigenfrequencies with a
perturbation method and effective one-dimensional equations
of motion.

III. EFFECTS OF CURVATURE ON EIGENFREQUENCY

A. Numerical analysis

The eigenfrequencies are calculated numerically by using
the Rayleigh-Ritz method. Polynomial functions are chosen
as the base functions. They satisfy a fixed boundary condition
along the y = 0 edge:

u(x,0) = v(x,0) = w(x,0) = ∂yw(x,0) = 0. (10)
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FIG. 2. Eigenfrequencies as a function of
curvature. Eigenfrequencies are normalized
by fundamental eigenfrequency for wide flat
cantilever plate, ω

(0)
1 . Horizontal axis, 1/r ,

is curvature normalized by 1/�y . Aspect
ratios for parameters are ξ = �x/�y = 2 and
η = h/�y = 2 × 10−3, and Poisson ratio ν =
0.31. Insets show larger scale near the arrows.
Mode shapes for 1/r = 1/300 [(a)–(f)] and
1/r = 5 [(g)–(j)] are shown beside corre-
sponding frequencies. Two straight edges
geometrically coincide at 1/r = 2π .

Before discussing the numerical results, we should point out
that a scaling law holds for the frequency; i.e., the frequency
for each mode is inversely proportional to the system size for
the same aspect ratio, ω ∝ [L−1]. Hereafter, the unit of length
is chosen to be �y . We use ξ = �x/�y , η = h/�y , and r = R/�y

for the normalized lengths.
The calculated eigenfrequencies as a function of curvature

are shown in Fig. 2. The frequencies are normalized by the
fundamental eigenfrequency of the bending mode for a wide
flat cantilever plate:

ω
(0)
1 = h

(
λ

(0)
1

�y

)2 √
E

12(1 − ν2)ρ
, (11)

where λ
(0)
1 = 1.875. The curvature dependence is shown up

to 1/r = 2π , at which point the two straight edges at θ =
0 and �y/R geometrically coincide. The aspect ratios are
ξ = 2 and η = 2 × 10−3, and the Poisson ratio is 0.31. The
mode shapes for small (1/r = 1/300) and large (1/r = 5)
curvature cases are also shown. Note that the normalized
frequencies do not depend on the Young modulus or the
mass density, but generally depend on the Poisson ratio as
well as the aspect ratios (ξ , η, and r). This means that 	 in
Eq. (8) corresponds to the normalized frequency and that 	 is
determined independently of E and ρ.

For the flat plane limit of 1/r → 0, the bending mode
in the y direction and the twisting mode correspond to the
fundamental and second modes, respectively. The third and
fourth modes are the wave modes in the x axis, so the fifth
and sixth modes are the second bending and twisting modes,
respectively, for this parameter set.

From Fig. 2, one can clearly see two types of curvature
effects. When the curvature increases, the eigenfrequencies
for the axial wave modes increase even for a small curva-
ture. In contrast, those for the bending and twisting modes
remain almost constant. For the large curvature (1/r > 1), the
eigenfrequencies for these modes show curvature dependence:
Those for the lower modes increase as the curvature increases
whereas those for the higher modes decrease. Note that the

second twisting mode, labeled (f), shows anticrossing with the
axial wave mode labeled (d) around 1/r ∼ 2 × 10−2 and that
the twisting mode connects to the mode labeled (j) when the
curvature increases. The anticrossing can also be seen between
modes (c) and (e) around 1/r ∼ 10−1 although the splitting
is smaller. In both cases, the coupled mode functions have
the same symmetry with respect to the x axis [even-even for
modes (c) and (e), odd-odd for modes (d) and (f)]. The splitting
is larger for the modes with higher oscillation in x axis. In
contrast, only crossing occurs between modes (d) and (e) and
modes (c) and (f) because of the even-odd characteristic of the
function set.

