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Resonant polaron-assisted tunneling of strongly interacting electrons through a single-level
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The problem of resonant transport of strongly interacting electrons through a one-dimensional single-level
vibrating quantum dot is being considered. In this paper, we generalize the Komnik and Gogolin model [Phys.
Rev. Lett. 90, 246403 (2003)] for the single-electron transistor with g = 1/2 Luttinger liquid leads to the case
of a strong electron-vibron interaction in a quantum dot. The effective transmission coefficient and differential
conductance of the system has been derived for the general case of asymmetric tunnel barriers. The main result
obtained is that, in the zero-temperature limit, the resonant polaron-assisted tunneling with perfect transmission is
possible. This resonant tunneling is of the novel (Andreev-like) type due to a special electron-electron interaction
in the leads. As a result, a strong domination of resonant polaron-assisted electron transport at low temperatures
has been found. Additional narrowing due to electron-electron interaction in the leads, is roughly the same for
all polaron-assisted resonances.
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I. INTRODUCTION

The problem of electron transport through various molec-
ular structures and, particularly, through molecular single-
electron transistors (SETs) has become a hot topic in the
modern mesoscopic physics.1–4 A single-electron transistor
in question is modeled as a single-level quantum dot (QD),
weakly coupled to two one-dimensional leads (quantum wires
or carbon nanotubes).5–10 One can control the tunnel current
through a described system by means of two independent
parameters: (i) “driving” voltage (bias) V between the leads
and, (ii) “gate” voltage Vg , which is able to move the fermionic
level of the QD. Besides that, the average current depends
on the properties of tunnel barriers, on the electron-vibron
coupling in the QD, and on the strength of electron-electron
interaction in the system. For the most general case of arbitrary
electron-electron and electron-vibron interactions, it is im-
possible to solve the transport problem exactly. Nevertheless,
some limiting cases are solvable.

It is widely known5,6,8,11–13 that the vibrations of QD
qualitatively change the character of low-temperature electron
transport through an SET even with Fermi leads. Two
main effects characterize the low-temperature differential
conductance of the system with vibrating QD in the case
of Fermi leads: (i) vibron-assisted tunneling, where the
additional (satellite) resonant peaks of differential conductance
emerge,5,6,11 and (ii) the polaronic narrowing (Frank-Condon
blockade) of the widths of all resonances6,12(for strong enough
electron-vibron coupling).

One-dimensional leads imply electron-electron interaction
in the system, which is described by the Luttinger liquid
model with the dimensionless correlation parameter g (0 <

g < 1). In the case of strong electron-electron interaction
(g < 1/2), perturbation theory calculations in “bare” level
width of the fermionic level of QD are valid even at low
temperatures (i.e., the sequential tunneling limit is maintained
at all temperatures). This results in the strong suppression of
tunneling probabilities, due to the well-known Kane-Fisher

effect7,14 and in the vanishing of the conductance at T = 0.
This is not the case for weak electron-electron interaction
(1 � g � 1/2), where one could observe a resonant regime of
electron transport at low temperatures in the case of symmetric
tunnel barriers.14,15 The consequence of this fact is the perfect
(G0 = e2/h) zero-temperature conductance at V → 0.14,15

Thus, it is interesting to understand how the interplay of
the effects of strong electron-electron and electron-vibron
interactions influences electron transport through a single-
level QD. Although some results in this direction have been
already obtained for the sequential tunneling limit,8,16 these
considerations are unable to give us correct predictions for the
special g = 1/2 case. It was shown9,14 that in the absence of
electron-vibron interaction, a possibility of resonant transport
of strongly interacting electrons (with conductance quantum at
T → 0 for the symmetric case) still exists for g � 1/2. At the
special value g = 1/2 of LL correlation parameter the problem
of electron transport in such a strongly interacting system
is reduced to the scattering problem for the noninteracting
fermions, which is exactly solvable.9,10 Furthermore, it is
impossible to obtain this solution by any perturbative method.
The origin of this fact lies in the special type of symmetry in the
correlations between the electrons from different leads, which
is specific only for the g = 1/2 system. The generalization of
the g = 1/2 model9,10 to the case of weak electron-vibron
coupling is proposed in Ref. 17. The solution of Ref. 17
treats weak electron-vibron coupling perturbatively. Thus, it
does not describe the effects of resonant polaron-assisted
tunneling, which take place at sufficiently strong electron-
vibron coupling. Therefore, a problem of resonant tunneling
for the g = 1/2 model with strong electron-vibron interaction
still needs further considerations.

Below, we consider the influence of quantum vibrations on
resonant electron transport through a single-level QD, weakly
coupled to the g = 1/2 Luttinger liquid leads. In the polaronic
approximation analytical formulas are derived for the effective
transmission coefficient and differential conductance. The
solution describes both the resonant tunneling regime for
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strong electron-vibron interaction and the sequential tunneling.
In particular, we have reproduced a known nonperturbative
result for elastic tunneling G(V → 0,T → 0) = G0 = e2/h

for symmetric junction. Interestingly, this is not the case for
general (asymmetric) QD, where a Kane-Fisher suppression
of conductance peak at zero bias still takes place. In the strong
coupling regime, a correct description of all “polaron-assisted”
resonances, appearing at energies εl = h̄ω0l, (l = ±1,2, . . ..)
is obtained. At the zero-temperature limit, the amplitude of
each polaron-assisted resonant peak in symmetric junction
reaches conductance quantum, signaling a perfect transmission
of polaron at resonance energies. We show that the widths
of resonances behave nonmonotonically, as functions of the
electron-vibron interaction constant. Moreover, the details of
such behavior in our model differ from the predictions of a
similar model with noninteracting leads13 (the g = 1 case).
Particularly, an additional narrowing of widths of all polaron-
assisted resonances induced by electron-electron interaction is
found. A physical interpretation of such narrowing consists in
the special type of strong correlations between electrons from
different leads, which affect the tunneling by the additional
(polaron-assisted) channels. Thus, one can distinguish the
resonant polaron-assisted tunneling in the interacting (g =
1/2) and noninteracting (g = 1) systems.

