
PHYSICAL REVIEW B 85, 075205 (2012)
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The optical spectra of Cu-III-VI2 chalcopyrite compounds display rich excitonic features in the fundamental
direct bandgap energy region. The energy structure of excited excitonic states reported in the literature are
reexamined using a calculation of the eigenstates of the hydrogenic problem in the context of the anisotropic
band structure and the anisotropy of the dielectric constant. We find some remarkable agreements as well as
inconsistencies in the literature that we attribute to the following reasons: (i) the difficulty to interpret fine
structure-splitting data in noncubic semiconductors, and (ii) the more severe difficulty growing these materials
with high enough quality. We finally propose some values that match very well with recent proposals and
integrate the trend between Rydberg energies and bandgap values for the binary inorganic zincblende and
wurtzite semiconductors.
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I. INTRODUCTION

Tremendous activity is currently dedicated to the investiga-
tion of the optical properties of chalcopyrite semiconductors,
in line with huge potential applications in the area of solar cell
devices, for instance.1 These materials are ordered phases of
the II-IV-V2 or I-III-VI2 kinds. The structure of chalcopyrite
is closely related to that of zincblende.2 Bulk chalcopyrite
semiconductors have been intensively studied in the 1970s
for their potential nonlinear optical properties, as reviewed
by Shay et al.3 Their band structures and physical criteria
that lead to a stable ordered phase instead of a random
distribution of cations have been reviewed by Zunger.4 From
the macroscopic point of view of mineralogy and using its
language, chalcopyrites are uniaxial materials; their optical
properties are different when observed with light polarization
parallel or perpendicular to the reversed fourfold symmetry
axis of the crystal. The unit cell is twice as large, reflecting
an alternation of II (resp. I) and IV (resp. III) ions replacing
III (resp. II) cations in adjacent cells of the III-V (resp. II-VI)
zincblende lattice and leading to space group I 4̄2d instead of
F 4̄3m. The reduction of the cubic symmetry to a quadratic
one leads to a splitting of the threefold p-type spinless valence
band states. From this splitting derives the anisotropy of the
optical response of chalcopyrite semiconductors. In the context
of a semiclassical description, most of the anisotropic optical
response can be interpreted as Rowe et al.5 did it in the context
of a quasicubic model for the description of the p-type valence
band. This simple, two-parameter model early proposed by
Thomas et al.6 to account for the band structure of hexagonal
wurtzite II-VIs, extended to a three-parameter version, was
later successfully used to interpret the optical properties of
strained-layer wurtzitic nitrides.7–9 The oscillator strength of
a given optical transition, in the context of this band-to-band
model, is proportional to the amount of I px >, I py > and I
pz > states in the expansion of the eigenstates of the valence

band.10 It has been also shown by Elliot11 that including direct
long-range Coulomb excitonic effects leads to substantial
modification of the dielectric constant (and subsequently of
the oscillator strength) compared to the band-to-band model.
More recently, it was finally reported that adding short-range
spin exchange interactions could furnish a dramatic correction
to the oscillator strength of excitonic lines in strained layer
zinc-oxide epitaxies.12

The calculation of excitonic binding energy in the context of
anisotropic semiconductors has been accurately performed for
GaSe13 and MoS2,14 for wurtzitic II-VIs,15 and more recently
for group III element nitrides,16 but it was never addressed to
date in the case of chalcopyrite, for which the determination
of exciton binding energies remains fairly chaotic. It is the
aim of this paper to propose a method which permits us
to discriminate between relevant values and inappropriate
ones. For the sake of the completeness, we have to reference
the very elaborate calculation which includes complementary
ingredients, such as valence band mixing effects proposed
by Rodina et al.,17 in case of wurtzitic materials, which is
very interesting. However, to be applicable, it requires the
knowledge of a lot of material parameters as yet untested in
the chalcopyrites.