As shown in the previous section, the in-plane and out-of-
plane modes are no longer separated at the finite curvature. The
numerical results show two types of curvature dependence:
(I) having higher frequency for the axial wave modes,
(II) remaining almost constant for the bending and twisting
modes. These two types of curvature dependence are in-
tuitively understandable, and have been shown in previous
publications with limited numerical data.32,33 In the following
subsections, the curvature dependence is discussed in more
detail along with a perturbation analysis and effective one-
dimensional models. The frequencies as a function of the
curvature for the axial wave modes are shown to obey a scaling
law different from that for the bending and twisting modes.

B. Perturbation analysis

For further quantitative and physical discussion of the
numerical calculation above, we apply perturbation analysis
to the equation of motion. The curvature effect is estimated
by considering L̂′ as the perturbation of L̂0 in Eq. (8). For
this analysis, we consider the perturbation for plane wave
with wave vector k = (kx,ky), which is the eigenfunction
in the periodic boundary condition, within the shallow shell
approximation for simplicity. The derivation of the results
shown in this subsection is given in detail in Appendix C.
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FIG. 3. Normalized frequencies for axial wave modes as function of 1/ηr for three aspect ratios: (a) ξ = 2, (b) ξ = 3, (c) ξ = 4. Results
for five thicknesses of η are shown. Poisson ratio ν = 0.31. Dashed lines are curves fitting analytical expression, Eq. (13).

The eigenfrequency of the out-of-plane mode for the plane
wave is given by

ω
(0)
OP = hk2

√
E

12(1 − ν2)ρ
, (12)

where k =
√
k2
x + k2

y . At finite curvature, the in-plane and
out-of-plane modes are no longer separated. The curvature-
induced frequency modification is evaluated within the second-
order perturbation of the curvature as

ωOP = ω
(0)
OP

√
1 + 12(1 − ν2)

k4
x

k8h2R2
. (13)

See Appendix C for the derivation. A corresponding expres-
sion is obtained by neglecting the tangential inertia terms
in the shallow shell approximation for the all-edges-simply-
supported boundary condition38 or for the closed cylindrical
shell with the both-ends-simply-supported condition.26 As
shown in Eq. (13), the curvature modification appears as 1/R2,
and the effect is larger for a larger kx . Note that the curvature
effect does not appear for the kx = 0 modes, only for the axial
wave modes. Also note that the kx = 0 modes correspond to
the bending modes. These behaviors agree with the numerical
calculation results shown in Fig. 2.

Let us consider the curvature dependence of the frequencies
for the axial wave modes from Eq. (13). Although Eq. (13) is
the expression for the plane wave, we could expect that (i) the
normalized frequency is a function of hR and (ii) the vector
set of k is given for each mode as an “effective” wave vector
for the rolled-up cantilever shell. We confirm these nontrivial
hypotheses by plotting the numerically calculated frequencies
for the axial wave modes as a function of 1/ηr for various
aspect ratios of η and ξ with ν = 0.31 in Fig. 3. The dashed
lines show the fitting to Eq. (13) using k = (kx,ky) as the fitting
parameters. We strongly emphasize that the frequency as a
function of the curvature for each mode is scaled by a single
function of 1/ηr for given ξ , even for the larger curvature in
which the expression of Eq. (13) deviates from the numerical
calculation.

There is also a correction for the kx = 0 mode function. The
corrections for the frequency cancel each other for the kx = 0
mode in this approximation. However, the kx = 0 out-of-plane

mode function is modified, and the following inextensionality
relation is satisfied (see Appendix C for details):

∂v

∂y
+ w

R
= 0. (14)

Note that the normal strain in the curved y direction is written
as εy = ∂yv + w/R. For the kx �= 0 modes, in-plane extension
is induced by the curvature, so the frequency is significantly
enhanced. Note that the twisting modes can be classified
neither as kx = 0 nor kx �= 0 in the plane wave picture. The
inextensionality relation is also applicable to twisting modes,
as shown in the next subsection.