II. THE MODEL

The Hamiltonian of our model reads

Ĥ =
∑

j=L,R

Ĥ
(j )
l + Ĥd +

∑
j=L,R

Ĥ
(j )
t . (1)

In Eq. (1) the first term describes the Hamiltonian of one-
dimensional infinite Luttinger liquid leads, which is quadratic
in the bosonized form (we consider the spinless electrons)
Ĥ

(j )
l = 1/4π

∫
dx(∂x�j (x))2. (Here and below we put h̄vg =

h̄vF /g = 1 with “bare” Fermi velocity vF .) The bosonic
phase fields �j (x) of the j th lead (j = L,R) are connected
with corresponding field operators �̂j (x) of chiral fermions
on the j th lead in a strongly nonlinear way by the stan-
dard bosonization formula �̂j (x) = exp(i�j (x)/

√
g)/

√
2πa0

(where a0 is the corresponding lattice constant).9 The chiral
charge density operator ρ̂j (x) at the point x of each j th lead can
be performed in both fermionic and bosonic representations
as follows ρ̂j (x) = �̂+

j (x)�̂j (x) = ∂x�j (x)/2π
√

g. Here g

is the dimensionless Luttinger liquid correlation parameter.
The fermionic field operator �̂j (x) describes the annihilation
of chiral fermion, living in the one-dimensional infinite j th
channel (j = L,R), corresponding to the j th physical lead of
the system. However, a negative half-axis x < 0 of each j th
channel corresponds to the incoming particles moving from
the infinity toward the boundary (i.e., to the point x = 0−),
while the positive one stands for the particles, which move
back from the boundary (i.e., from the point x = 0+) to the
infinity in the j th channel. The following relation is defined
at the boundary (in the vicinity of the point x = 0 of each j

channel)9 �̂j (0) = (�̂j (0−) + �̂j (0+))/2. It is evident from
the above and due to the continuity of chiral electric charge
distribution along the system, that the average current through
the system (i.e., from the left electrode to the right one or vice

versa) can be performed in a very transparent form in terms
of chiral density operators ρ̂j (x) in the arbitrary (left or right)
lead,10

Ī = 〈ÎL(R)〉 = (e/h̄){〈ρ̂L(R)(0
−)〉 − 〈ρ̂L(R)(0

+)〉}. (2)

The second term of Eq. (1) describes the Hamiltonian of the
single-level quantum dot (QD) coupled to a quantum harmonic
oscillator which models the vibrations of QD. Following Refs.
9 and 10we also take into account the Coulomb interaction
between the leads and QD.

Ĥd =
{

	d̂+d̂ + λCd̂+d̂
∑

j=L,R

�̂+
j (0)�̂j (0)

}

+ h̄ω0

{
1

2
(p̂2 + x̂2) + λx̂d̂+d̂

}
. (3)

In Eq. (3) d̂+(d̂) are the standard fermionic creation (annihila-
tion) operators ({d̂,d̂+} = 1) for the electron on QD, 	 is the
level energy, h̄ω0 is the energy of vibrational quantum (here
ω0 is the self-frequency of the quantum oscillator), and p̂,
x̂ are the dimensionless bosonic operators of the momentum
and center-of-mass coordinate of QD. The interaction in the
QD is controlled by two independent parameters: (i) λ is the
dimensionless electron-vibron coupling constant, and (ii) λC

is the dimensionless constant of the Coulomb interaction. In
our model we have fixed λC at the so-called Toulouse point
(λC = 2π ), while λ remains as a free parameter (below we
will be interested mostly in the case of strong electron-vibron
coupling λ � 1). The last term in Eq. (1) represents the
tunneling Hamiltonian,

Ĥ
(j )
t = (γj d̂

+�̂j (0) + H.c.). (4)

Here γj are the tunneling amplitudes.
The Hamiltonian Ĥ of Eqs. (1)–(4) can be transformed into

a more convenient form ˆ̃H by introducing new symmetric and
antisymmetric phase fields �±(x) = (�L(x) ± �R(x))/2 and
by applying two commuting unitary transformations Ûf =
exp[−i(d̂+d̂ − 1/2)�+(0)/

√
2g] and Ûb = exp(−iλp̂d̂+d̂),

ˆ̃H = Ûf ÛbĤ Û−1
b Û−1

f . Here the transformation Ûb removes
the electron-vibron interaction term from the Hamiltonian (3)
of the QD. As it was shown,9 by applying unitary transforma-
tion Ûf to the Hamiltonian (1) at g = 1/2, one can rewrite it
in terms of new fermions �̂±(x) = exp(i�±(x))/

√
2πa0 and

remove the �+(x) phase field from the tunneling term.9 At the
Toulouse point λC = 2π one can remove also the Coulomb
interaction term from the transformed Hamiltonian of QD.
Thus, if g = 1/2 and λC = 2π , one could rewrite the total
transformed Hamiltonian in the form ˆ̃H = ˆ̃Hl + ˆ̃Hd + ˆ̃Ht ,
where ˆ̃Hl = ∑

