
PHYSICAL REVIEW B 85, 075308 (2012)

Curvature effects on valley splitting and degeneracy lifting: Case of Si/Ge rolled-up nanotubes
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We numerically investigate electronic states, degeneracy lifting, and valley splitting in the conduction band of
rolled-up Si/Ge nanotubes. Results are derived from a tight-binding model where the input equilibrium positions
of the atoms are obtained by means of continuum elasticity theory. We find three inequivalent � valleys. The
lifting of their energy degeneracy and the spatial distribution of the corresponding states are interpreted in terms of
nonbiaxial strain and confinement effects. The intervalley interaction in Si/Ge nanotubes is studied as a function
of the thickness and curvature of the tube. We demonstrate that the curvature affects the intervalley interaction,
in close analogy to what happens with the application of a perpendicular electric field in planar quantum well
Si/Ge systems.
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I. INTRODUCTION

In the last years, significant research efforts have been
oriented toward the exploitation of curvature effects to tailor
the mechanical, electronic, transport, and optical properties of
different classes of nanostructures, as, for instance, carbon
nanotubes,1,2 nanocorrugated thin films,3–8 and rolled-up
nanotubes.9–15 In particular, rolled-up nanotubes, originat-
ing from the self-scrolling of a differentially stressed film
when released from a substrate, have recently proven to
be particularly promising for the design of new functional
devices.12,13,16–21 With the aim of engineering the electronic
properties of the tubes, a preliminary theoretical study is of
the uttermost importance. To the best of our knowledge, only
recently a few theoretical studies of the electronic properties
of rolled-up tubes have appeared,7,22–25 but they all use a
continuum approach (k · p with effective mass), while a
complete atomistic calculation of the electronic band structure
over the whole Brillouin Zone (BZ) capturing all the relevant
features is still lacking.

In epitaxial systems, the strain field resulting from the
scrolling accounts for the most important effects on their
electronic properties.26,27 In particular, in tube systems, the
nonbiaxial strain field resulting from the scrolling breaks the
equivalency of the two orthogonal lines locally perpendicular
to the radial direction, which would be otherwise degenerate
in the case of planar geometry (for lattices with tetragonal
symmetry). Moreover, for Si material, it is expected that
the confinement of carriers perpendicular to the tube radius
produces a valley splitting (VS) interaction, where the interface
or the confining potential produces a coupling between states
which are degenerate in the bulk. This effect has a long-
lasting story since the first measurements in Si inversion
layers,28 followed by studies in quantum well and superlattice
structures29–35 and, more recently, in other low-dimensional
structures, as for instance quantum dots.36 It is well known that
Si-based systems showing VS effects have been indicated as
promising candidates for quantum computation schemes,37,38

since Si is expected to have longer spin coherence times for
conduction electrons than GaAs. For this reason VS has been

exploited in conjunction with Zeeman splitting to produce
(in suitably designed systems) a nondegenerate ground state,
hence removing the main source of decoherence. Moreover, it
has been shown that the magnitude of the VS can be tuned by
means of an external electric field.30,31,34

In this paper, we calculate the electronic structure of
Si/Ge rolled-up nanotubes in the whole conduction band,
and compare it with the one of corresponding planar slab
structures. We discuss how the main features of the lowest
conduction bands originate from the bulk band structure in
terms of folding, strain, and confinement effects. On this basis,
the lifting of the degeneracy of the � valleys along the different
directions in k space is explained. We then investigate the
intervalley interaction of the lowest conduction states and
how the VS is influenced by the tube curvature, showing
that the effects of the nonuniform strain due to the curvature
are analogous to those caused by a superimposed gate field
in an equivalent planar quantum well (QW) structure. Our
theoretical description is based on the continuum elasticity
theory (CET)39 for the geometry optimization of the atomic
positions in the tube; the electronic properties in the whole BZ
are calculated by means of an atomistic sp3d5s∗ tight-binding
(TB) Hamiltonian model, appropriately adapted to describe
the discrete cylindrical symmetry.