C. One-dimensional vibration in circumference direction

Here we focus on the bending and twisting modes. As
shown in the numerical calculation, these modes show curva-
ture dependence for larger curvatures; lower modes increase
whereas higher modes decrease when the curvature increases.
Here we show that effective one-dimensional models repro-
duce the numerical calculation quite well. A scaling law for
these modes is also discussed.

For the bending modes, we make several assumptions: Inex-
tensionality relations ∂xu = 0, ∂yu + ∂xv = 0, ∂yv + w/R =
0, and x dependence is neglected (∂xu = 0). By applying
these assumptions to the strain energy of Eq. (1) and using
Hamilton’s principle, we get a one-dimensional equation of
motion:

v(6) + 2v(4)

r2
+ v(2)

r4
= λ4

(
v(2) − v

r2

)
, (15)

with boundary conditions

v = v′ = v(2) = 0, (ψ = 0), (16)

v(3) + v′

r2
= v(4) + v(2)

r2

= v(5) + 2v(3)

r2
+

(
1

r4
− λ4

)
v′ = 0, (ψ = 1),

(17)

where the dimensionless coordinate ψ = y/�y is introduced,
the derivative is for ψ , and

λ4 = 12(1 − ν2)ρ

E

�4
y

h2
ω2. (18)
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Note that the equation of motion of Eq. (15) has the same
form as a curved beam (see for example the review article by
Chidamparam and Leissa39). A general solution of Eq. (15)
has the form

v(ψ) =
N∑

j=1

(Aj cos kjψ + Bj sin kjψ), (19)

where N = 3 and kj ’s are the roots of the equation

k6 − 2

r2
k4 +

(
1

r4
− λ4

)
k2 − λ4

r2
= 0, (20)

which is given by substituting Eq. (19) into Eq. (15). Similar to
the straight cantilever problem, the eigenfrequencies are calcu-
lated by using the boundary conditions and then evaluating the
roots of the determinant of the matrix for vector (A1, . . . ,B3).

The frequencies calculated using Eqs. (15)–(17) are plotted
in Fig. 4. The numerical calculation of the bending modes is
well reproduced by the one-dimensional equation of motion.
The normalized frequencies for the numerical calculation
perfectly follow function of 1/r independently of the values of
η and ξ . This scaling law is derived that Eqs. (15)–(17) depend
only on r . Note that the normalized frequency in the analytical
expression is written as ω/ω

(0)
1 = (λ/λ

(0)
1 )2.

For the twisting modes, we make similar assumptions about
the bending modes, i.e., the inextensionality relation and the
antisymmetric mode shape of v(x,y) ∝ xv(y). We get a quasi-
one-dimensional equation of motion:

u(8) + 2

(
1

r2
− α

)
u(6) +

(
1

r4
− 4α

r2

)
u(4) − 2αu(2)

r4

= λ4

(
u(4) − u(2)

r2
+ βu

r2

)
, (21)

where α = 12(1 − ν)/ξ 2, β = 12/ξ 2, and the boundary con-
ditions are

u = u′ = u(2) = u(3) = 0 (22)

for ψ = 0, and

u(4) + u(2)

r2
= u(5) +

(
1

r2
− 2α

)
u(3) − 2αu′

r2

= u(6)+2

(
1

r2
− α

)
u(4) +

(
1

r4
− 2α

r2
− λ4

)
u(2)

= u(7)+2

(
1

r2
− α

)
u(5) +

(
1

r4
− 4α

r2
− λ4

)
u(3)

− 1

r2

(
2α

r2
− λ4

)
u′ = 0 (23)

for ψ = 1. A general solution of Eq. (21) has the same form
as Eq. (19) with N = 4.

In a similar way as for the bending modes, the frequencies
of the twisting modes are calculated from Eqs. (21)–(23).
They are also shown in Fig. 4. The numerical calculation
of the twisting modes is well reproduced by the quasi-
one-dimensional equation of motion, and the normalized
frequencies are fitted by the function of 1/r for the given
ξ , independently of η.