± 1/2π
∫

dx(∂x�±(x))2 and

ˆ̃Hd = 	̃d̂+d̂ + h̄ω0

2
(p̂2 + x̂2) (5)

are quadratic now [here 	̃ = 	 − (λ2/2)h̄ω0]. The trans-
formed tunneling Hamiltonian takes the form,

ˆ̃Ht = d̂+X̂+[γL�̂−(0) + γR�̂+
− (0)]

+ [γL�̂+
− (0) + γR�̂−(0)]X̂d̂. (6)
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Here the operator X̂ = exp(iλp̂) describes the influence of the
electron-vibron interaction on tunneling, while the coupling
terms d̂+X̂+γR�̂+

− (0) and γR�̂−(0)X̂d̂ reveal the existence of
additional Andreev-like tunneling of �̂− fermions. Operators
�̂±(x) stand for new fermions and fulfill standard fermionic
anticommutation relations in the Schrödinger representation
{�̂±(x),�̂+

± (x ′)} = δ(x − x ′). It is evident from the above,
that new fermionic field operators �̂±(x)(�̂+

± (x ′)) annihilate
(create) a new nonlocal fermion, which exists simultaneously
on both (left and right) physical leads of the system on the
distance |x| from the QD (i.e., from the point x = 0).9,10 Thus,
special electron-electron interaction in the system entangles
real electrons from different (left and right) physical leads in
a sufficiently nonlinear way, making them strongly correlated.
Density operators ρ̂+(x) and ρ̂−(x) for �̂± fermions ρ̂±(x) =
�̂+

± (x)�̂±(x) = ∂x�±(x)/
√

2π define chiral charge [ρ̂+(x)]
and current [ρ̂−(x)] densities measured in the symmetric
points on the leads on the distance |x| from the QD, ρ̂±(x) =
ρ̂L(x) ± ρ̂R(x). Since the �+(x) channel is decoupled now,
one can represent the average current as follows:9,10

〈Î 〉 = (e/h̄){〈�̂+
− �̂−(0+)〉 − 〈�̂+

− �̂−(0−)〉}. (7)

III. QEM METHOD AND FERMION-BOSON
FACTORIZATION

To solve the described model we use a well-known quantum
equation of motion (QEM) method. The Heisenberg equations
for the fermionic operators take the form,

ih̄∂t d̂ = 	̃d̂ + X̂+[γL�̂−(0) + γR�̂+
− (0)], (8)

where, following Refs. 9 and 10 we defined �̂−(0) =
(�̂−(0−) + �̂−(0+))/2, and

ih̄∂t �̂−(x) = −i∂x�̂−(x) + δ(x)[γLX̂d̂ − γRX̂+d̂+], (9)

where δ(x) is the delta function. Integrating Eq. (9) in the
vicinity of point x = 0, one obtains

i[�̂−(0+) − �̂−(0−)] = γLX̂d̂ − γRX̂+d̂+. (10)

In the absence of electron-vibron coupling (X̂+ = X̂ = 1),
Eqs. (8)–(10) are reduced to Eq. (6) from Ref. 9. The formal
solution of Eq. (8) can be written as follows:18,19

d̂(t) = −(i/h̄) lim
α→0

∫ t

0
dt ′X̂+(t ′)[γL�̂−(0; t ′)

+ γR�̂+
− (0; t ′)]e−i(	̃−iα)(t−t ′)/h̄, (11)

with α being positive infinitesimal. Now, substituting Eq. (11)
into Eq. (10), we are getting the following basic equation for
the averages,

h̄{〈�̂+
− (0−; t)�̂−(0+; t)〉 − 〈�̂+

− (0−; t)�̂−(0−; t)〉}

= − lim
α→0

∫ t

0
dt ′

{[
γ 2

L〈�̂+
− (0−; t)X̂+(t ′)X̂(t)�̂−(0; t ′)〉

+ γLγR〈�̂+
− (0−; t)X̂+(t ′)X̂(t)�̂+

− (0; t ′)〉]e−i(	̃−iα)(t−t ′)/h̄

+ [
γ 2

R〈�̂+
− (0−; t)X̂+(t)X̂(t ′)�̂−(0; t ′)〉

+ γLγR〈�̂+
− (0−; t)X̂+(t)X̂(t ′)�̂+

− (0; t ′)〉]ei(	̃+iα)(t−t ′)/h̄},
(12)

where symbol 〈· · ·〉 stands for the averaging with the total
transformed Hamiltonian.

Now, the central Eq. (12) should be complemented by
the corresponding equation for the bosonic operator p̂. The
Heisenberg equation for the vibronic subsystem reads

[
∂2
t + ω2

0

]
p̂ = i

λω0

2h̄
[X̂+d̂+(γL�̂−(0) + γR�̂+

− (0))

− X̂d̂(γL�̂+
− (0) + γR�̂−(0))], (13)

and, obviously, it could be rewritten in the form,

[
∂2
t + ω2

0

]
p̂ = λω0

2
∂t (d̂

+d̂). (14)

To proceed further we need to use certain approximations.
The most evident simplification is to put the right-hand side
of Eq. (14) to be equal to zero. This corresponds to the case,
where the bosonic subsystem is effectively unaffected by the
fermionic one and Eq. (14) has a free solution,

p̂0(t) = i√
2

(b̂+
0 eiω0t − b̂0e

−iω0t ). (15)