This paper is organized as follows. We first introduce in
Sec. II basic elements for the real- and k-space description
of the tube. This allows us to interpret the effects due to the
nonuniform strain field induced by the curvature on the band
structure of the tube. Some technical details on the role of
the strain field are examined in the Appendix. In this section
we discuss also how the equilibrium position of the atoms are
numerically evaluated and introduce the tight-binding (TB)
model adopted for the calculation of the electronic states. In
Sec. III we present the band structure of a typical tube system,
focusing on the main features of the conduction band (CB)
and on the intervalley splitting of the states at its bottom. A
comparison with similar results obtained in the corresponding
planar slab structure are also reported. Finally we discuss
the effects of the tube thickness and curvature on the valley
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FIG. 1. (Color online) (a) Sketch of a rolled-up Si-Ge tube; R1 is
the radius of the first shell of Si atoms. (b) Chosen unit cell for the tube
with two atoms on each plane (yellow balls) evidencing the discrete
rotational symmetry around the z axis. Each red ball represents an
atom that can be reached from the appropriate yellow ball on the same
shell by means of discrete translations along (or discrete rotations
around) z. (c) Conventional unit cell for a bulk diamond lattice (black
cube) with eight atoms (yellow balls), from which the curved tube
cell (b) originates. The green shaded region represents the primitive
cell of the diamond lattice, containing only two atoms. Planes defined
by couples of first-neighbor bonds are shaded in pink (see text).

splitting (VS) for the lowest-energy conduction states. Our
conclusions are drawn in Sec. IV.

II. SYSTEM DESCRIPTION AND METHOD

We consider SiNSi /GeNGe rolled-up tubes [see sketch in
Fig. 1(a)], i.e., tubes composed of NSi monolayers (MLs) of
Si and NGe MLs of Ge, grown along the [001] direction. Inner
and outer dangling bonds are passivated with H atoms. Here
a ML is defined as a single atomic plane orthogonal to the
[001] direction, so that the distance between the MLs in the
unstrained bulk crystal is a0/4, where a0 is the unstrained
lattice constant of the crystal. By choosing the unit cell of
Fig. 1(b), we are assuming perfect periodic conditions not only
for translations of integer multiples of az along the z axis, but
also for rotations of integer multiples of θ0 = 2π/Nθ around
the z axis (Nθ gives the number of cells along θ ). The above
assumption of cylindrical symmetry is a good approximation
of the real rolled tube structure for what concerns the study of
its electronic properties and in particular of the strain effects
on the band structure, since even the smallest tubes considered
here have Nθ > 550 and then one expects that the electronic
spectrum is not substantially modified by the presence of the
overlap rolling region sketched in Fig. 1(a).

In order to calculate the electronic properties of the tube
by means of the TB method, we need the atomic positions as
input parameters. To this aim, taking the relevant parameters
(elastic constants and lattice constants) from Ref. 40, we

minimize the total elastic energy of the system exploiting the
linear CET for the curved geometry.41,42 The outcomes of
the calculation are the tube radius and the local strain status,
defined in cylindrical coordinates by the diagonal components
of the strain tensor ερρ(ρ), εθθ (ρ), εzz(ρ), which are functions
of the radial coordinate ρ (the off-diagonal components of
the strain tensor are zero). We stress that, since the lattice
constant aSi of Si is smaller than aGe, and we are neglecting
intrinsic surface effects such as reconstructions,11 we find that
the Si region is in the inner side of the rolled-up tube, as
shown in Fig. 1(a). The tube radius and the strain tensor
determine the atomic positions within the chosen unit cell
of the tube [Fig. 1(b)], which can be obtained from the bulk
undistorted diamond-lattice cell shown in Fig. 1(c). To exploit
the cylindrical symmetry of the tube, it is convenient to choose
as a unit cell the conventional cell [black cube of Fig. 1(c)],
specified by the fundamental vectors along the [100], [010],
[001] directions. The tube cell of Fig. 1(b) can then be obtained
associating the x (y) direction to the ρ (θ ) direction, curving
the cell, and then stacking NSi + NGe atomic shells along ρ.
Note that the unit cell of Fig. 1(c) contains two atoms (yellow
balls) for each plane orthogonal to the growth direction (x),
and the same holds for the tube cell of Fig. 1(b). All other atoms
(red balls in the figures) can be reached by lattice translations
or rotations. In the tube unit cell, the radial coordinates of
the shells are indicated by Ri , i = 1,2, . . . ,NSi + NGe and are
evaluated from the ερρ(ρ) strain component obtained from
the CET calculation. In particular, R1 represents the radial
coordinate of the most internal shell of Si atoms. In Ref. 41 it
has been shown that to first order in the strain field, it makes
no difference for the radius if az takes a relaxed value or it
is equal to aSi. Moreover, we have verified that the structural
relaxation of the tube along the z axis does not significantly
change the atomic positions, the electronic spectrum, and the
values of the valley splitting of the doublet at the bottom of
the conduction band. For these reasons, throughout this work
we assume az = aSi.