We would like to emphasize that the scaling law of the
functions of 1/r for the bending and twisting modes are in
contrast to the scaling law of the functions of 1/ηr for the
axial wave modes. More precisely, the curvature dependence
of the normalized frequency ωj/ω

(0)
1 for each mode labeled

j is written as ωjb/ω
(0)
1 = fb,jb (1/r) for bending mode jb,

ωjt/ω
(0)
1 = ft,jt (1/r; ξ ) for twisting mode jt, and ωja/ω

(0)
1 =

fa,ja (1/ηr; ξ ) for axial wave mode ja.

IV. ELECTROMECHANICAL COUPLING

For microfabricated freestanding semiconductor structures
used as micro- and nano-electromechanical systems, the
coupling between the mechanical vibration and the 2DEG
would affect both the vibrational and electrical properties.
Here we briefly discuss several possible mechanisms of
electromechanical coupling.

We first discuss a capacitive coupling mechanism. We
consider a doping layer with a positive charge at z = d/2 and
a negatively charged 2DEG layer of the same absolute charge
density with the doping layer at z = −d/2. We first consider a
flat plate. A displacement causes a finite curvature of 1/δr in a
local area, and this modifies the local capacitance per unit area:

c = ε

δr

1

ln 1+d/2δr

1−d/2δr

� ε

d

1

1 + d2

12δr2

, (24)

where ε is the dielectric constant. The finite curvature
at a position is written with displacement represented as
δr−1 � (d2w/dy2). Therefore, the capacitive coupling energy
density induced by the displacement can be expressed as

εc = (ne)2

2c
− (ne)2

2cδr=∞
= n2e2d3

24ε

(
d2w

dy2

)2

, (25)

where n is the charge density and −e is the electron charge.
This expression can be directly compared with the strain
energy density,

εs = Eh3

24(1 − ν2)

(
d2w

dy2

)2

. (26)
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From Eqs. (25) and (26), we can see that the capacitive
coupling effect is larger for thinner plate, h ∼ d. However,
for typical systems with parameters n ∼ 7 × 1015 m−2,
ε ∼ 9 × 10−11 N/V2, E ∼ 9 × 1010 N/m2, and ν = 0.3, we
can estimate the ratio as εc/εs ∼ 10−7 for h ∼ d.

For the rolled-up systems, the energy density is expressed
in a manner similar to that for a flat plate: The corresponding
expression is obtained by changing (d2w/dy2) in Eq. (25) to
(d2w/dy2 + w/R2). The strain energy density is expressed in
the same manner. Therefore, we come to the same conclusion
as for the flat plate. That is, the capacitive coupling has a
negligible effect on the vibration frequency, even for a thin
rolled-up plate. However, the coupling would significantly
affect the electron systems. The prefactor in Eq. (25) is the
order of eV for the parameters used above. A mechanical
vibration with an amplitude of nm order and a wavelength of
μm order in a 10 × 10 μm area would induce a capacitive
coupling energy of the order of sub-millielectron volt. This
is the same order as that of typical single-particle energy
separation and Coulomb interaction for mesoscopic electron
systems. Therefore, the capacitive coupling could affect 2DEG
systems, even for a flat plate.

Microscopic electron-vibration (i.e., phonon) interaction
could show a mode dependence for the interaction effect. The
interaction via the deformation potential is written as

V = g

∫
ρe(r)�(r)d r, (27)

where ρe (r) is the density of electrons, � (r) is the local
compression or extension, and g is the coupling constant. For
the 2DEG layer at the z surface,

� (r) � ∂u

∂x
+ ∂v

∂y
+ w

R
− z

(
∂2w

∂x2
+ ∂2w

∂y2

)
. (28)

Let us consider the 2DEG layer near the middle surface at
z = 0. For the bending and twisting modes, the potential
would be negligible because of the inextensionality; i.e.,
� � 0. In contrast, the axial wave modes would induce the
in-plane extension, as discussed in Sec. III, resulting in strong
interaction between electrons. The interaction would appear
as several effects: The long-range potential created by the
vibrational modes would modify the local electron density,
and the lowest order of the interaction would dampen the
vibration.25 Therefore, the quality factor for each resonant
frequency would reflect the mode shape.