Here the operators b̂+
0 (b̂0) describe the creation (annihilation)

of a free vibron and fulfill standard bosonic commutation
relation [b̂0,b̂

+
0 ] = 1. One can see from Eqs. (13) and (14)

that the approximation (15) is always valid in the perturbation
theory on �0 = γ 2

L + γ 2
R (�0 � h̄ω0,T ,eV), where the lowest

energy scale is �0—the “bare” width of the fermionic level of
QD in the “wide-band approximation” (WBA) limit. Another
approach where one can use the Hamiltonian of free vibrons
is the so-called “polaron tunneling approximation”.13,20 It is
valid, when the characteristic lifetime of the electron on QD
(∼h̄/�0) is much greater than the time of polaron formation
(∼1/λ2ω0). In this case only the polaronic states “live” on
the dot and one can use fermion-boson factorization when
calculating the Green function of polaron. This approach
allows one to consider resonant tunneling in the system
with strong electron-vibron interaction (λ � 1). Thus, when
evaluating the averages in Eq. (12) we will assume that

〈�̂+
− (0−; t)X̂+(t ′)X̂(t)�̂−(0; t ′)〉
	 〈�̂+

− (0−; t)�̂−(0; t ′)〉 ˆ̃Hl
〈X̂+(t ′)X̂(t))〉 ˆ̃Hd

. (16)

Here the symbols 〈· · ·〉 ˆ̃Hd
and 〈· · ·〉 ˆ̃Hl

stand for the averaging

with quadratic Hamiltonian of the QD ( ˆ̃Hd ) and of the leads
( ˆ̃Hl). In the polaronic approach of Eq. (16) it is natural to
regard the vibronic subsystem as thermally equilibrated at the
temperature T .

〈b̂+
0 b̂0〉 ˆ̃Hd

= nb(β) = (exp(β) − 1)−1, (17)

with β = h̄ω0/T . Obviously, our approximations (15)–(17)
allow one to generalize the scattering approach elaborated in
Ref. 9 for resonant tunneling of interacting electrons to the
case of resonant tunneling of polarons. Under the accepted
approximations the solution of basic Eq. (12) is formulated
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in terms of noninteracting �̂−—fermions backscattered from
the point x = 0 or transmitted through it from negative (x <

0) to positive (x > 0) half-axis. Following Ref. 9 we use in
Eq. (12) the standard momentum decomposition for fermionic
field operator �̂−(x,t),

�̂−(x; t) =
∫

dk

2π
eik(t−x)

{
âk, x < 0,

b̂k, x > 0,
(18)

(we set here h̄ = 1 and vg = vF /g = 1). In Eq. (18)
â+

k (âk) are the standard fermionic creation (annihilation)
operators. It is evident that the average occupation number
〈â+

k âk〉 for a new fermionic state at the energy k will
be as follows: 〈â+

k âk′ 〉 ˆ̃Hl
= [nF (k − μL) − nF (k − μR)]δ(k −

k′), where nF (k − μL(R)) = (exp(β(k − μL(R))) + 1)−1 are
the Fermi distribution functions of electron in the L(R)
reservoirs. Analogously to Ref. 9, we represent operator b̂k

in Eq. (18) as b̂k = t(k)âk , where t(k) is the transmission
amplitude. The reflection amplitude r(k) is defined by the
equation â+

−k = r(k)âk and describes the process of the
Andreev-like reflection of the incoming quasiparticle. We put
also b̂+

−k = 0, since there are no transmitted “holes” in the
system. The considerations given above allow us to rewrite a
basic formula (7) for the average current through our system.
It takes the Landauer-type form,9,10

Ī (V ) = 〈Î 〉 = e

h

∫
dεR(ε)[nF (ε − eV) − nF (ε)], (19)

where R(ε) = 1 − |t(ε)|2 is the energy-dependent reflection
coefficient for �̂− fermions, which determines the effective
transmission coefficient for physical electrons transferred
through the QD.

IV. RESULTS AND DISCUSSION

One can see that the problem of electron transport
in the considered model is reduced now to the evaluation of
the effective transmission coefficient R(ε). Thus, regarding
the basic Eq. (12) with its complex conjugated equation, after
the averaging under the assumption about a fermion-boson
factorization (15)–(18), one can solve the resulting integral
equation with respect to the complex transmission amplitude
t(ε) of �̂− fermions. Particularly, after the integrating over dt ′,
taking the limits t → ∞ and α → 0, it is possible to derive
the following basic formula for the effective transmission
coefficient R(ε) from Eq. (19),

R(ε) = 4�̃2

[(1 + B̃2+)(1 + B̃2−) + 2�̃2(1 + B̃+B̃−) + �̃4]
. (20)

Here

B̃± = B̃±(ε,β) =
+∞∑

l=−∞

�0Fl(β)γl±(ε)

	2
l − ε2

,

(21)

�̃ = �̃(ε,β) =
+∞∑

l=−∞

�0Fl(β)γ (ε)

	2
l − ε2

,

with

γl±(ε) = 1

2

[(
γ 2

L − γ 2
R

γ 2
L + γ 2

R

)
	l ± ε

]
,

(22)

γ (ε) =
(

γLγR

γ 2
L + γ 2

R

)
ε,

and

Fl(β) = e−λ2(1+2nb)Il(λ2
√

nb(1 + nb))e−βl/2. (23)

In Eqs. (21) and (23) Il(z) is the Bessel function of the lth
order of the imaginary argument. In Eq. (22) 	l = 	̃ − h̄ω0l

is the energy of the lth resonance.
Formulas (20)–(23) generalize the results obtained by

Komnik and Gogolin in Ref. 9 on the case of a strong
electron-vibron interaction in the QD and represent the basic
result of this paper. Indeed, in the case when λ = 0 (i.e., in the
absence of electron-vibron interaction) our general formula
(20) is reduced to the basic result [Eq. (10)] of Ref. 9 for the
general case of asymmetric tunnel barriers (γL �= γR). One
can see that the influence of the asymmetry of tunnel barriers
on the transport properties of the system is concerned mostly
in the renormalization ∼ηRS(ε) of the effective transmission
coefficient RS(ε) for the symmetric junction (γL = γR). Here
η � 1 is the asymmetry parameter η = (γL/γR)2 if γL < γR ,
and η = (γR/γL)2 if γR < γL.