To interpret the band structure of the tubes, we first
describe how the eigenenergies of the electrons in bulk Si
fold into the BZ of the tube. The BZ of the (minimal)
diamond-lattice primitive cell [green cell in Fig. 1(c)] is the
truncated octahedron,43 represented by black solid lines in
Fig. 2(a). On the other hand, if we consider the conventional
cell of Fig. 1(c) containing eight atoms, the corresponding BZ
results to be the cube shaded in Fig. 2(a) with vertices at the
L points. Therefore, to map the bulk band structure obtained
in the usual (minimal) representation into the one presently
adopted, one has to fold the truncated octahedron into the
shaded cubic region of Fig. 2(a). In the case of a planar slab
with finite thickness in the x direction (i.e., an “unrolled” tube),
kx is no longer a good quantum number and the corresponding
BZ is obtained from the projection of the three-dimensional
bulk BZ onto the yz plane, reducing to the two-dimensional
dark rectangle of Fig. 2(b). Similar considerations also apply
for the tube geometry, and the BZ in the (kθ ,kz) space is again
the rectangle sketched in Fig. 2(b). Note, however, that in
this case the discrete rotational symmetry implies that kθ can
assume only Nθ integer values. For the following, it is useful
to define three high-symmetry points in the tube BZ: the �

point at the origin, and the � and Z points located at the zone
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FIG. 2. (Color online) (a) Brillouin zone (black lines) of the bulk
diamond primitive cell. The shaded cube with vertices at the L points
is the BZ corresponding to the conventional unit cell (see text). The
dashed lines are a guide to the eye. (b) Folding of the bulk BZ onto the
two-dimensional BZ (dark orange rectangle) for the planar slab, or
equivalently for the tube structure. (c) Ellipsoids of constant energy
around the six � minima of the bulk Si (or Ge) crystal structure. The
two conjugated �ρ minima (red) fold into the � point of the 2D BZ
of the tube. (d) Schematic of the CB electronic structure of a Si-Ge
tube, adopting the same colors of panel (c). The two conjugated �ρ

valleys fold into � and their degeneracy is resolved due to the VS
interaction. The two conjugated �θ valleys remain unfolded and do
not interact; the same holds for the �z valleys.

boundaries along the kθ and kz directions, respectively; the
band structures reported in the following are plotted along the
�-�-Z path.

The different valley minima in the conduction band of
the tube can be qualitatively interpreted in terms of the
bulk electronic structure and its modifications due to band
offsets, confinement, folding, and strain effects. In particular,
the lowest conduction-band states of the tube originate from
the � minima along the six �-X lines of the strained Si and Ge
layers [the X point is indicated in Fig. 2(a)]. Indeed, we have
verified that for the geometric configurations investigated in
this paper, the states of the tube that originate from bulk L and
� minima are much higher in energy (this fact is due both to
the band offsets at the Si/Ge interface and to the low � and L

confinement masses). To illustrate the folding of the � states in
the case of a finite slab or a tube with periodicity along y ≡ θ

and along z we show in Fig. 2(c) the corresponding ellipsoids
of constant energy. It is then apparent that the four �θ and �z

minima remain unfolded, while the two conjugated �ρ valleys
fold at �. Moreover, for what concerns the confinement effects,
we notice that the six � states have different effective masses
along the confinement direction x ≡ ρ [see Fig. 2(c)]. In fact,
the confinement mass of the �ρ states is larger than the mass
of �θ and �z states, and then a smaller confinement energy
for the (folded) �ρ electrons is expected.