II. METHODOLOGY

The effective mass equation for excitons then reads:
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The eigenvalues and eigenstates of Eq. (1) are Eβ and ψβ(r),
respectively. They depend on several quantum numbers which
are represented by β. The fundamental constants are the
electron mass at rest m0, the in vacuo dielectric constant ε0, and
the elementary electron charge e. We define the dimensionless
reduced masses parallel and perpendicular to the direction of
the z axis as μ‖ and μ⊥ respectively, and we note ε‖ and ε⊥ as
the corresponding values of the relative dielectric constants.
The reduced effective mass (in unit of electron mass at rest)
and dielectric constant tensors (unit of ε0) are:

¯̄μ =
⎛
⎝μ⊥

μ⊥
μ‖

⎞
⎠ , (2)

¯̄ε =
⎛
⎝ε⊥

ε⊥
ε‖

⎞
⎠ , (3)

respectively. The integration of Poisson’s equation in the
context of the anisotropic dielectric constant gives to the
potential energy term the untrivial expression:13–18⎡

⎣− e2

4πε0
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⎤
⎦ . (4)

Our method consists in first rearranging this equation by
making the following substitutions: x ′ = x, y ′ = y, and

z′ =
√

μ‖
μ⊥

z. Second, the anisotropy parameter γ is defined

as: γ = ε⊥
ε‖

μ⊥
μ‖

. Further, defining the reduced Rydberg energy:
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2α2

2
μ⊥
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, where c is the in vacuo light velocity and α

is the fine structure constant (α = e2

4πε0h̄c
≈ 1

137 ), the in-plane

radius ρ ′ =
√

x ′2 + y ′2, and the cylindrical Laplacian 
(ρ ′,
z′), we are left solving a simple second-order differential
equation:[


(ρ ′,z′) − 2√
ρ ′2 + γ z′2

]
ξβ(ρ ′,z′) = αβξβ(ρ ′,z′). (5)

In this equation, where the length unit used for ρ ′ and z′

is an effective Bohr radius a⊥ = 4πε0
√

ε⊥ε‖h̄2

m0μ⊥e2 , the eigenvalues

read αβ in units of R∗ and the eigenstates are the ξβ(ρ ′, z′)
quantities.

The evolution of the long-range Coulomb energies com-
puted vs anisotropy γ by several methods is reported in Fig. 1.
From the abundant literature of the field, we have selected three
different approaches. The utilization of a linear expansion
of the eigenstates in terms of the hydrogenic-like states, as
proposed by Baldereschi et al.,14 gives results plotted using
diamonds. Second, we have selected results of the calculation
performed by Muljarov et al.,19 using hyperspherical functions
and a perturbation approach. Finally, we give the results
we recently obtained by direct resolution of the problem
using the finite elements method.16 Rather than reproducing
complicated mathematical calculations, we prefer to utilize
a method used worldwide by engineers, namely, the finite
element methods. In addition, we adapted the hydrogen atom
problem directly offered by the COMSOL R© software. This
approach gives very rapidly accurate results, as shown in

FIG. 1. (Color online) Plot of the effective Rydbergs vs
anisotropy parameter γ obtained for states even under reflection
in a plane through the z′ axis by the finite element method (FEM,
colored/gray dots), the tight-binding approach using hydrogenic
functions (TBHF, open diamonds), and the perturbation theory using
hyperspherical functions (PTHSF, red/dark gray crosses). According
to the cylindrical symmetry, the eigenstates have to be classified
in accordance with the irreducible representations of the cylindrical
group Dh

∞. The degeneracy in terms of angular momentum is lifted
away from γ = 0 and γ = 1, which gives the splitting between 3s and
3d0 (we have kept here the notations of spherical symmetry for the
sake of the simplicity, which is not appropriate in the strictest sense).