In the asymmetric case, as one can see from Fig. 1(a), the
“zero-bias” (with l = 0) resonance has a dip at ε → 0, if 	̃ =
0. This dip shrinks to zero, when ε = 0 at the arbitrary value
of asymmetry parameter η < 1. The presence of such a dip at
ε → 0 in the case of even small asymmetry of tunnel barriers is
the manifestation of the Kane-Fisher effect7,14 at ε → εF = 0.
This is because at η �= 1 the specific particle-hole symmetry
in our model breaks down, and more common Luttinger liquid
physics is revealed.

Thus, all distinguishing features of the model can be
obtained by considering a more simple case of symmetric
tunnel barriers γL = γR . In this case our central expression
(20) for the effective transmission coefficient RS(ε) takes a
very transparent form,

RS(ε) = 1

1 + (S(ε))−2
, (24)

with

S(ε) =
+∞∑

l=−∞

ε�0Fl(β)

	2
l − ε2

. (25)

Evidently, in the absence of electron-vibron interaction
(λ = 0), formulas (24) and (25) reproduce the result for
resonant tunneling between Luttinger liquid leads with g =
1/2 in the symmetric case.9,10,15 Particularly, at 	̃ = 0 and
λ = 0, Eq. (24) turns into the usual Breit-Wigner expression
for transmission coefficient of noninteracting electrons. This
is because, in that case the mapping on the model with Fermi
leads (g = 1) becomes valid.9

Now let us analyze formulas (24) and (25) in a more general
situation, where λ �= 0. It is worth pointing out that by means
of the physically transparent method formulated above, one
could also solve the model with Fermi leads (the g = 1 case)
for the strong electron-vibron interaction λ � 1 (see Ref. 13).
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(a)

(b)

FIG. 1. (Color online) The effective transmission coefficient R(ε)
of Eq. (20) as the function of energy (in the units of h̄ω0), for
different values of the asymmetry parameter η = �L(R)/�R(L), in
comparison with the effective transmission coefficient (red dotted
line) obtained in Ref. 13 [Eqs. (22) and (23)] for the g = 1 model
with symmetric tunnel barriers (η = 1). In Fig. 1(a) the zero-bias peak
is depicted for η = 1 (symmetric case), blue solid line; η = 0.4, blue
dotted line; η = 0.1, magenta dotted line; and η = 0.025 (strongly
asymmetric case), black solid line. In Fig. 1(b), in addition to
the zero-bias peak, two “polaron-assisted” peaks are shown. These
peaks describe resonant Andreev-like polaron-assisted tunneling.
Here η = 1 (symmetric case), blue solid line; η = 0.1, magenta dotted
line; and η = 0.025 (strongly asymmetric case), black solid line. In
Figs. 1(a) and 1(b) we also put λ2 = 1, �0/h̄ω0 = 0.25.

In particular, for the symmetric junction (γL = γR = γ0),
eliminating the exotic coupling terms d̂+X̂+γ0�̂

+
− (0) and

γ0�̂−(0)X̂d̂ from the tunnel Hamiltonian (6), and applying
the entire scheme described above, one could reproduce the
central results [Eqs. (22) and (23)] of Ref. 13, obtained there by
means of more rigorous mathematical methods [full counting
statistics (FCS) and the Keldysh technique]. This is because the
central approach of Ref. 13 (the linear diagram resummation
scheme) is included into our polaronic approximation of
Eqs. (15)–(18).

One can see that in the general case (if λ �= 0 and 	l �= 0),
the expressions (24) and (25) differ from corresponding
formulas [Eqs. (22) and (23)] of Ref. 13 for the case of
Fermi leads (with g = 1). Indeed, in our model a special
symmetry ρ̂L(R)(x) ↔ −ρ̂R(L)(x) of charge density excitations
on different physical leads takes place. Such symmetry makes

electrons from different leads be strongly correlated in the
vicinity of QD and implies a special (Andreev-like) type of
resonant tunneling in the system at 	l �= 0 and γL = γR . In the
latter case, a perfect transmission of the electron through QD,
along the infinite one-dimensional system [when in Eq. (19)
one has RS(ε) = 1], can be treated as the total Andreev
reflection of spatially nonlocal �̂− fermion from the boundary
at the point x = 0 back to the half-infinite one-dimensional
(1D) system with x < 0. During such a reflection the incoming
particle-type excitations are transformed into the opposite-
moving excitations of the hole type at the same energies.