It is important to include in this picture also strain effects
which significantly contribute in determining the relative
positions of the different valley minima. In the investigated
Si/Ge tubes, the strain component εzz is constant and negative

in the Ge region (compressive strain) whereas it vanishes
in the Si layers (since az = aSi). On the other hand, the
strain field along the θ and ρ directions is layer dependent.
For typical geometries, εθθ (ρ) [ερρ(ρ)] increases (decreases)
almost linearly with ρ except at the interface and has a negative
(positive) discontinuity at the Si/Ge interface, as discussed
in detail in the Appendix for an exemplificative case. Thus,
although �z and �θ electrons have the same confinement
mass, we expect that the respective energies differ in the curved
geometry, becoming equal only in the limit case R1 → ∞
(planar slab). For the interpretation of the results discussed in
the following it is worthwhile to remind here that a compressive
(tensile) component of the strain along the z or θ directions
determines a lowering (rise) in energy of the � states along
the same directions. Finally, analogously to what happens
in QW systems,28,29,38,44–46 we expect that the two (folded)
�ρ conjugated valleys in the ρ direction interact through
the interface potential. Consequently, due to this intervalley
interaction, the degeneracy of the two �ρ minima is lifted and
a doublet of states originates at the � point, where for the
chosen unit cell the bottom of the conduction band is located.
From all the previous considerations, we expect for the lowest
CB of the tube a structure similar to that schematically shown
in Fig. 2(d).

The quantitative evaluation of the tube band structure and
of the valley splitting effect was performed by means of a
TB model with sp3d5s∗ orbital basis set and first-neighbors
interactions. We chose the curved unit cell discussed above
with the appropriate periodic boundary conditions along the
z and θ directions. Since in this work we are concerned with
the conduction-band states only, we can safely neglect the
spin-orbit interaction. For the hopping and self-energies in Si
and Ge we adopted the TB parametrization of Niquet et al.,47

which also provides the interaction parameters for the mixed
Si-Ge bonds at the interfaces. Moreover, the parametrization
of Ref. 47, unlike most of the works reported in the literature,
allows us to take into account strain effects due to generic
(i.e., not biaxial) strain fields, as it is the case in the curved
geometry studied here. For the dangling bonds at the innermost
and outermost layers, which are passivated with hydrogen
atoms, we used the TB parameters provided by Zheng et al.48

More technical details of the method will be reported in a
forthcoming paper.

III. CONDUCTION BAND AND VALLEY SPLITTING
OF SIGE NANOTUBES

As an exemplificative case, in Fig. 3 we show the
conduction-band structure of a tube with NSi = 16 and NGe =
9, which are realistic values for the growth of rolled-up Si/Ge
tubes.9,10,49 The corresponding equilibrium radius of the inner
Si layer is R1 = 49.1 nm. For comparison, in Fig. 3 the
band structure of a planar Si16/Ge9 slab, obtained in the limit
R1 → ∞, is also shown. In both band structures, near-gap
states are related to the three kinds of � valleys as schematized
in Fig. 2(d); note the VS doublet due to the �ρ states folded
at the BZ center. At higher energies, the bands become very
complicated due to the presence and mixing of states with
different symmetries, excited states, etc. Nevertheless, the
adoption of a TB Hamiltonian with a rich basis set ensures
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FIG. 3. (Color online) Conduction-band structure of a Si16/Ge9

tube (black solid lines) along the �-�-Z path. The internal radius of
this tube is R1 = 49.1 nm. The band structure of a Si16/Ge9 planar
slab (R1 → ∞) grown on a Si buffer is also reported with red dashed
lines.

that in the whole energy range of Fig. 3 our description of the
electronic states remains accurate.

The main difference between the band structures of the
planar slab and of the tube shown in Fig. 3 is the shift to
higher energy of the �θ valley of the tube with respect to the
corresponding states in the slab. Indeed, as already mentioned,
while in the slab the �θ and �z valleys have the same energy,
this degeneracy is lifted in the tube by the different strain
field along the θ and z directions. In fact (see discussion in
the Appendix) the band-edge effective potential of the �θ

electrons, which has a triangular shape in the radial direction,
is determined by the strain field and in particular by the εθθ (ρ)
component along θ . This strain potential confines the lowest
�θ states in the Si region of the tube [see Fig. 5(d)] and a larger
confinement energy with respect to the �z states is obtained.

