
PHYSICAL REVIEW B 85, 075204 (2012)

Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors
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A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating
the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the
magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field
precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow
and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the
threshold hopping distance is analogous a phenomenological two-site model’s branching parameter, and that the
distinction between slow and fast hopping is contingent on the threshold hopping distance.
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I. INTRODUCTION

The prospect of spintronics1–3 in organic materials4–6 has
generated much interest in recent years. Spin-orbit coupling,
a bane to long spin lifetimes, can often be much weaker
in organic than in typical inorganic semiconductors used
for electronics, due to small atomic numbers in the organic
constituents. Affordable manufacturing and chemical tun-
ability also add to the appeal of studying spins in organic
systems. In contrast to inorganic semiconductors, organic
semiconductors are typically disordered and therefore their
transport mobilities are much smaller. Despite this apparent
drawback, organic semiconductors are currently used in a
variety of electronic devices;7 understanding the behavior
of spins in these systems offers the possibility of adding
magnetic functionality to these and future devices. Since
spin transport properties are intertwined with the electrical
transport properties,8 features distinct from spin transport
through inorganic semiconductors2,9 are expected in organics
due to their very different electronic transport properties.

In parallel with these developments, researchers10–19 have
studied a magnetic field effect in a diverse array of organic
materials, the so-called organic magnetoresistance (OMAR).
Reference 18 reviews this effect. It exists in nonmagnetic
materials and is characterized by magnetoresistances of
10–20 % at fields as small as 10 mT. These properties suggest
applications in magnetic sensors and organic displays.20

OMAR has resisted explanation by typical magnetoresistive
effects such as Lorentz force deflection, wave function shrink-
age, and weak (anti-)localization.21 Several recent models of
OMAR have been proposed. Most involve spin-dependent
processes originating from hyperfine interactions and can be
classified as either unipolar16 or bipolar12,13 depending on
whether the OMAR mechanism relies on a single carrier type
(e-e or h-h interactions) or two carriers types (e-h interactions).

Due to the ubiquitous disorder in organics, methods to
calculate transport properties in inorganic semiconductors
fail for their organic counterparts. One common technique
to evaluate transport in organic materials is percolation
theory.22,23 Recently a model24 has been developed of OMAR
which explicitly takes into account hopping transport for a
single carrier in a disordered material using the theoretical
description of percolation theory. Here we extend the work
of Ref. 24 by deriving, from a semiclassical theory of the

hyperfine interaction, similar results that apply within any
hopping rate regime.

The percolation model proposed in Ref. 24 and further
developed here reduces the complex phenomena of spin-
dependent hopping to a tractable problem of r-percolation
with an effective density of hopping-accessible sites that is
modulated by magnetic fields through singlet-triplet transi-
tions. We focus on unipolar charge transport since several
analytic results are obtainable; near the end we assess how the
general features and insights of this model may shed light on
bipolar magnetoresistance mechanisms. Inclusion of energetic
disorder precludes simple results and is not treated here,
although similar MR results and trends should be expected.

OMAR in unipolar transport was studied theoretically by
Bobbert et al. in Ref. 16 and then further developed in Ref. 25
within a so-called “two-site” model. In the two-site model
the resistance is determined by a single “bottleneck” pair
of sites and a phenomenological branching parameter which
allows carriers to circumvent the bottleneck if the bottleneck
resistance becomes too large. An additional feature is that
the two-site model requires a very large electric field to
force hopping in a single direction. Our analysis naturally
accounts for bottleneck avoidance within percolation theory
(no branching parameter needs to be introduced) and large
electric fields are unnecessary.26 More recently, the same
researchers have reexamined their two-site model numerically
by solving the stochastic Liouville equation.27 Our model is
in qualitative agreement with the two-site model on several
points as we discuss throughout this paper.

Our paper is organized as follows: In Sec. II our theory is
presented; we describe how transport is changed by processes
that change the relative spin orientation of polaron pairs.
Section III shows how the MR is calculated from our theory.
Section IV identifies the hyperfine interaction as the MR
mechanism and treats it semiclassically. In Sec. V the special
case of fast hopping is examined because analytic results can be
obtained. In Sec. VI, MR is investigated for arbitrary hopping
rates. Section VII examines how our theory may pertain to
bipolar organic devices.

