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Symmetry protection of topological phases in one-dimensional quantum spin systems
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We discuss the characterization and stability of the Haldane phase in integer spin chains on the basis of simple,
physical arguments. We find that an odd-S Haldane phase is a topologically nontrivial phase which is protected
by any one of the following three global symmetries: (i) the dihedral group of π rotations about the x, y, and
z axes, (ii) time-reversal symmetry Sx,y,z → −Sx,y,z, and (iii) link inversion symmetry (reflection about a bond
center), consistent with previous results [Phys. Rev. B 81, 064439 (2010)]. On the other hand, an even-S Haldane
phase is not topologically protected (i.e., it is indistinct from a trivial, site-factorizable phase). We show some
numerical evidence that supports these claims, using concrete examples.
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I. INTRODUCTION

States of matter can be classified into different phases,
which are often distinguished by (local) order parameters.
Identification of phases generally requires certain symmetries.
For example, the ordered and the disordered phases of the
Ising model are sharply distinct only in the presence of the Z2

symmetry of spin reversal. In the absence of the symmetry, the
two phases can be connected without a phase transition and
thus cannot be distinguished uniquely. This phase transition
corresponds to the spontaneous breaking of the Z2 symmetry.
Therefore, it is natural that the Z2 symmetry is required in this
example to protect the ordered phase as a well-defined phase
distinct from the disordered phase.

Even if there is no symmetry which distinguishes the two
phases, they can still be separated by a transition. However,
it is generically first order and terminates at a critical end
point. Thus, as in the case of liquid and gas phases, there is
a smooth path which connects the two phases, without any
phase transition. In this sense, in the absence of protection due
to symmetry, phase transitions can still exist but they do not
generally define essentially distinct phases,

On the other hand, even when there is no local order
parameter or spontaneous breaking of a global symmetry,
we sometimes find distinct quantum phases separated by
quantum phase transitions. We then attribute the distinction
to a nontrivial or “topological phase.” While there are several
known characterizations of topological phases, the complete
understanding in general dimensions is still lacking. The
related question, what kind of symmetry, if any, is required to
protect the topological phase, is much less obvious compared
to the case of a standard spontaneous symmetry breaking. In
this paper, we will consider one-dimensional systems (1D) to
establish some intuition about this question.

One of the simplest examples of a topological phase is
the Haldane phase in quantum spin chains.1,2 As predicted by
Haldane, the Heisenberg antiferromagnetic (HAF) chain with
an integer spin S,

HHAF = J
∑

j

�Sj · �Sj+1, (1)

where J > 0, has a nonzero excitation gap and exponentially
decaying spin correlation functions, while the same model is
gapless and has power-law correlations for a half integer S.

Following Haldane’s prediction, Affleck, Kennedy, Lieb,
and Tasaki (AKLT) presented model Hamiltonians for which
the ground state can be obtained exactly.3,4 In addition to
providing a tractable model in which the Haldane conjecture
can be tested, the ground state (AKLT state) was later found
to exhibit several unexpected properties, such as a nonlocal
“string order” and edge states, which extend also to states
within the same phase.5

On the other hand, despite the relative simplicity of quantum
spin chains and intensive study over several decades, the
framework for describing their topological properties has
just recently been understood. In fact, it was only recently
that the importance of inversion (parity) symmetry in the
Haldane phase was pointed out. Based on a field-theory
(bosonization) analysis of a related boson model, Berg et al.
pointed out in Ref. 6 that the S = 1 Haldane phase is
distinct from other phases only in the presence of inversion
symmetry. Next, based on the Tensor Entanglement Filtering
Renormalization Group (TEFR) approach, Gu and Wen stated
that the S = 1 Haldane phase is protected by the combination
of the translation, complex conjugation (“time reversal”), and
inversion symmetry.7,8 Gu and Wen pointed out that the
combined symmetry above protects the topological phase,
even when the existing characterizations (edge states and
string order) do not work. It turns out that the symmetry
protection can be understood in terms of “fractionalization”
of symmetry operations at the edges and is reflected by
nontrivial degeneracies in the entanglement spectrum.9,10

The fractionalization is described precisely using projective
representations of the symmetry group. This approach was
then generalized to any gapped 1D system and shown to give
a complete procedure in one dimension for identifying the
topological phase of such systems.11–13 Several 1D models in
which symmetry fractionalization plays an important role have
been studied recently—see, for example, Refs. 14–17.