In the above discussion, we neglected the piezoelectric
effect. A rolled-up semiconductor still has local strain in a
static situation.40 Depending on the rolling direction, e.g.,
[110] for zinc-blende materials, a strain-induced polarization
charge would appear via the piezoelectric effect. A total
strain energy calculation shows that [100] is the preferred
rolling direction for such materials;36 therefore, this effect
seems to be ignored. However, superlattices41 and rolled-up
semiconductors have less geometrical symmetry than bulk
crystal. This might induce a finite piezoelectric field in the
direction in which the piezoelectric effect does not normally
occur for bulk materials. A careful microscopic study is needed
to clarify the piezoelectric effect.

In the presence of a magnetic field, one would also expect
an electromechanical coupling via the magnetic field. For

instance, out-of-plane vibration changes the perpendicular
magnetic field on the surface coordinate system, resulting in
an eddy current due to electromagnetic induction. This eddy
current can be used as a signal for vibration detection.42 This
eddy current would interact with the magnetic field and would
serve as a damping effect.43

This damping mechanism can be captured with a simplified
model. Consider a rectangular wire pendulum with deflection
angle ϕ. The equation of motion of the pendulum is

I
d2ϕ

dt2
= −Iω2

0ϕ, (29)

where I is the inertia moment of the pendulum with respect
to the fixed edge and ω0 is the frequency of the pendulum.
An external magnetic field is applied with angle θB to the
equilibrium position of the pendulum plane. The oscillation
changes the magnetic flux penetrating the wire, which induces
electromotive force and results in a current flow in the wire:
J = (SB/R) cos(θB − ϕ) ϕ̇, where S is the area of the wire
and R is its electrical resistance. The current interacts with
the magnetic field via the Ampere force, creating torque on
the pendulum. For a small oscillation amplitude (ϕ 	 θB), the
equation of motion is

d2ϕ

dt2
= −ω2

0ϕ − S2B2

IR
cos2 θB

dϕ

dt
. (30)

The second term on the right is the damping term. For a flat
cantilever plate, the electromagnetic coupling can be changed
by changing the direction of the magnetic field. It is small when
the magnetic field is perpendicular to the plate (θB = π/2).
For a rolled-up system, the electromagnetic coupling should
contribute for any direction of the magnetic field. This can
be expressed by simply integrating the θB dependence for
the sample as represented in Eq. (30). Doing this, we get the
phenomenological expression for the rolled-up system:

d2ϕ

dt2
= −ω2

0ϕ − cB2 dϕ

dt
. (31)

The constant c would depend not only on the geometry of the
system but also on the modes. For a strong magnetic field, the
additional contribution from the quantum Hall effect should
also be considered.25

V. DISCUSSION AND SUMMARY

The mechanical vibrations in flat semiconductor layers have
been observed using electrical transport measurement2 and
laser interferometer measurement.10 Rolled-up semiconductor
layers have been fabricated, and their electronic properties
have been investigated.16,18 It would be useful to show the
frequencies around the fundamental frequency for the corre-
sponding structure. For �x = 1000 μm, �y = 100 μm, R =
20 μm, and h = 0.2 μm, similar to the parameter settings in
previous work,16,18 and using the GaAs material constants E =
8.59 × 1010 N/m2, ν = 0.31, and ρ = 5.32 × 103 kg/m3, we
calculated the fundamental eigenfrequency as f = ω/2π =
22.53 kHz and calculated 23.09, 46.55, and 46.65 kHz for
the excited modes, respectively the lowest bending, lowest
twisting, first excited bending, and first excited twisting modes.
Because the rolled-up structure had a long axis, ξ = �x/�y =
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10, the bending mode and corresponding twisting mode
had closer frequencies. These resonant frequencies would be
expected in future experiments.