The energy-dependent effective transmission coefficient
of Eq. (20) is plotted on Fig. 1 for different values of
the asymmetry parameter η = �L(R)/�R(L), in comparison
with one, calculated in Ref. 13 for the case of Fermi leads
(g = 1) and symmetric tunnel barriers. It is essential that
in the resonant tunneling limit at T = 0 all obtained from
Eqs. (20) and (24) resonant peaks describe elastic processes
of a perfect transmission of the polaron at resonant energies
εl = h̄ω0l, l = 0,±1,2, . . .. In such processes, one or more
virtual vibrons are emitted and, then absorbed, leaving the
fermionic subsystem of the QD in the same quantum state
as before the polaron transmission.13 On the other hand, in
the opposite case of sequential tunneling (�L,R � T � h̄ω0)
only the inelastic tunneling, accompanied by the emission of
real vibrons, produce small (satellite) resonances, while all
virtual processes result only in the “polaronic narrowing” of
all resonances.5,6

Regarding the off-resonant energies, h̄ω0 
 |εl − 	l| 

�0, one may conclude from Fig. 1(b) that the transmission coef-
ficient (20) shrinks to zero at these energies if λ2�0 
 T → 0.
This is the consequence of destructive interference of different
virtual polaronic states on the QD.13 As one can see from
Fig. 1, although a perfect transmission at zero temperature
in both cases (for g = 1/2 and g = 1 models) takes place at
the same energies εl = h̄ω0l, l = 0,±1,2, . . .., the electron-
electron interaction in the g = 1/2 case sufficiently narrows
all “polaron-assisted” (with l � 1) resonances, as compared to
the case of Fermi leads (g = 1). This fact clearly shows, that
although a resonant polaron-assisted tunneling is possible for
both systems with g = 1 and g = 1/2 leads, the details of such
processes are different in these two cases. Indeed, the resonant
tunneling in the g = 1/2 case requires from the electrons
placed on different leads to be in definite strongly correlated
quantum states during the process of resonant tunneling. These
strong correlations entangle physical electrons from different
leads in the vicinity of QD. Obviously, the probability of the
resonant state, which involves more than one physical electron
(when g = 1/2) at resonant energy far from εF = 0 (i.e., in the
case l � 1) is expected to be much smaller than the probability
of the resonant state, which involves only a single electron
of the same energy (when g = 1). To estimate this effect
quantitatively for the case �0 � h̄ω0 � eV, one could perform
the effective transmission coefficient of Eq. (24) at resonant
energy εl near the lth polaron-assisted resonance (l � 1) as
follows:

RS0(εl) 	 �2
eff(l)

�2
eff(l) + (	l − εl)2

, (26)
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FIG. 2. (Color online) The effective widths of different polaron-
assisted resonances from Eq. (27) (in the units of �0) for symmetric
junction (η = 1), as the functions of electron-vibron interaction λ2.
Blue solid line corresponds to effective width of polaron-assisted
resonance for the g = 1/2 model with l = 1, while the brown solid
line represents the resonance with l = 3 for the same model. Red
dotted line and magenta dotted line correspond to widths of polaron-
assisted resonances with l = 1 and l = 3, obtained for the g = 1
model.13 (Here we put �0/h̄ω0 = 0.1.)

with the following approximate expression for the effective
width �eff(l) of each lth (l = 1,2, . . . ,lm) resonance,

�eff(l) ≈ �l/2

1 + �l/(2	l)
. (27)

Here,

�l = �0e
−λ2

(λ2)l/ l! (28)

is a low-temperature asymptotic for the effective width of the
lth resonance in the case of Fermi leads13 and 	l = h̄ω0l,
(	̃ = 0), 0 � l � lm, with the maximal number of vibrons
emitted lm 	 [eV/h̄ω0]. This is because, at T ,�0 � h̄ω0, there
are no processes of absorption of any “external” vibrons and
since the energies of incoming quasiparticles are limited by
eV at T � eV.

The important consequence of Eqs. (27) and (28) is that
the obtained relative additional narrowing �eff(l)/�l due to the
electron-electron interaction is found to be strong (∼1/2) and
approximately the same for all polaron-assisted resonances.
This feature seems to be specific only for the considered
model and might help us in the distinguishing of this important
g = 1/2 case among other experimental realizations of 1D
molecular transistors. This is clearly illustrated by Fig. 2,
where the effective widths of polaron-assisted resonances are
plotted (in the units of �0), as functions of electron-vibron
interaction λ2 for different values of l � 1 in both g = 1/2
and g = 1 cases.

From Fig. 2 one can easily observe two main effects. First
of all, one can see the described above effect of the additional
narrowing of all polaron-assisted resonances, due to specific
electron-electron interaction in the system with g = 1/2 LL
leads. As it could be seen from Eq. (27), this effect is strong
enough at l � 1. Besides that, for strong electron-vibron

interaction (if λ � 1) in both g = 1/2 and g = 1 cases a
strongly nonmonotonic behavior of the effective resonance
widths (with the maximum at λ2 	 l) as functions of λ2 takes
place. The latter phenomenon is a well-known consequence
of the fermion-boson factorization procedure and is caused
by the interplay of the effects of vibron-assisted tunneling
and polaronic blockade.8,13 Although our general formulas
are valid in the limiting case λ = 0 for both resonant and
off-resonant tunneling, for λ → 0 (λ �= 0), the predictions of
our method coincide with the results of perturbation theory
calculations in small λ2 for each l �= 0 only while T/�0 

(λ2/l)l . Thus, it is reasonable to conclude, that if λ � 1 (but
λ �= 0) the case T/�0 � (λ2/l)l � 1 (λ → 0, T = 0) is not
described by means of our method.17