In this paper, we illustrate the behavior of topological
order in one dimension by reexamining spin systems and
the robustness of their topological phases on the basis of
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simple, physical arguments and discuss a number of concrete
examples. We say that the topological phase around the AKLT
state is robust if it cannot be adiabatically connected to
another, “topologically trivial” state, without going through
a phase transition. Here, “topologically trivial” means that the
state is site-factorizable, namely, that the state is given by a
single tensor product of local states. An example of such a
topologically trivial state is

|D〉 = |0〉1 · · · |0〉L, (2)

which is the ground state of a chain with single-ion anisotropy
D(Sz)2 in the limit of D → +∞. (For a precise mathematical
definition of the robustness of the topological phases in one
dimension, see also Refs. 11 and 12.) We show that for odd
values of the spin S, our results are consistent with those
of Refs. 6 and 9: The AKLT state is robust as long as
any one of the three symmetries mentioned in the abstract
(π rotation of the spin about the x, y, z axes, and time
reversal or inversion symmetry) is respected. Surprisingly,
these arguments suggest that other systems, such as even-spin
AKLT states and S = 1 spin ladders with an even number of
legs, are not topologically protected, even if all the symmetries
are respected. In particular, the S = 2 AKLT phase is indistinct
from a trivial state, even if full SU(2) symmetry is maintained.
We show here how to transform such states into one another,
giving numerical evidence that there are no phase transitions
along the way.

This paper is organized as follows: We begin by discussing
the stability of the Haldane phase owing to a hidden discrete
symmetry in Sec. II, with a clarification of the required
symmetry. We then generalize the Haldane phase in Sec. III to
different symmetries and discuss the concept of symmetry
protected topological phases. In Sec. IV we demonstrate
concrete examples in the form of matrix-product states and
present numerical simulations to support and illustrate our
arguments. In particular, we construct explicit paths which
smoothly connect the S = 2 AKLT state to various site-
factorizable states, demonstrating that the former state is
trivial. Our results are summarized in Sec. V.

II. HALDANE PHASE IN THE PRESENCE OF
GLOBAL D2 SYMMETRY

First let us briefly discuss the hidden order and edge states
in the context of a hidden Z2 × Z2 symmetry. Although this
concept had been developed in the early 1990’s, to the best
of our knowledge, the symmetry of the Hamiltonian required
for this mechanism has not been discussed explicitly. Here we
also clarify the required symmetry, which could be understood
as one of the symmetries protecting the Haldane phase as a
distinct, topological phase.

It is believed that the ground state of the standard
Heisenberg chain belongs to the Haldane phase, which also
includes the translationally invariant Affleck-Kennedy-Lieb-
Tasaki (AKLT) state. The S = 1 AKLT state exhibits the
following two remarkable properties: (I) Free S = 1

2 degree of
freedom appearing at each end of the chain in the case of open
boundary conditions. Namely, the ground state of the AKLT
Hamiltonian is fourfold degenerate due to the 22 edge states,
although the ground state is unique in the case of periodic

boundary conditions. (II) A nonlocal order measured by the
string order parameter5

Oα
str ≡ lim

|j−k|→∞
〈
Sα

j eiπ
∑

j�l<k Sα
l Sα

k

〉
. (3)

These two features turned out to be characteristics of not only
the AKLT state, but rather of the S = 1 “Haldane phase,”
which includes the ground states of the AKLT model and
the S = 1 antiferromagnetic Heisenberg chain. In fact, the
degeneracy due to the edge states is split for a generic open
chain in the Haldane phase, with a finite length. However,
the splitting is exponentially small for longer chains, resulting
in fourfold quasidegenerate ground states below the Haldane
gap.18 Numerical calculations have shown that the string order
parameter is also nonvanishing within the Haldane phase.