We now focus on the VS of the lowest doublet at �.
The typical features predicted for the intervalley interaction
in Si/SiGe QW systems are present also in this context,
but peculiar differences related to the curved geometry are
predicted. In fact, the curvature determines the strain potential,
which in turn influences the VS with effects analogous to
the application of a static electric field along the growth
direction in planar Si/SiGe QW systems. To clarify this
point we report in Figs. 4(a)–4(c) the squared moduli of
the wave functions calculated at the � point, as a function
of the radial coordinate, for three tubes with NSi = 40 and
different curvatures, corresponding to NGe = 22, 85, and 123,
respectively. Both the ground and the first excited VS doublets
are visible in the panels. Note that in these plots the ρ

coordinate extends mainly in the Si region [central white area
in Figs. 4(a)–4(c)], where the wave functions are different
from zero. In fact, the Ge region (located at the right side of
the plots) acts as a barrier since the CB offset at the Si/Ge
interface is about 0.7 eV; the layer of H atoms passivating the
inner surface is on the left of the Si region. Due to the curvature,
in the Si region ερρ(ρ) decreases with ρ. We have numerically
verified that the dependence of ερρ(ρ) on ρ is almost linear.
It follows that also the band-edge profile for the �ρ electrons
varies linearly and has the shape of a triangular potential [see
Figs. 4(a)–4(c)] just as it happens when a static electric field
is applied to a planar QW structure along its growth direction.
For fixed NSi, the change of NGe is then a way to tune the
curvature and then the gradient of ερρ(ρ), which controls the
band bending or equivalently the effective vertical electric

FIG. 4. (Color online) (a)–(c) Squared moduli of the wave
functions, calculated at the � point, for tubes with NSi = 40, and
internal radius R1 = Rmin, R1 = 2Rmin, and R1 = 3Rmin, respectively.
The corresponding values for NGe are 22, 85, 123. The triangular
band profiles for the �ρ valleys are also shown. The white central
area represents the Si region; the left (inner side) is made of the H
passivation layer; the Ge region in on the right side. (d) VS of the
ground-state doublet at � as a function of NSi. The value of NGe is
chosen in order to obtain the minimum internal radius of the tube
R1 = Rmin (black dots), R1 = 2Rmin (red triangles), or R1 = 3Rmin

(blue squares); see text. The lines, connecting points with even or
odd NSi, are only a guide to the eye. The vertical orange line indicates
the value of NSi for which panels (a)–(c) are calculated. (e) VS of the
ground-state doublet at � as a function of the tube internal radius R1,
for three different values of NSi. Each curve starts from the minimum
attainable value for R1. The black dots labeled A, B, and C refer to
the systems of panels (a), (b), and (c), respectively.

field. Indeed, very large values of NGe correspond to large
values of the tube radius R1 and then to modest strain gradients
or equivalently band-edge bendings. On the other hand, when
NGe → 0 we obtain a Si planar slab, i.e., R1 → ∞. We thus
expect that, for each value of NSi, there is a unique value of NGe

that minimizes the tube radius: we call this minimum radius
R1 = Rmin, which of course depends only on NSi.

Since the wave functions corresponding to the ground-state
doublet are confined mainly in the Si region, it is interesting
to plot the VS of the ground-state doublet at � as a function
of NSi, for the minimum radius R1 = Rmin [black squares in
Fig. 4(d)]. For comparison in Fig. 4(d) we also show the VS
data calculated for two and three times this value (red and blue
data points, respectively). Again, the results of Fig. 4 can be
interpreted in close analogy to VS data obtained for planar
QW systems under different bias (see, for instance, Fig. 1 of
Ref. 34). For sufficiently small values of NSi we find the typical
oscillations of the VS amplitude as a function of the number of
monolayers in the well region. This oscillating behavior and
the related period are in agreement with similar results reported
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for rectangular Si/SiGe QW systems with sharp interfaces, for
which the VS amplitude has been predicted45 to oscillate as
a function of NSi as (NSi + 2)−3| sin[(NSi + 2)ϕmin]|, where
ϕmin depends on the position of the valley minimum k0 along
the � line of bulk silicon. Note that in Fig. 4(d) the VS
oscillations have been emphasized connecting even and odd
NSi data points as a guide to the eye. In fact, the valley splitting
depends strongly on the details of the interfaces defining the
confinement region. Since bonds connecting first neighbors
on adjacent planes are rotated by 90◦ when moving from one
ML to the next one [see pink shaded regions of Fig. 1(c)],
the direction of the H-Si bonds at the inner interface of the
Si region is parallel (orthogonal) to the direction of the Si-Ge
bonds at the outer interface if NSi is even (odd). This fact
introduces a phase shift between the VS oscillations calculated
for even and odd NSi. Note also that the minima of the valley
splitting oscillations in Fig. 4(d) do not reach zero, as it is
instead the case for Ge or Si quantum wells between SiGe
barriers.34 The rationale for this is that the two Si interfaces
in the tube are not identical, being formed by H atoms on one
side and Ge atoms on the other side.