Finally, let us consider the behavior of the differential
conductance GS0(V ) = dĪ (V )/dV for our model in the
simplest symmetric case (γL = γR). At high temperatures
λ2h̄ω0 � T , when all thermally activated (vibronic) channels
contribute to electron tunneling, the polaronic blockade in
the zero-bias peak is totally lifted21,22 and we get a standard
high-temperature asymptotic ∼G0�0/T for the conductance
of the g = 1 model with noninteracting electrons (here G0 =
e2/h is the conductance quantum). This is because at high
temperatures all specific quantum features of both electron-
electron and electron-vibron interactions are “smeared out”
by thermal fluctuations. Much more interesting is the case
of low temperatures, where T � h̄ω0. In this case, a main
contribution to effective transmission coefficient (24) goes
from the resonant terms of the form (26). Therefore, one could
obtain a following low-temperature asymptotic for differential
conductance GS0(V ),

GS0(V ) = G0

lm∑
l=0

1

2

{
tanh

(
	l − eV + �eff(l)/2

2T

)

− tanh

(
	l − eV − �eff(l)/2

2T

) }
. (29)

In Eq. (29) 	l = h̄ω0l is the energy of the lth resonant
level (l = 0,1,2, . . . ,lm) (here the “detuning” term 	̃ is
insufficient, due to the existence of the gate voltage, thus
we put it to be equal to zero). The effective widths �eff(l)

are from Eq. (27), and the maximal number lm of vibrons
emitted is of the order of the integer part of the quantity
[eV/h̄ω0]. The resulting differential conductance (29), as the
function of bias V , exhibits a sequence of sharp resonances
at eV = eVlm = 	lm (lm = 0,1,2, . . ..). The main contribution
to the sum in Eq. (29) goes from the resonant term with
lm 	 [eV/h̄ω0] if T � h̄ω0 � eV, and from the term with
lm = 0 if T � eV � h̄ω0, correspondingly. Thus, differential
conductance (29), as the function of resonant values of bias
eVlm 	 	lm can be estimated for these two cases as follows:

GS0(Vlm) ≈ G0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tanh
[

�0
4T

e
| eVlm

h̄ω0
| ln | λ2h̄ω0

eVlm
|−λ2]

,

(T � h̄ω0 � eVlm 	 h̄ω0lm);

tanh
[

�0e
−λ2

4T

]
lm=0,

(T � eVlm � h̄ω0).

(30)
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Evidently, Eq. (30) describes both resonant (where T �
�eff(lm)), and sequential (where T 
 �eff(lm)) regimes of po-
laron tunneling as well. Indeed, if eVlm = eV0 � h̄ω0 (lm =
0) then GS0(V0) ∼G0�0e

−λ2
/T . This formula reproduces

a well-known5,6,8,12 �λ/T scaling for the low-temperature
conductance of the g = 1 model, with the renormalized bare
level width �λ = �0e

−λ2
, as the result of the polaronic (Frank-

Condon) blockade in the elastic channel of tunneling. For
differential conductance (eVlm 
 h̄ω0) in the sequential tun-
neling limit T 
 (1/2)(λ2/lm)lm�0e

−λ2
, (lm 	 [eVlm/h̄ω0] 


1 and T � h̄ω0 � eVlm) the situation is quite similar. The
expected 1/T scaling of differential conductance (30) in this
case will be the following:

GS0(Vlm) ≈ G0

(
1

2

)
�0e

−λ2

T

(
λ2h̄ω0

eVlm

) eVlm
h̄ω0

eVlm	h̄ω0lm

. (31)

Formula (31) gives us the “heights” of low-temperature
differential conductance peaks in the sequential tunneling
limit, at resonant values of bias: eVlm 	 h̄ω0lm, lm = 1,2, . . . .

in the case of symmetric junction. The only difference between
expression (31) and the corresponding limiting case for the
g = 1 model is a prefactor ∼1/2 in Eq. (31). It results in a
sufficient suppression of all satellite (with lm � 1) peaks, as
compared to the g = 1 case. Naturally, the above expansion
of Eq. (30) for the sequential tunneling limit coincides (up
to a prefactor ∼1/2) with the result of perturbation theory
for the g = 1 model in small �0 (�0 � T ), or in small λ2 at
nonzero temperatures (if λ2 � T/�0).5,6 Naturally, this fact is
because of the mapping on the g = 1 model. A novel feature
here is that such mapping is not complete any more for energies
ε 	 eV � h̄ω0, even in the sequential tunneling limit. Only for
eV � h̄ω0 the correspondence between the g = 1/2 and g = 1
models with strong electron-vibron interaction is complete.
Of course, the standard perturbation theory in small �0 for
the SET weakly coupled to the LL leads with arbitrary g7,8,16

(0 < g � 1) is unable to give a correct description for our case,
since it does not take into account strong correlations between
tunneling events, which are specific for g = 1/2 system.

As regards to the resonant tunneling limit T � �eff(lm) in
Eqs. (29) and (30), the interplay of the effects of electron-
electron correlations and strong electron-vibron interaction
becomes nonperturbative in this case. In particular, in this limit
there is no significant difference between the peaks of differen-
tial conductance, corresponded to polaron-assisted (with lm �=
0) and zero-bias (with lm = 0) channels of tunneling. Besides
that, strong interactions of both types (electron-electron and
electron-vibron) lead to a sufficient narrowing of all polaron-
assisted (with l �= 0) resonances at λ2 � 1, whereas in the
zero-bias channel (with l = 0) only a polaronic narrowing
takes place at λ � 1. In the zero-temperature limit T → 0,
one will have a perfect resonant tunneling of a polaron with
conductance quantum GS0(Vlm) → G0 at resonance values of
bias eVlm = 	lm , (lm = 1,2, . . .), but only if 0 � T/�0 �
(λ2/lm)lm , (T → 0). Thus, evidently, the zero-temperature
perturbation theory in small λ2 (see Ref. 17) does not describe
the considered case of resonant polaron-assisted tunneling in
the g = 1/2 model at T = 0.