II. MODEL

A spatially disordered organic system can be modeled
as a network of random resistors as described by Miller
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and Abrahams for doped inorganic semiconductors.28 The
inter-site hopping resistance between two sites, i and j , is given
by Rij = R0e

2rij /� where rij is the intersite separation and � is
the localization length of a carrier at each site. For simplicity
the localization length is taken to be uniform throughout the
site array. Percolation theory offers a method to calculate
the bulk resistance in such a random resistor network.22,29,30

A critical resistance (distance) Rc (rc) is the smallest re-
sistance (or equivalently the smallest separation) that still
allows for an infinitely large network of bonds sets the bulk
resistance. This percolation length is governed by a bonding
criterion:

Bc = 4π

∫ rc

0
r2Ndr, (1)

where N is the density of sites and Bc ≈ 2.7 in three
dimensions is a number that determines the average number
of bonds each site in the percolating network must connect
with.22 This “r-percolative” transport model is valid when the
intersite separation is large and temperatures are high, and
has been observed in organic semiconductors.31,32 We do not
treat here smaller intersite separations and lower temperatures
where energy disorder is vital to understanding transport. In
principle, the theory here can be generalized to treat energy
disorder.

Figure 1 displays how the Pauli exclusion principle affects
spin transport in hopping conduction; double occupation at a
single site is forbidden if their spins form a triplet state (T), but
permissible if in the singlet state (S).16,33 Following many of
the earlier works on OMAR,18 we use an alternate terminology
from Ref. 24, and describe carriers in conjunction with their
localizing sites as polaron quasiparticles. An arbitrary spin
localized at a site (a polaron) is unable to hop to another
polaron’s site if the polaron pair’s (PP) spin state is T, but
can hop to site if the spin pair forms an S state just as it
would to an unoccupied site, as schematically shown in Fig. 1.
The respective concentrations of these three types of sites
are NT , NS , and N0. Furthermore, spin statistics dictates that

finalfinal

initial

XX

triplet polaron pair singlet polaron pair

spin-flip

no spin-flip

FIG. 1. Spin blocking in transport. Top: The initial situation for
hopping a triplet polaron pair (left) and a singlet polaron pair (right).
Bottom: On the left, the spin-blocked carrier has made the more
difficult further hop to an unoccupied site. On the right, the carrier
successfully hops to the occupied nearest neighbor since the pair has
a singlet spinor. The carrier concentration is dilute enough that sites
near the polaron pair are unoccupied.

NS = 1
4N1 and NT = 3

4N1 with N1 being the concentration of
singly occupied sites. The concentration of carriers is small
enough that a polaron encountering a bipolaron is extremely
unlikely.

In physical systems, double occupation of a site costs
a Coulomb interaction energy U . Within the r-percolation
picture, U > 0 inhibits double occupation and reduces any
spin-dependent magnetoresistive effects. However, in more
realistic systems when energetic site disorder is larger or on
the order of U , the effect of U is not as straightforward.
In such a case, hopping does not occur between sites with
identical energies but between sites with energy difference
U . Surprisingly, theory for MR in which there is also energy
disorder entails larger MR effects for positive nonzero U than
for U = 0.34 Since we only consider positional disorder we
assume U = 0 to avoid an unphysical inhibition of double
occupation.

Since bipolaron formation is forbidden in the T states, the
concentration of sites is effectively reduced to N ′

eff = N − NT

since only these sites are accessible to a hopping polaron. In
the absence of T-S transitions (or spin flips in the language of
Ref. 24), we would then rewrite the bonding criterion of Eq. (1)
with N → N ′

eff . A PP’s hopping dynamics is thus strongly
dependent on T-S transitions since bipolaron formation is
completely blocked for T states and allowable for S states. The
effective reduction of site density entails that in general longer
hops need to be achieved and an overall increase in resistance
is expected as shown in Fig. 2(a). If the total concentration
of singly occupied sites is fixed at N1, the probability of a
successful hop to an occupied site (hopping to an occupied site
happens with probability N1/N) is 1/4, independent of spin
effects. So, one-quarter the time the hop will be successful and
the total density of sites for which successful hops take place
is N0 + NS . So as before the density of unrestricted hopping
sites is N ′

eff . We must now account for the situation that occurs
the other three-quarters time in which the hopping attempt to a
singly occupied site is foiled due to occupation by a T-forming
spin, which occurs at NT sites.