Fig. 1, and it can treat on a same footing both flattened
and elongated excitons by just changing the value of the
anisotropy parameter γ . Our recent successful treatment of
excitons in wurtzitic semiconductors where both situations
can be encountered for indicates to us that the method should
be extended to chalcopyrite materials without any problem.
Last, COMSOL R© is very convenient since it directly offers the
possibility to plot the geometric representations of the graphs
of the different wave functions either with 2D or 3D aspects.16

More information can be read in Fig. 1.
First, we note the evolution of the 1s exciton binding

energy, which increases when γ → 0 and decreases when
γ > 1 {note that in the case of both three-dimensional (γ =
1) and two-dimensional (γ = 0) situations the energy spectra
of hydrogenic series are degenerated vs angular momentum
values. They can be expressed as a function of the principal
quantum number n as R

n2 and R

[n− 1
2 ]2 ,respectively20}.

Second, we note that the degeneracy of the n = 3 state with
the value of the angular momentum is suppressed; different
energies are computed for 3s and 3d0 states when γ 
= 1, as
expected by group theory.14–16 We have restricted the plot in
Fig. 1 to eigenstates that are even under reflexion in a plane
through the z′ axis, which are the states that are radiative, but
we wish to emphasize the fact that the calculation leads to
splittings between 2s-, 2p0-, and 2p±1-like states (eigenstates
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FIG. 2. (Color online) Plot of the 1s-2s splitting energy relative
to the 1s binding energy vs anisotropy parameter γ (blue/gray dots,
upper plot). Plot of the 2s-3s splitting energy relative to the value of
the 1s-2s splitting energy vs anisotropy parameter γ (red/dark gray
dots, lower plot).

that are odd under reflexion in a plane through the z′ axis)
when γ 
= 1. The oscillator strength of 3d0 states remains very
small14 compared with the oscillator strength of 3s ones. The
evolution of the splitting between 1s and 2s exciton states rel-
ative to the value of the 1s binding energy is interesting to plot
when the anisotropy changes. In the case of a spherical (γ =
1) situation, this splitting is 0.75 times the binding energy,
while it becomes 0.745 when γ = 0.5 and 0.793 when γ =
2. The evolution of this splitting as well as the evolution of
the 2s-3s splitting relative to the 1s-2s one has been plotted
in Fig. 2. This information is crucial for the determination
of the exciton binding energy in anisotropic semiconductors
from the measurement of the splitting between 1s, 2s, and
3s excitonic features after a step-by-step procedure. First, the
value of the 2s-3s splitting expressed relatively to the value of
the 1s-2s splitting permits us to obtain the value of γ , as shown
in Fig. 2. This value of γ will further lead to the values of the
excitonic binding energy E1s from the evolution of E1s−E2s

E1s
vs

γ . Of course, the procedure only holds when three excitonic
transitions are measured, which is the Achille’s heel of the
method. Measuring the excitonic splittings in semiconductor
materials is not so easy. It requires single crystals of high
structural quality with values of the radiative inhomogeneous
and nonradiative homogeneous broadenings of the excitonic
lines that are smaller than the excitonic splittings.

III. DATA ANALYSIS

A. CuInS2

To illustrate these considerations from a more quantitative
point of view, let us consider, for instance, CuInS2, for which
there are measured excitonic features at 1.5355, 1.5494, and
1.5532 eV for the 1s, 2s, and 3s excitons, respectively.21

The ratio between the value of the 2s-3s splitting relative
to the 1s-2s splitting equals 0.274, which according to our
calculation gives an anisotropy parameter of about 0.1, a value
much smaller than what was reported for wurtzitic nitrides16