Another relevant aspect of the VS is the damping of the
oscillations observed in the region of large NSi of Fig. 4(d).
This effect is due to the fact that upon increasing the tube
thickness, the confinement energy is reduced and therefore the
wave function becomes completely confined by the triangular
potential profile. The consequence is that the electron wave
functions vanish before reaching the (sharp) left Si-H interface.
Then, the VS does not depend anymore on the exact value
of NSi but only on the slope of the band profile, i.e., the
strength of the effective electric field. For large values of
NSi , VS oscillations are completely damped (see Fig. 4), with
amplitude decreasing as N−1

Si . To justify this fact, we remind
that for triangular confining potentials, the VS amplitude is
proportional to the slope of the triangular potential.30,50 In our
case, this slope is eventually determined by the requirement
R1 = Rmin; we have numerically verified that this condition
determines a slope of the strain profile, dερρ(ρ)/dρ, which is
indeed proportional to N−1

Si .
From Fig. 4(d) we deduce that damping of the VS

oscillations can also be obtained for fixed value NSi but
decreasing R1 [vertical orange line in Fig. 4(d)]. To gain further
insight in the role of curvature on VS we show in Fig. 4(e) the
VS as a function of the internal radius R1, for three fixed
values of NSi. As before, the internal radius is evaluated for
different values of NGe by minimization of the elastic energy.
The main trend in Fig. 4(e) is an increase of the VS for small
tube radii, while for R1 → ∞ the VS tends to the asymptotic
value obtained for the planar slab. Indeed, for small R1 values
the confining potential is again triangular and the slope of
the band-edge potential increases as R1 diminishes [see also
Figs. 4(a)–4(c)]. The corresponding effect in biased triangular
Si/SiGe QW systems is the (almost) linear dependence of
the VS on the strength of the applied field. Note again that
for small R1 the wave functions tend to become insensitive
to the actual well width, as apparent from the superposition of
the red and green curves in the left portion of Fig. 4(e). On the
contrary, for large radii, the strain is reduced, so that the band
profile tends to a square potential well and both the H-Si and
the Si-Ge interfaces are felt by the electron wave functions.

Consequently, as already discussed, we expect a significant
dependence of the VS on the parity of NSi, and in fact for large
R1 the VSs of the tubes with NSi = 58 and 59 tend to different
values.

IV. CONCLUSIONS

In conclusion, we have theoretically and numerically
investigated the electronic band structure of Si/Ge rolled-up
nanotubes. Equilibrium tube geometry has been obtained
minimizing the total elastic energy of the tubes by means of
the continuum elasticity theory. The electronic states have been
calculated by a nearest-neighbor sp3d5s∗ tight-binding model,
suitably adapted to the cylindrical geometry. The adopted
atomistic approach allows us to carefully consider strain
conditions and interface effects and provides a description
of the electronic states over all the Brillouin zone of the
tube. In particular, we have presented here the multivalley
structure of the conduction band and the intervalley splitting
of the tube levels at its bottom. Our results show that the �

band-edge states are inequivalent. This degeneracy removal
has been interpreted in terms of the confinement effects and
of the action on the electronic spectrum of the nonbiaxial
strain fields induced by the tube curvature. We have also
discussed the importance of the curvature in affecting the
valley splitting magnitude, demonstrating that the role of the
curvature-induced strain on the VS is analogous to that of
a vertical electric field applied to an equivalent quantum well
planar structure. This effect is to be attributed to the presence of
a strain gradient for ερρ(ρ) along the ρ direction associated to
the curvature which, in the Si and Ge regions, is approximately
constant. The results of this work will be useful for a deeper
understanding of the physical mechanisms that determine the
electronic states in rolled-up tubes, toward the design of novel
devices with tailored functionality.
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APPENDIX: STRAIN EFFECTS IN THE CONDUCTION
BAND FOR THE CASE OF THE Si16/Ge9 TUBE