We introduce the possibility that the spin-blocked path can
be opened by a process that alters the PP’s spin state, namely
transitions from T to S. The probability for the blockade to be
lifted by the time the next hopping attempt takes place, τh, is
pT →S . We thus modify the effective density of T sites to be
[1 − pT →S]NT . The bonding criterion becomes

Bc = 4π

∫ rc

0
r2Neffdr, (2)

where further r dependence lies in

Neff = N − NT + pT →SNT (3)

through the hopping time τh. Our model displays an interplay
for a PP of two events: waiting for the transition to S to hop
to the nearest site versus disassociation by hopping to a site
farther away.
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FIG. 2. (Color online) Spin blocking in percolative transport. A
carrier spin starts at the bottom and begins nearest-neighbor hops to
the top (along solid line). Hopping-accessible sites with density N ′

eff

are denoted by solid circles. Left: Open circles are sites completely
inaccessible due to spin blocking when no spin transitions take place
(as described in the main text). The resistance is determined by the
critical hop of rc. Right: When spin transitions occur, some open-
circle sites become accessible making the total density of hopping-
accessible sites Neff . The result of spin transitions is that the average
intersite separation and rc decrease which modifies the hopping path.

III. CALCULATING THE MAGNETORESISTANCE FOR
SPATIALLY DISORDERED ORGANIC SYSTEMS

Equation (2) is the starting point for deriving the magne-
toresistance. As discussed, the effective density to be used is
Neff , which yields

Bc = 4

3
π�3y3

c (N − NT ) + 4π�3NT

∫ yc

0
y2pT →Sdy, (4)

where yc = rc/� is the dimensionless critical length which
dictates the threshold resistance Rc = R0e

2yc ; τh = v−1
0 e2y is

the hopping time. A quantity yc0 = (3Bc/4π�3N )1/3 is defined
as the critical intersite spacing in the absence of all spin effects.
In general, yc cannot be isolated in Eq. (4) and the resultant
MR can only be obtained numerically unless the system is in
the dilute carrier regime (N1 � N ) (which is what is assumed
throughout this paper).

To solve for the MR we first need to find the critical
length yc:

4

3
π�3y3

c (N − NT ) = Bc − 4π�3NT

∫ yc

0
y2pT →Sdy, (5)

y3
c = 3Bc

4π�3(N − NT )
− 3NT

N − NT

∫ yc

0
y2pT →Sdy

= y3
c1

− 3NT

N − NT

∫ yc

0
y2pT →Sdy, (6)

where yc1 = yc0 (1 − NT /N )−1/3 is the renormalized critical
intersite spacing. yc is near yc1 since the singly occupied

site concentration is small. So on the right-hand side we can
approximate yc ∼ yc1 and N − NT ∼ N leaving us with

yc = yc1

(
1 − 1

y3
c1

3NT

N

∫ yc1

0
y2pT →Sdy

)1/3

≈ yc1 − 1

y2
c1

NT

N

∫ yc1

0
y2pT →Sdy. (7)

We see that by incorporating T→S transitions the critical
length decreases from the length where triplet sites are
completely excluded. Rc is then

Rc = R0e
2yc = R0e

2yc1 e
−(2/y2

c1
)(NT /N)

∫ yc1
0 y2pT →Sdy

≈ R0e
2yc1

(
1 − 2

y2
c1

NT

N

∫ yc1

0
y2pT →Sdy

)
; (8)

the MR is

MR ≡ Rc(B0) − Rc(0)

Rc(0)

≈ 2

y2
c1

NT

N

∫ yc1

0
y2[pT →S(0) − pT →S(B0)]dy, (9)

which was first found in Ref. 24. The problem now reduces
to finding the probabilities for singlets at the next hop that
were initiated in the singlet state. However not all hops
happen exactly at τh but over an exponential distribution of
hopping times;35,36 to account for this, we write pT →S(B0) =
1
τh

∫ ∞
0 ρT →S(B0,t)e−t/τhdt where ρT →S(B0,t) is the density

matrix element signifying the occupation probability of the
singlet state. This quantity ρT →S can be related to an easier
to calculate quantity ρS→S which is the population fraction in
the singlet state that were initially in the singlet state. Their
relation is 1

3 [1 − ρS→S(t)].37 In summary, we find

MR = 2

3

1

y2
c1

η

∫ yc1

0
y2

∫ ∞

0

1

τh

[ρS→S(B0)

− ρS→S(0)]e−t/τhdt dy, (10)

where η = NT /N . Due to its frequent use, ρS→S will be now
denoted by the simpler ρS . To calculate the magnetoresistance,
the singlet population remaining after a time t must be
determined given various spin interactions. The interactions
considered in the follow sections are the Zeeman and hyperfine
interactions. Spin-spin interactions (exchange and dipolar) are
considered elsewhere.38

IV. SEMICLASSICAL MODEL WITH NUCLEAR MOMENT
AT BOTH SITES

Now the mechanisms by which T-S transitions take place
are described. The physical picture is that of a PP composed
of two spin- 1