On the other hand, in the case of strong electron-
vibron interaction (λ � 1) at low, but nonzero temperatures

FIG. 3. (Color online) The low-temperature differential conduc-
tance GS0(V ) (in the units of conductance quantum G0) from Eq. (29),
as the function of bias V (in the units of h̄ω0/e), for different values of
electron-vibron interaction λ2. Here the blue solid line represents the
case λ2 = 4, while the red dashed line corresponds to λ2 = 6, and the
brown solid line describes the case λ2 = 8 (-strong electron-vibron
interaction). Also we put here h̄ω0/T = 8 and �0/h̄ω0 = 0.1.

(0 < T/�0 � 1) as well, as in the discussed above sequential
tunneling limit, one can observe in the model the domination
of vibron-assisted electron transport [see Eqs. (29) and (30)
and Fig. 3]. This effect was predicted earlier,8,16 but only
in the limits of perturbation theory in �0. On Fig. 3 the
differential conductance of Eq. (29) is plotted (in the units of
G0), as the function of bias voltage V for the “intermediate”
region of temperatures, between the “resonant” and the
“sequential” tunneling regimes (when T/�0 � 1), in the case
of strong electron-vibron interaction (λ � 1). One can see
from Fig. 3 that polaron-assisted (with l �= 0) resonant peaks
strongly dominate the zero-bias (with l = 0) peak for all
values of λ � 1. Therefore, the highest peak in Fig. 3 is
always polaron-assisted and corresponds to the case where
eV = eVlm 	 λ2h̄ω0, for every given value of λ2 (λ � 1).

In the zero-temperature limit, the resonant average current
through the system will be the following:

Ī0(Vlm) ≈ e

h
�0e

−λ2

[
lm(Vlm)∑

l=0

(λ2)l

l!

]
lm	[eVlm/h̄ω0]

, (32)

with the bias-dependent effective width of the highest vir-
tual resonant level. It is evident from Eq. (32), that zero-
temperature average current as the function of bias reaches
its maximal value Ī0max = (e/h)�0 in the limit eV/h̄ω0 →
∞, when all possible bias-activated virtual channels of
polaron-assisted tunneling are opened and, as a result, the
polaronic blockade is totally lifted.21,22 Thus, it is reasonable to
conclude that, in the case of symmetric junction, the additional
narrowing of Eq. (27), as well as the existence of perfect
transmission of a polaron at the sequence of resonance energies
h̄ω0l, l = 0,1,2, . . . in the zero-temperature limit (T → 0),
may serve as the manifestation of the novel (Andreev-like) type
of polaron-assisted resonant tunneling of strongly interacting
electrons. We think that the resonant tunneling of such a type is
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unique for the considered g = 1/2 model with strong electron-
vibron interaction and represents a consequence of strong
correlations between the electrons from different physical
leads of the system.

V. SUMMARY

In the above, the resonant tunneling of strongly interacting
electrons through a single-level vibrating quantum dot (QD)
is considered for the case of strong electron-vibron interaction
in the QD. The corresponding transport problem is solved
in terms of the scattering of noninteracting fermions, which
involve the “entangled” electrons from both physical leads of
the system in the vicinity of QD. As a result, the general
formulas for the effective transmission coefficient and for
differential conductance are obtained. It is found, that in
the case of symmetric junction, for strong electron-vibron
interaction, at sufficiently low and zero temperatures, a novel
(Andreev-like) type of resonant polaron-assisted tunneling
is realized. It turns out that some features of this type of
tunneling are quite similar to ones for the noninteracting
electrons (in the case of Fermi leads, where g = 1); especially,
such resonant tunneling is characterized at zero temperature
by perfect transmission (with conductance quantum) of a
polaron at the sequence of resonance voltages eVlm ≈ h̄ω0lm,
lm = 0,1,2, . . .. The effective widths of all polaron-assisted
(with lm �= 0) resonances depend nonmonotonically on the
electron-vibron interaction constant λ, with the maximum at
λ2 	 lm for each lmth (lm �= 0) resonance. This feature leads

to the domination of polaron-assisted electron transport in
the case of strong electron-vibron interaction. But, despite
partial mapping on the noninteracting (g = 1) case, the most
important difference between resonant tunneling in both g =
1/2 and g = 1 models is the additional narrowing of the widths
of all polaron-assisted resonances in the g = 1/2 model, as
compared to the g = 1 case. This relative additional narrowing
is found to be strong and roughly the same (∼ 1/2) for all
polaron-assisted resonances with lm � 1.

Such a novel feature points out on a special mechanism of
polaron-assisted resonant tunneling, which seems to be unique
for the considered g = 1/2 model. Particularly, in the case of
g = 1/2 LL leads, the resonant quantum state of certain energy
represents the “entangled” quantum state of the electrons
from both physical leads of the system. As a consequence,
physical electrons from different leads of the system become
strongly correlated, due to the special type of electron-electron
interaction. It is relevant that the revealed additional narrowing
(roughly in 1/2 times) of all polaron-assisted resonances,
as compared to the case of Fermi leads, may serve as the
important distinguishing feature of such a special g = 1/2
type of 1D electron system.
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