Kennedy and Tasaki19 unified these two apparently unre-
lated features as consequences of hidden symmetry breaking.
This concept is introduced as follows. We introduce a nonlocal
unitary transformation defined by (see also Ref. 20)

UKT =
∏
j<k

exp
(
iπSz

jS
x
k

)
. (4)

This transforms spin operators as

UKTSx
j U−1

KT = Sx
j exp

(
iπ

∑
k>j

Sx
k

)
, (5)

UKTS
y

j U−1
KT = exp

(
iπ

∑
k<j

Sz
k

)
S

y

j exp

(
iπ

∑
k>j

Sx
k

)
, (6)

UKTSz
jU

−1
KT = exp

(
iπ

∑
k<j

Sz
k

)
Sz

j . (7)

Although these are nonlocal operators with “strings,” the
Heisenberg chain Hamiltonian (1) is transformed into a
Hamiltonian with only short-range interactions:

H̃ =
∑

j

{
Sx

j exp
(
iπSz

j+1

)
Sx

j+1 + S
y

j exp
[
iπ

(
Sz

j + Sx
j+1

)]
S

y

j+1

+ Sz
j exp

(
iπSz

j

)
Sz

j+1

}
. (8)

This is thanks to a cancellation of string factors similar (al-
though not identical) to that in Jordan-Wigner transformation.

The transformation (4) can be applied to a wide class of
spin chain Hamiltonians. For the transformation to be useful,
the transformed Hamiltonian must have only short-range
interactions. We point out that the sufficient and necessary
condition the Hamiltonian must satisfy for the transformed
Hamiltonian to have local interactions is that it has to have a
global discrete symmetry with respect to rotation by angle π

about the x, y, and z axes [i.e.,
∏

j exp(iπSx
j ), and similar for

y and z]. This symmetry group, sometimes called the dihedral
group D2, is equivalent to Z2 × Z2, since the product of π

rotations about the x and z axes gives the π rotation about
the y axis. We note that, although global D2 invariant models
and time-reversal invariant ones have a large overlap, they
are not identical. For example, the anisotropic perturbation∑

j (Sz
jS

z
j+1 + Sz

jS
x
j+2) is time-reversal invariant but not D2

invariant. On the other hand,
∑

j Sx
j S

y

j+1S
z
j+2 is D2 invariant

but not time-reversal invariant.
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FIG. 1. Four symmetry broken states (upper panel) which are ob-
tained by applying the nonlocal transformation UKT to the degenerate
edge states (lower panel). Note that the arrows in the upper panel
represent the spin polarization in the bulk, while in the lower panel
they represent the spin polarization at the edges.

The transformed Hamiltonian UKTHU−1
KT has the same

Z2 × Z2 symmetry as the original one. This is because the
π rotations around the x,y, and z transform into themselves
under UKT (e.g., eiπSz

l commutes with each of the factors
eiπS

j
z Sk

x ) However, as the states of the spins are transformed
in a nonlocal way, a state without any broken global symmetry
may be transformed into a state with long-range ferromagnetic
order; that is, there may be hidden symmetry breaking.

The symmetry breaking in the transformed system is an
indication of edge states in the original Hamiltonian. Note that
edge states on a finite chain can break the Z2 × Z2 symmetry.
Although this symmetry breaking occurs only at the ends,
the nonlocal transformation spreads this symmetry breaking
through the entire bulk. In fact, the Z2 × Z2 symmetry is
broken completely in the bulk, implying a fourfold degenerate
set of ground states with magnetization along diagonal
directions as illustrated in Fig. 1. The z and x components of
the magnetization in the bulk after the nonlocal transformation
determine the z component of the spin 1

2 at the left end and
the x component of the spin at the right end in the original
system, respectively. The string order of the original system(1)
is also simple to understand in terms of the hidden breaking
of the symmetry: It is the result of applying the Kennedy-
Tasaki transformation (4) to the usual ferromagnetic order
parameter.

To understand the correspondence between the edge states
and the broken symmetry in the bulk, it is easiest to consider
the AKLT state. The four degenerate states which transform
into the four symmetry-broken states are defined by giving
the z component of the free spin 1

2 at the left end and the x

component of the spin 1
2 at the right end definite values. To see

this, start by fixing just the spin at the left end to Sz,left = + 1
2 .