2 carriers located at two sites. While the spins
are localized they evolve coherently under the influence of
identical applied fields and different hyperfine fields. The
semiclassical approximation entails that hyperfine or nuclear
spins are accounted for by classical magnetic fields. The
hyperfine field at a site is composed of many different nuclei as
depicted in Fig. 3; however since the nuclear spin precession is
so slow, the total nuclear field is assumed constant throughout
the polaron’s time of residence at that particular site. Since
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FIG. 3. Semiclassical description of total field. Each site is
composed of some number of spin-moment-carrying nuclei which
combine with the external field ω0 to create ωN . Each site has a
different total field picked from the distribution of Eq. (16).

there is no nuclear spin order the orientation and magnitude
of the total hyperfine field varies from site to site. When one
of the polarons hops, its coherent spin evolution ceases as the
polaron now feels a new local magnetic field (if disassociating
out of the PP by hopping to an unoccupied site) or exists
as a bipolaron (if hopping to the other polaron’s site) and is
necessarily in the singlet state (a large exchange interaction
prevents further spin evolution due to the proximity of the two
polarons). If the hopping is fast, the PP spin has had little time
to evolve. If the hopping is slow, each spin of the PP can be
thought of as having precessed many times around its local
magnetic field.

The mathematical details of the semiclassical approxima-
tion now follow. The Larmor frequency of a polaron spin
localized at a site due to the nuclear conglomerate spin is the
constant classical vector

IN =
∑

j

aj I j , (11)

where aj is the hyperfine coupling constant in angular
frequency units between the electron and the j th nucleus.
IN is constructed from many nuclei each with vector length
aj

√
Ij (Ij + 1) pointing in a random direction. Ij is the spin

quantum number. The probability distribution for finding a
specific site among an ensemble of such sites with its total
end-to-end vector between IN + d IN is35,39

W (IN ) = (
4πa2

N

)−3/2
exp

[−(
I 2
N/4a2

N

)]
, (12)

where

a2
N = 1

6

∑
j

a2
j Ij (Ij + 1). (13)

The effective hyperfine coupling due to all the nuclei at a
site is aeff = 2

√
2aN (although other conventions do exist40).

aeff could be different for different types of molecular sites

in which case it would have to be labeled by a site index (we
neglect this effect here). The effective hyperfine magnetic field
is Beff = aeff/γe with the electronic gyromagnetic ratio being
γe = 0.176 ns−1 mT−1. The effective magnetic field is on the
order of 1 mT or aeff ∼ 0.176 ns−1 for many organic systems
demonstrating OMAR.

The total precession rate seen by a carrier at a single site is
then

ωN = IN + ω0, (14)

where ω0 = γeB0ẑ is the applied field. So the PP Hamiltonian
is

H = ωN1 · S1 + ωN2 · S2, (15)

where site indices have been incorporated. To account for
the ensemble of PPs the singlet probability is averaged over
the distribution W . In Sec. VI, for computational reasons, the
scheme of Ref. 41 is followed by integrating over the total
field (ωN ) as opposed to the hyperfine field. To aid this the
probability distribution is rewritten as

W (ωN ) =
(

1

4πa2
N

)3/2

exp

(
− 1

4

ω2
0 + ω2

N−2ω0ωN cos θN

a2
N

)

(16)

with differential volume element sin θNdθNω2
NdωNdφN . To

find the MR, determinations of the singlet density matrix
elements must be made.

V. FAST HOPPING

Before examining a theory applicable to any hopping time
and field strength, we first explore the fast-hopping regime for
which simple and tractable analytic results can be obtained.
The results derived herein allow us to confirm the validity of
the spin relaxation model proposed in Ref. 24 over the entire
range of magnetic fields.

The dynamics for small aN t can be solved analytically
for arbitrary ω0t using perturbation theory in the interaction
representation.42 First Eq. (15) is rewritten as H = Hhf +
HZ , where

Hhf = IN1 · S1 + IN2 · S1 (17)

and

HZ = ω0 · S1 + ω0 · S2 (18)

are the hyperfine and Zeeman Hamiltonians, respectively.
In the interaction representation, the following operators are
defined:

H ∗
hf (t) = eiHZt/h̄Hhfe

−iHZt/h̄, (19)

ρ∗(t) = eiHZt/h̄ρ(t)e−iHZt/h̄; (20)

initially it can be shown that ρ∗(0) = ρ(0). Time-dependent
perturbation theory for the density matrix to second order
gives43

ρ∗(t) = ρ(0) + i

h̄

∫ t

0
[ρ(0),H ∗

hf (t ′)]dt ′

− 1

h̄2

∫ t

0

∫ t ′

0
{[ρ(0),H ∗

hf (t ′)],H ∗
hf (t ′′)}dt ′′dt ′. (21)
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The new hyperfine Hamiltonian is