In order to better understand the role of strain on the
electronic states of SiGe rolled-up nanotubes, and the spatial
localization of the different kinds of � states, we discuss in
this Appendix an exemplificative case, analyzing the tube with
NSi = 16 and NGe = 9 and internal radius R1 = 49.1 nm,
whose band structure is shown in Fig. 3. In particular, we
show in Fig. 5 the diagonal components of the strain tensor
as a function of the radial coordinate ρ, and the near-gap
conduction wave functions for the three � valleys, with the
corresponding band-edge profiles. The band edges are defined
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FIG. 5. (Color online) (a)–(c) Diagonal strain components εθθ (ρ),
ερρ(ρ), εzz(ρ), respectively, as a function of the radial coordinate ρ, for
a Si16/Ge9 tube with internal radius R1 = 49.1 nm. (d)–(f) Band-edge
profiles (thick lines) for the �θ , �ρ , �z valleys, respectively, and
square moduli of their wave functions, calculated at the k points
corresponding to the valley minima (see Fig. 3).

as the energies of the respective states in a bulk system with a
diagonal strain tensor with (in general) different strains along
x, y, and z. These strains are taken equal to the local strain
components in the tube. Note that the band-edge profiles that
we show are just a guide for the interpretation of the results, but
are not directly used in the calculation of the electronic states
of the system, which instead result from the diagonalization
of the TB Hamiltonian.

In the θ direction, the lattice constant is related to the radius
ρ by aθ = Cρ, where C is a suitable positive constant obtained
from the structural relaxation. Then, the strain increases
linearly with ρ, and has a sudden (downward) jump at the Si/Ge
interface since εθθ = aθ −ai

ai
where i is Si or Ge depending on

which layer we are considering [see Fig. 5(a)]. The behavior
of the ερρ component is expected to be opposite the one of
the εθθ component due to the Poisson’s effect. Indeed, ερρ(ρ)
has a decreasing behavior with an upward discontinuity at the
inner interface [see Fig. 5(b)]. Finally as already discussed we
assume az = aSi: therefore the εzz component is identically

zero in the Si portion of the tube, while it assumes the value
aSi−aGe

aGe
≈ −4% in the Ge region [see Fig. 5(c)].

In Figs. 5(d)–5(f) we show the band-edge profiles for the
�θ , �ρ , �z valleys, respectively, and the square modulus of
the corresponding wave functions, calculated at the k points
corresponding to the valley minima (see Fig. 3).

Since a compressive (tensile) diagonal component of the
strain along a given direction determines a lowering (rise) in
energy of the band edge along the � line in the same direction,
each band-edge profile as a function of ρ follows closely the
behavior of the corresponding strain component, as long as
we are within the same layer. At the interface, the jump of the
strain produces a discontinuity in the band profile that has to
be added to the conduction-band offset between the � bands
of Si and Ge. Since this offset is positive for Ge with respect
to Si, the net result is that the discontinuity almost cancels
out for the �θ and �z profiles, since both εθθ and εzz have
a downward discontinuity. On the contrary, the discontinuity
of the �ρ profile is enhanced since the ερρ discontinuity is
positive when going from Si to Ge.

The three band-edge profiles reported in Fig. 5 determine
the behavior of the respective wave functions. Due to the
large slope of the �θ profile, its lowest-energy wave function
is mainly confined in the Si region, while the �z state is
instead almost evenly distributed over the whole tube [compare
Figs. 5(d) and 5(f)]. The narrower region in which the �θ wave
function is localized results in a larger confinement energy
even if both states have the same confinement mass; as a
consequence, the bottom �θ state is at a higher energy than
the bottom �z state. For what concerns the �ρ valley the low-
energy states, and in particular the ground-state valley splitting
(VS) doublet, are strongly confined in the Si layer due to the
large discontinuity of the �ρ profile at the Si/Ge interface.
For this reason, in Sec. III we discuss the VS as a function
of NSi, since the number of Ge layers influences the VS only
through its control of the tube radius and as a consequence
of the slope of the band-edge profile in the Si region.
Finally, for an experimental nondestructive determination of
the local structure and strain state of the tubes, we refer to
Ref. 51.
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