In this paper we restricted ourselves to classical physics;
however, an important issue related to NEMS is the quantum
effect.8 The results presented here can be used to estimate the
condition for observing a quantum effect on the fundamental
frequency of rolled-up semiconductor layers. The energy
quantum of the fundamental frequency should be larger than
the thermal excitation. As shown in Fig. 2, the fundamental
frequency is increased by the curvature, and the frequency is
approximately twice that of the cantilever plate ω1/ω

(0)
1 � 2,

near the ring shape R � �y/2π . For example, for GaAs
layer thickness h = 50 nm and circumference length �y =
10h = 500 nm, the fundamental eigenfrequency for the layer
rolled-up in a ring shape is f1 = ω1/2π � 270 MHz. The
corresponding temperature is about 10 mK, which could be
achieved with a dilution refrigerator.

In summary, we have studied the mechanical vibration
of a cylindrically rolled-up cantilever shell. We have shown
that the axial wave modes have higher frequencies when
curvature is induced while the bending and twisting modes
have weaker curvature dependence. The axial wave modes
obey a scaling law different from that for the bending and
twisting modes. Several possible electromechanical coupling
mechanisms were considered.
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APPENDIX A: STRAIN ENERGY
IN FLÜGGE SHELL THEORY

In this Appendix, we explain the derivation of the strain
energy in Flügge shell theory.

Under the Kirchhoff-Love approximation (“normals to the
undeformed middle surface remain straight and normal to
the deformed middle surface and suffer no extension”), each
component of the displacement at any point in the thickness
of the shell can be expressed using the displacements at the
middle surface:

u(z) = u − z
∂w

∂x
, (A1)

v(z) = v

(
1 + z

R

)
− z

R

∂w

∂θ
, (A2)

w(z) = w, (A3)

where u, v, and w are the displacement components in the x, θ ,
and z directions at the middle surface, respectively, and u(z),
v(z), and w(z) represent the corresponding displacements at

the z surface. The strain tensors at a point within the thickness
are given by

εx = ∂u(z)

∂x
, (A4)

εθ = ∂v(z)

(R + z)∂θ
+ w(z)

R + z
, (A5)

γxθ = ∂v(z)

∂x
+ ∂u(z)

(R + z)∂θ
. (A6)

The second term in Eq. (A2) and the second term in Eq. (A5)
appear because the coordinates sit on a curved surface. The
transverse shear strains, γxz and γθz, and the transverse normal
strain, εz, are assumed to be zero in the Kirchhoff-Love
approximation. The strain energy is given by

U = 1

2

∫
dx

∫
dθ

∫ h/2

−h/2
(R + z)dz

×
[

E

1 − ν2

(
ε2
x + ε2

θ + 2νεxεθ

) + E

2 (1 + ν)
γ 2

xθ

]
,

(A7)

where E is the Young modulus and ν is the Poisson ratio.
Substituting Eqs. (A4)–(A6) with the relations (A1)–(A3) into
Eq. (A7) and integrating out the z component gives the strain
energy with the displacements at the middle surface [Eq. (1)].
To perform the z component integration, the z/R terms in
the denominator of Eqs. (A5) and (A6) were expanded up to
the second order, and the terms up to third order of h were
remained in the strain energy.

APPENDIX B: BOUNDARY CONDITIONS

Here we summarize the boundary conditions for
the presented system. The system has free boundaries
at the x = ±�x/2 and y = �y edges and a fixed boundary at
the y = 0 edge. The boundary conditions at each edge can be
determined using Hamilton’s principle as the same framework
for deriving the equation of motion. For the fixed boundary
edge at y = 0, we have u = v = w = ∂w/∂y = 0 as the
boundary conditions. For the free boundaries at x = ±�x/2,
the boundary conditions are

∂u

∂x
+ ν

(
∂v

∂y
+ w

R

)
− h2

12R2
R

∂2w

∂x2
= 0, (B1)

∂u

∂y
+

(
1 + 3

h2

12R2

)
∂v

∂x
− 3

h2

12R2
R

∂2w

∂x∂y
= 0, (B2)