H ∗
hf (t) = U

(
Hhf1 + Hhf2

)
U †, (22)

with

U = eiHZt/h̄

=
(

cos
ω0t

2
+ 2iSz

1 sin
ω0t

2

)(
cos

ω0t

2
+ 2iSz

2 sin
ω0t

2

)
,

(23)

because S1 commutes with S2. In our singlet/triplet basis
we write ρ(0) = PS , which is the singlet projection operator
written in Appendix A. The singlet part of the density matrix
〈S|ρ∗(t)|S〉 is ρS(t). Initialization in the singlet state requires
that ρS(0) = 1. The first-order correction vanishes. After
averaging over the hyperfine fields for the ensemble of two
carriers, including the second-order term yields

ρS = 1 − 1

16

(
a2

eff,1 + a2
eff,2

)
t2

[
1 + 2

sin2 ω0t/2

(ω0t/2)2

]
, (24)

in agreement with the quantum mechanical calculation.42,44

To find the MR, we substitute the singlet probability,
Eq. (24), into Eq. (10). After integrating over the exponential
distribution of hopping times,

MR = 1

6
η

1

y2
c1

∫ yc1

0

(
a2

eff,1 + a2
eff,2

)
ω2

0τ
2
h

ω2
0 + 1/τ 2

h

y2dy. (25)

This results agrees with the spin relaxation result24 to within
a numerical factor. The agreement validates the interpretation
given by the spin relaxation model; the intersystem crossing
between singlets and triplets can be described by spin
relaxation due to the rapidly varying hyperfine interaction (due
to the fast hopping) in the motional narrowing regime. The spin
relaxation rate is taken to be

τ−1
s = a2

effτ
−1
h /

(
ω2

0 + τ−2
h

)
. (26)

The probability for the spin-flip is 1 − exp(−τh/τs) ≈ τh/τs .
The integral in Eq. (25) can be computed when the

hopping rate has an exponential dependence on the hopping
distance τ−1

h = v0 exp(−2y). The result is cumbersome but
can be considerably simplified under the usual assumption
that yc 
 1 to

MR = 1

24
η
(
a2

eff,1 + a2
eff,2

)
τ 2
c

[
1 − 1

ω2
0τ

2
c

ln
(
1 + ω2

0τ
2
c

)]
,

(27)

where τ−1
c = v0 exp (−2yc). At large fields, the MR saturates

at MRsat = 1
24η(a2

eff,1 + a2
eff,2)τ 2

c . Figure 4 shows several in-
stances of the fast-hopping MR. The following general features
should also be noted. First, the saturated MR is dependent on
the hyperfine field and the hopping rate; the MR decreases as
hopping times shorten, as the hyperfine fields have less time to
mix the triplet to the singlet state. Second, the MR line shape is
independent of the hyperfine field and solely dependent on the
hopping rate. The width increases with increases in the hopping
rate; larger fields are required to suppress the hyperfine fields as
evident from the motional narrowing spin relaxation formula
Eq. (26). Finally, the derived MR is always positive; the applied
field suppresses T-S mixing. These features were pointed out

FIG. 4. Fast-hopping normalized magnetoresistance for yc = 5
calculated from Eq. (27) (solid lines) and from the general theory of
Sec. VI (symbols). Circles: r0 = 0.5 × 106; squares: r0 = 1 × 106;
diamonds: r0 = 2 × 106. Not shown in plot is that the saturated MR
strongly reduces with an increased hopping rate [which can be seen
from Eq. (27)].

in Ref. 24 and were also confirmed by numerical simulations
solving the stochastic Liouville equation.27

VI. ARBITRARY HOPPING

The results of the previous section are valid only for
short hopping times. A different approach must be utilized
to evaluate the MR for long hopping times. Initially the
density matrix is ρ(0) = |S〉〈S|. At some later time, under
the evolution of the Hamiltonian H ,

ρ(t) = exp(−iH t/h̄)ρ(0) exp(iH t/h̄)

= exp(−iH t/h̄)|S〉〈S| exp(iH t/h̄). (28)

We are interested in the S portion of the density matrix ρS =
〈S|ρ(t)|S〉 which then becomes

ρS = 〈S| exp(−iH t/h̄)|S〉〈S| exp(iH t/h̄)|S〉
= |〈S| exp(−iH t/h̄)|S〉|2. (29)