(between 0.74 and 1.8), wurtzitic II-VI compounds (values

between 0.75 and 1.16),15 III-VI compounds like GaSe (0.6),14

and layer compounds like MoS2 (0.2 and 0.3).14 For such
an anisotropy, the 1s-2s splitting is about 68% of the 1s

binding energy (see Fig. 2). From the 13.9-meV value of the
1s-2s splitting measured for CuInS2, we calculate an exciton
binding energy of 20.48 meV, a value significantly higher
than the proposed value (18.5 meV), which was obtained in
the context of a spherical description of the excitonic series.
This 20.5-meV value is in agreement with the quenching of
photoluminescence with temperature.22 Another group23 had
earlier reported energies at 1.5322, 1.5743, and 1.5821 eV
measured by wavelength-modulated reflectivity. The ratio we
obtain for the value of the 2s-3s splitting relative to the 1s-2s

splitting equals 0.185, leading to an anisotropy parameter of
0.05. Relative to the 1s binding energy, the 1s-2s splitting
equals about 63% of the exciton binding energy, which gives
and exciton binding energy at 67 meV. The disagreement
between the two groups resides in the interpretation of the
1.5494 line attributed to the n = 2 state of the A exciton by the
first group, which is measured at 1.5496 eV, and the 1s state of
the B exciton by the second group. Polarization experiments21

plead in favor of a weak exciton binding energy,22 and we have
to disregard the proposal of a strong excitonic binding energy23

in reason of an unfortunate misinterpretation of extremely rich
experimental spectra.

B. CuGaS2

Excitonic transitions associated with n = 1, 2, and 3
excitons were measured at 2.4995, 2.525, and 2.530 eV in
CuGaS2.23 The ratio we obtain for the value of the 2s-3s

splitting relative to the 1s-2s splitting equals 0.196, leading
to an anisotropy parameter of 0.45 and a 1s-2s energy
splitting of 74.2% of the exciton binding energy. Using the
hydrogenic model, the authors suggest a 33-meV exciton
binding energy. We obtain 34.4 meV in this sample, which
is a 4% enhancement. Shirakata et al.24 had earlier reported an
excited state photoluminescence peak at 2.525 eV (see Fig. 4
of Ref. 24). Excitonic transitions have also been measured in
CuGaS2 at energies of 2.5011, 2.5303, and 2.5357 eV for the
1s, 2s, and 3s excitons, respectively (see Table I in Ref. 25).
The 1s-2s splitting equals 29.2 meV, and the 2s-3s splitting
equals 5.4 meV. The ratio we compute equals 0.185, leading to
an anisotropy parameter of 1.05. The exciton binding energy
can be obtained using the hydrogenic model, which leads to
38 meV.

C. CuGaSe2

Four fluorescence maxima have been reported in the flu-
orescence spectrum of CuGaSe2

26 at 1.7241, 1.7500,1.7550,
and 1.7568 eV, which were attributed to the n = 1, 2, 3, and
4 states of the exciton, respectively, leading to a 5-meV value
for the 3d0-2s splitting and a 6.8-meV value for the 3s-2s

splitting. The ratio 6/25.9 equals 0.262, which corresponds to
an anisotropy parameter of about 0.12 and a 1s-2s splitting
of 67% of the exciton binding energy. The exciton binding
energy is then estimated at about 39 meV for the A exciton,
which constitutes a 1-meV increase with respect to the initial
proposal.
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FIG. 3. (Color online) Plot of the excitonic binding energy vs
fundamental direct bandgap for most common III-V and II-VI semi-
conductors (blue/gray dots) and for the chalcopyrite semiconductors
we study here (open red/dark gray dots).

We remark that Bauknecht et al.27 and Luckert et al.28

alternatively proposed values in the 14-meV range, in agree-
ment with the initial proposal by Chichibu et al.29 This large
scattering of data is the evidence of severe material problem
issues or misinterpretation of experimental data which we have
not understood, but a proposal will be made later.