1

R

(
−∂2u

∂x2
+ 1 − ν

2

∂2u

∂y2
− 3 − ν

2

∂2v

∂x∂y

)

+∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2
= 0, (B3)

1

R

(
∂u

∂x
+ ν

∂v

∂y

)
− ∂2w

∂x2
− ν

∂2w

∂y2
= 0. (B4)

At y = �y , the boundary conditions are(
1 + h2

12R2

)
∂u

∂y
+ ∂v

∂x
+ h2

12R2
R

∂2w

∂x∂y
= 0, (B5)
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ν
∂u

∂x
+ ∂v

∂y
+

(
1 + h2

12R2

)
w

R
+ h2

12R2
R

∂2w

∂y2
= 0, (B6)

1

R

1 − ν

2

(
∂2u

∂x∂y
− 3

∂2v

∂x2

)

+∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y
+ 1

R2

∂w

∂y
= 0, (B7)

ν
∂2w

∂x2
+ ∂2w

∂y2
+ w

R2
= 0. (B8)

APPENDIX C: PERTURBATION ANALYSIS

Here we use perturbation theory to evaluate the analytical
expression for the curvature-induced frequency. To keep the
analysis simple, we consider the plane wave specified by
k = (kx,ky) for the mode and consider the curvature-induced
term only within the shallow shell approximation; i.e., the L̂F

term is neglected in the L̂′ term in Eq. (5). The unperturbed
eigenfrequencies and eigenfunctions are

ω
(0)
LA =

√
E

(1 − ν2)ρ
k,

u(0)
LA = 1√

lx ly
(cos θkex + sin θkey) exp(ik · r), (C1)

ω
(0)
TA =

√
E

2(1 + ν)ρ
k,

u(0)
TA = 1√

lx ly
(−sin θkex + cos θkey) exp(ik · r), (C2)

ω
(0)
OP = h

√
E

12(1 − ν2)ρ
k2, u(0)

OP = 1√
lx ly

ez exp(ik · r),

(C3)

where k =
√
k2
x + k2

y , ex (ey , ez) is the unit vector in the
x (y, z) direction, and θk = arctan(ky/kx). Equations (C1)–
(C3) respectively represent the in-plane longitudinal, in-plane
transverse, and out-of-plane modes. Each eigenfunction is
normalized in the �x × �y square. The calculated first- and
second-order perturbation corrections for the out-of-plane
mode are

	
(1)
OP =

∫
d ru(0)∗

OP L̂′u(0)
OP = 1

R2
, (C4)

	
(2)
OP = −

∑
j

∣∣ ∫
d ru(0)∗

j L̂′u(0)
OP

∣∣2

	
(0)
j − 	

(0)
OP

= − 1

R2

{
1 − (1 − ν2)

(
kx

k

)4 }
, (C5)

where summation j in Eq. (C5) is taken for j = LA,TA,
and relation 	

(0)
j − 	

(0)
OP � 	

(0)
j is used to obtain the final

expression of Eq. (C5). Using Eqs. (C4) and (C5), we calculate
the effect of the curvature on the frequency:

ωOP = ω
(0)
OP

√
1 + 12(1 − ν2)

k4
x

k8h2R2
. (C6)

In this equation, the curvature modification appear as 1/R2,
and the effect is larger for a larger kx .

There is also a correction for the kx = 0 modes. As can
be seen from Eqs. (C4) and (C5), the first- and second-order
perturbations for the frequency completely cancel each other
for the kx = 0 modes. The kx = 0 out-of-plane mode function
is modified within the first order of L̂′ as

uOP = u(0)
OP −

∑
j

∫
d ru(0)∗

j L̂′u(0)
OP

	
(0)
j − 	

(0)
OP

u(0)
j

= 1√
lx ly

(
ez − 1

ikyR
ey

)
exp(ikyy). (C7)

Therefore, the inextensionality relation, Eq. (14), holds for the
kx = 0 modes.
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