An average over the nuclear field distribution is taken to
account for the ensemble of carriers at sites with differing nu-
clear configurations. Under certain restrictions for the nuclei,
the problem can also be solved quantum mechanically.44,45

However when many nuclei are present at each site, which is
the case in disordered organic semiconductors, the quantum
mechanical calculation is best tackled numerically. As ex-
pected, it has been shown that the validity of the semiclassical
approximation improves with the number of nuclei.40

Equation (29) is solved by noting that our Hamiltonian,
Eq. (15), is Zeeman-like so we can use

e−icn̂·S = cos
c

2
− 2in̂ · S sin

c

2
. (30)

In Eq. (30), we have the total field at a site (ωN ) unit vector

nx = sin θN cos φN, ny = sin θN sin φN, nz = cos θN,

(31)
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with angles defined in Fig. 3. With some labor, it can be shown
that44

ρS=F1(1)F1(2) + 2F2(1)F2(2) + F3(1)F3(2) + 1
2F4(1)F4(2),

(32)

where

F1(i) = 1 −
〈

sin2

(
ωNt

2

)〉
i

, F2(i) = 1

2
〈nz(i) sin(ωNt)〉i ,

(33)

F3(i) =
〈
n2

z(i) sin2

(
ωNt

2

)〉
i

, F4(i) = 1 − F1(i) − F3(i),

(34)

where i refers to site one or two and angular brackets refer
to averaging over total field distribution W . There are three
unique averages that need to be calculated:

I1(i) =
〈

sin2

(
ωNt

2

)〉
i

, I2(i) = 1

2
〈yN sin(ωNt)〉i ,

I3(i) =
〈
y2

N sin2

(
ωNt

2

)〉
i

, (35)

where we have made the change of variable yN = cos θN .
Equation (32) can be expressed in closed form though we
refrain from doing so for the sake of brevity. We still need to
integrate over time and radius:

MR = 2

3

1

y2
c1

η

∫ ∞

0
[ρS(B0) − ρS(0)]

∫ yc1

0
y2 1

τh

e−t/τhdy dt,

(36)

which is never a negative value if hyperfine coupling widths are
identical. In general results are achieved by numerical integrals
over y and t . We confirm that our general calculation agrees
with the analytic results of Sec. V (solid symbols in Fig. 4).
However we find that performing both integrals numerically
is most practical in the intermediate to fast hopping cases.
We find that in the slow-hopping regime, making a change
of variable u = exp(−2y) improves the ease of numerical
evaluation.

A. Saturated magnetoresistance

The singlet probabilities simplify at zero field and infinite
fields. Hence it is instructive to examine the saturated MR. The
singlet probabilities reduce to the following:

ρS(B0 → ∞) = 1
2 (1 + e−a2

eff t
2/4), (37)

ρS(B0 = 0) = 1

4
+ 1

12

[
1 + 2

(
1 − a2

eff t
2

4

)
e−a2

eff t
2/8

]2

.

(38)

References 35,44, and 40 provide generalizations for when the
two sites are of different hyperfine species. For slow hopping
we find that it is favorable to perform the time integral of
Eq. (36) first which can be done analytically though we omit it
here because the expression is cumbersome. The integral over

FIG. 5. Saturated magnetoresistance as a function of hopping
rate. The inset is same as main but focuses on fast-hopping rates
by plotting on log-log graph. Solid circles: yc = 5; open triangles:
yc = 7. Solid lines are Taylor expansions around zero and infinite
hopping rate with 50 terms. Note that the slow hopping regime extends
considerably past v0/aeff = 1.

u is then conducted numerically. Nevertheless the extreme
hopping MR converges to the following expressions:

MRsat(v0 → 0) = 1

27
yc1η, (39)

MRsat(v0 → ∞) = 0, (40)

which qualitatively agrees with the simpler model of Ref. 24.
Figure 5 depicts the saturated MR versus the hopping rate. The
overall shape is similar to Ref. 27, though the decrease occurs
at larger v0 here (to be discussed below). Also in contrast, the
shape is slightly nonmonotonic before the sharp decline. The
hopping rate dependence highlights three interesting features:

Correspondence between critical radius and branching
ratio. The critical radius yc acts analogously to the two-site
model’s16,27 branching ratio b = rα,β/rα,e where rα,β is the
rate from occupied site α to occupied site β and rα,e is rate
from occupied site α to the environment (in essence, avoiding
the occupied site β). A high branching ratio entails that the
polaron spin’s only way to move off of α is to hop to β

(and can only do that if they are a singlet pair). Our critical
radius acts similarly; large yc entails small site density and
large intersite spacings. Since sites are so far apart and the
hopping rate decreases exponentially with distance, if the
nearest site happens to be spin blocked, the polaron at α will
likely wait until the spin configuration is favorable instead of
the extremely difficult further hop to a next-nearest neighbor
(analogous to the environment of the two-site model). Hence
hops to β occur more frequently than hops not to β, much as is
phenomenologically modeled by the branching ratio parameter
in the two-site model. In cases of large yc (or b), the saturated
MR is larger, as the carrier spin must depend solely on the T-S
transition (and hence the applied field)—there is no possibility
to avoid the occupied site.