D. CuInSe2

Nemerenco30 has reported detailed investigation of the
excitonic reflectivity of CuInSe2 crystals. The energies of
the three lowest excitonic transitions attributed to the �7

valence band (A excitons) are 1.0369, 1.0662, and 1.0716 eV.
The value of the 1s-2s splitting is 29.3 meV, and the value
of the 2s-3s splitting is 5.4 meV. The ratio we compute
equals 0.185, leading to an anisotropy parameter of 1.05. The
corresponding value of the exciton binding energy is 39.1 meV.
The energies of the three excitonic transitions attributed to
the �6 valence band (B excitons) are 1.0431, 1.0703, and
1.0754 eV. The value of the 1s-2s splitting is 27.2 meV, and
the value of the 2s-3s splitting is 5.1 meV. The ratio we
compute equals 0.19, leading to an anisotropy parameter of
0.6, which gives an exciton binding energy at 1.34 times the
1s-2s splitting; that is to say at 36.5 meV. These interpretation
are challenged by several recent experimental investigations,
such as photoluminescence quenching with temperature,31,32

magnetophotoluminescence,33 which all plead in favor an
exciton binding energy sitting at about 8 meV. Our opinion
is that interpretation of data in Fig. 1 of Ref. 30. has to be
rehandled in particular since transition at 1.05 eV has not been
attributed and is most probably due to erroneous valence band
ordering. According to selection rules, Chichibu et al.31 had
proposed a valence band ordering of the sequence �6-�7-�7,
which is the analogous mutatis mutandis to the unstrained
GaN case8 for CuInSe2, at variance with the proposal of
Ref. 30.

At this stage, we try to propose values which are from
bona fide compatible to the trends reported for many semi-
conductors. The 36–39-meV values of the binding energies

proposed for CuInSe2 are particularly large compared with
the trend in semiconductors reported in Fig. 3, where we
have plotted the excitonic binding energies vs bandgap. The
exciton binding energies in binary semiconductor compounds
are plotted in blue, while the values for Cu-(Ga,In) VI2

chalcopyrite ones are plotted in red. We have also included
for completeness the CuAlS2 value that is believed to sit near
70 meV34 and the AgGaSe2 one proposed at 16 meV.35 The
figure phenomenologically indicates that the exciton binding
energy cannot sit at 39 meV for CuInSe2 but is located in the
7.5–8-meV range instead. Similar arguments plead in favor of
a 15-meV value for the excitonic binding energy in CuGaSe2.
The figure also indicates that, given a bandgap energy, the
largest binding energy in the series of fourfold coordinated
semiconductors are observed in the case of chalcopyrite
semiconductors because the valence bands of chalcopyrite
semiconductors studied here are raised due to the repulsion
from the Cu-3d band. Thus the universal line in Fig. 3 is
down-shifted horizontally.

IV. CONCLUSIONS

In conclusion, we have interpreted the splittings attributed
to different excitonic levels previously measured in a large
variety of chalcopyrite semiconductors which have furnished
sufficient information to do so. We find either a good agreement
or a very bad one. However, careful analysis of the literature
permits us to keep the correct values for some materials in
some cases and to reject the proposed ones for others. Such
a discrepancy is attributed to sometimes moderate material
quality, to the difficulty of identifying a given transition in
the context of the complexity of the valence band structure
(there are both crystal and field spin-orbit splittings in these
quadratic materials) when excited states associated with a
given valence band may overlap with ground states of another
one. However, selection rules that govern the optical transitions
could sometimes permit discrimination between relevant and
questionable proposals. We anticipate that modern epitaxial
methods should rapidly furnish high layers with different strain
fields and orientations in order to allow measuring optical
properties with clear selection rules, as it has been the case
for nitrides. It is worthwhile noticing, however, that with the
improvements of the crystalline qualities, materials parameters
will be better known. At that time, it will be obviously nec-
essary to escape from the calculation of the excitonic binding
energies in the context of the one-band approximation. More
elaborate approaches, including the full valence structure,
crystal field splitting, and spin-orbit interactions, like the one
proposed for wurtzitic semiconductors by Rodina et al.,17

will be applicable in order to reach a final understanding of
exciton binding energies in chalcopyrite semiconductors. Then
the question of the exciton binding energies, including their
dependencies with strain, will be rapidly and unambiguously
solved in chalcopyrites.
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