Transition from fast to slow hopping occurs at an unex-
pected hopping rate. The terms “fast” and “slow” hopping
are not as simple to define as v0/aeff 
 1 and v0/aeff � 1,
respectively. This is because the spatial dependence is also
important and effectively decreases the hopping rate. Also
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v0 exp(−2yc)/aeff = 1 is not a good measure of the criterion
because most hops occur across distances less than yc.
Therefore we predict that the “slow-hopping” regime is in
fact applicable at faster hopping rates (v0) than previously
expected. This prediction is consistent with experimental
observations that large OMAR occurs with hopping rates
expected to be faster than the hyperfine frequency.46

Limiting cases of the saturated MR for slow hopping. When
hopping is slow, the saturated MR is independent of both the
hyperfine coupling and the hopping rate. This result is sensible
since after long waiting times, the PP spins have sufficient time
to fully mix.

B. Slow-hopping magnetoresistance curves

The magnetoresistance line shapes are not fundamentally
different from the discussion in Ref. 24. Figs. 6 and 7 show
MR traces calculated for several hopping rates at the threshold
radii yc = 5 and yc = 7.

In the slow-hopping regime (as depicted in Fig. 5), the MR
width is independent of hopping rate in sharp contrast to the
fast-hopping case (see Fig. 4); the width varies linearly with the
hyperfine coupling strength which also is a different behavior
than seen in the fast-hopping regime. The large MR widths
(∼40 mT 
 Beff) measured by some researchers15,47 suggest
that those scenarios were fast hopping where the hopping rate’s
role in MR width is indeed present.

MR is always positive, in disagreement with the ultrasmall
field effect observed in the simulations of Refs. 48 and 27. At
this time the source of the discrepancy between our results and
their simulations is not known. As discussed throughout this
paper, on other points the two approaches are in qualitative
agreement. Positive MR (ignoring ultrasmall field effect) has
been observed in unipolar diodes.49 It is noteworthy that
spin-spin interactions also cause an ultrasmall field effect
to occur.27,38,49 Additionally if nuclear spin moments are
considered quantum mechanically, an ultrasmall field effect is
expected as shown by Ref. 49 for a single nucleus. We do not
expect a small number of nuclei per site in the organic systems
considered here so the semiclassical approximation is valid.40
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FIG. 6. Magnetoresistance at yc = 5. Solid line: v0/aeff = 5 ×
104; dotted line: v0/aeff = 1 × 104; dashed line: v0/aeff = 1 × 103;
dash-dotted line: v0/aeff = 1 × 101. The magnetoresistance is an even
function of B0/Beff .
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FIG. 7. Magnetoresistance at yc = 7. Solid line: v0/aeff = 1 ×
106; dotted line: v0/aeff = 1 × 105; dashed line: v0/aeff = 1 × 104;
dash-dotted line: v0/aeff = 1 × 103. The magnetoresistance is an even
function of B0/Beff .

Our result suggests that organic materials with large yc

(small localization length or small site concentration) yield the
largest MR. Though increasing bias voltage tends to increase
the localization length,50 and therefore decrease MR in our
theory, experimental observations18 of the bias dependence
are unclear since majority and minority current injection rates
possess a bias dependence for a bipolar organic device.

VII. APPLICABILITY TO BIPOLAR SYSTEMS

Given an isotropic Gaussian distribution of hyperfine fields
and a single hyperfine species, our theory predicts solely
positive MR. This is simple to understand since applying a
field suppresses hyperfine induced T → S transitions which
causes a carrier to either wait for the transition or make a
slower hop. This slowing down of carrier hopping leads to the
increase in resistance.

However the majority of experiments have observed neg-
ative MR.14,18 This is due to the presence of two types of
carriers (bipolar system). While the details of our theory do
not apply in bipolar systems, we can still see qualitatively why
negative MR might be dominant in a simplified model of a
bipolar organic device.

Two oppositely charged polarons (an exciton) at the same
site do not contribute to the current since they will either
recombine (luminesce) if a singlet or remain as an exciton if a
triplet due to the large attractive Coulomb interaction (exciton
disassociation is ignored for simplicity). This is very different
than the unipolar case we considered where easy formation of
bipolarons encourages current flow. If exciton formation varies
between singlet and triplet e-h pairs, a similar spin-blocking
mechanism emerges; in dramatic contrast to the unipolar
scenario, this time more spin mixing leads to more exciton
formation which inhibits current. An applied field suppresses
spin mixing (again only considering the hyperfine interaction)
which leads to less exciton formation, more current, and
therefore negative MR. Developing a quantitative theoretical
framework for bipolar OMAR based on percolation theory is
a challenge for future investigations.
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VIII. CONCLUSION

Testing our theory quantitatively is most tractable for high
temperatures and a low density of molecular sites. Controlling
the density of sites is predicted to change the hopping rate and
the resulting MR. Such a manipulation of site densities has
been successfully employed in the past in TNF films in which
conduction via r percolation was measured through time-of-
flight experiments.31,32 In these experiments the molecular
density of TNF was carefully controlled by dispersing TNF
in an inert polyester host.

The theory presented here has implications for MR effects
in amorphous semiconductors,51 colloidal quantum dots,52

spin diffusion in organic full spin valves,53 and MR effects in
organic semispin valves where fringe fields from a magnetic
film create a unique MR curve.54

ACKNOWLEDGMENTS

This work was supported by an ARO MURI. We acknowl-
edge stimulating discussions with M. Wohlgenannt, P. A.
Bobbert, and B. Koopmans.

APPENDIX A: SPIN OPERATORS

We write all matrices in the singlet/triplet basis. The spin
ladder operators are

S+
1 = 1√

2

⎛
⎜⎜⎜⎝

|S〉 |T0〉 |T+〉 |T−〉
〈S| 0 0 0 1
〈T0| 0 0 0 1
〈T+| −1 1 0 0
〈T−| 0 0 0 0

⎞
⎟⎟⎟⎠ ,

S+
2 = 1√

2

⎛
⎜⎝

0 0 0 −1
0 0 0 1
1 1 0 0
0 0 0 0

⎞
⎟⎠ ,

and S−
i = S

+†
i . The other spin operators are S

x(y)
i = S+

i +(−)S−
i

2(2i)
and

Sz
1 = 1

2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ ,Sz

2 = 1

2

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ .

The singlet projection operator is

PS =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

APPENDIX B: THE I1, I2, AND I3 INTEGRALS

There are three unique integrals to calculate. First,

I1 = 1

4π1/2a3
N

e−(1/4)ω2
0/a

2
N

∫ ∞

0
ω2

NdωNe−(1/4)ω2
N /a2

N

× sin2

(
ωNt

2

)∫ 1

−1
dyNe(1/2)ω0ωNyN /a2

N , (B1)

or in dimensionless units xN = ωN/aN ,

I1 = 1

4π1/2
e−(1/4)ω2

0/a
2
N

∫ ∞

0
x2

NdxNe−(1/4)x2
N

× sin2

(
xNaN t

2

) ∫ 1

−1
dyNe(1/2)xN yN ω0/aN , (B2)

which is

I1 = 1

2
+

[
1

2
cos(hτ ) − τ

8h
sin(hτ )

]
e−τ 2/8, (B3)

where h = ω0/aeff and τ = aeff t . Also

I2 = 1

8π1/2
e−(1/4)ω2

0/a
2
N

∫ ∞

0
x2

NdxNe−(1/4)x2
N sin(xNaN t)

×
∫ 1

−1
dyNyNe(1/2)xN yN ω0/aN , (B4)

which yields

I2 =
[

1

2
sin(hτ ) − 1

8h2
sin(hτ ) + τ

8h
cos(hτ )

]
e−τ 2/8.

(B5)

The last integral is

I3 = 1

4π1/2
e−(1/4)ω2

0/a
2
N

∫ 1

−1
dyNy2

N

×
∫ ∞

0
x2

NdxNe−(1/4)x2
N e(1/2)xN yN ω0/aN sin2

(
xNaN t

2

)

(B6)

with the result

I3 = I1 −
{

1

4h2
− 1

4h2
cos(hτ )e−τ 2/8 − 1

4
√

2h3
D(

√
2h)

+ i

16
√

2h3
e−2h2√

π

[
Erf

(
τ

2
√

2
− i

√
2h

)

− Erf

(
τ

2
√

2
+ i

√
2h

)]}
, (B7)

where D(z) = e−z2 ∫ z

0 ex2
dx is Dawson’s integral and Erf(z) =

2√
π

∫ z

0 e−x2
dx is the error function.
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