Then expand this state in terms of Sz eigenstates. The string
order is perfect in the AKLT state, meaning that in every
component of the wave function, if we erase the sites with
Sz = 0, we get a chain with a perfect antiferromagnetic order,
| . . . ,−1,+1,−1,+1, . . .〉.3,4 Thus the first nonzero spin must
be +1 in each term and from then on the nonzero Sz’s alternate
between ±1. When UKT is applied, it flips the direction of every
second nonzero spin, so that all the sites end up in either the
|Sz = +1〉 or |Sz = 0〉 state. When the x component of the
spin 1

2 at the right end is also fixed, one can likewise argue
that each site is in the |Sx = +1〉 state or the |Sx = 0〉 state
(working in the Sx basis instead). But these two conditions
together uniquely determine the state of every site. Note that
the only spinor that has only +1 and 0 states in both the x

and z basis is
√

2
3 |Sx = 1〉 +

√
1
3 |Sx = 0〉 = i(

√
2
3 |Sz = 1〉 +√

1
3 |Sz = 0〉). So after applying the nonlocal transformation

UKT, the wave function is just a product state with this state
on every site, spontaneously breaking the symmetry all along
the chain.

Similar arguments can be applied to relate any of the four
polarizations of the edge states to the four broken symmetry
states after the nonlocal transformation, as shown in Fig. 1.
A closely related analysis from a different perspective was
recently discussed in Ref. 21.

The stability of the Haldane phase for S > 1 has been less
understood. Once the transformation is written as Eq. (4), it
can be readily applied to any integer S, and the transformation
of the Hamiltonian and the string order parameter remain the
same. However, it turns out that the hidden Z2 × Z2 symmetry
is spontaneously broken in the translationally invariant AKLT
state only if S is odd, but unbroken if S is even.20 This
can also be seen by counting the degeneracy of the edge
states. Therefore, with regard to the hidden Z2 × Z2 symmetry,
the even-S AKLT states are indistinguishable from a trivial
disordered state. However, the physical meaning of this finding
was not well understood; it was unclear if the even-S AKLT
states are really indistinguishable from a trivial state, or
whether they are distinct from a trivial state by another,
unknown criterion.

III. STABILITY OF THE HALDANE PHASE

In the following, we discuss different ways to understand
topological phases in one-dimensional quantum spin systems
without referring to the hidden Z2 × Z2 symmetry. We find
that the odd-S and even-S AKLT states differ in the robustness
of the topological phase, as was suggested, in retrospect, by
the hidden Z2 × Z2 symmetry analysis.

A. Characterization by edge states in the presence
of time-reversal symmetry

Let us now discuss the topological phase, from the view-
point of “edge physics.” Here we apply the idea similar to what
was used to characterize the quantum spin Hall insulator.22

As long as the gap does not close in the bulk, we may
focus on the nearly degenerate ground states corresponding
to the edge states. The spin-S AKLT state with open boundary
conditions has a spin-S/2 edge degree of freedom at each
end, and thus (S + 1)-fold degeneracy at each end. In general,
if we introduce a perturbation to the Hamiltonian, the edge
degeneracy is expected to be lifted. However, if the edge
spin is half integer, namely, for the odd-S AKLT state, as
long as the Hamiltonian has time-reversal symmetry, the
twofold Kramers degeneracy at each edge should remain. As
a consequence, the odd-S AKLT state must be separated from
a trivial disordered state by a quantum phase transition. In this
sense, the topological phase in the odd-S AKLT state is robust
and protected by time-reversal symmetry.

On the other hand, for the even-S AKLT state, the edge
spin is an integer. Thus the degeneracy is lifted by a generic
perturbation even if the Hamiltonian is invariant under time
reversal, because there is no Kramers degeneracy. If the
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FIG. 2. (Color online) The S = 1 AKLT state on a ring with L =
7 sites. The connecting lines represent spin- 1

2 singlets. We consider
the lattice inversion about the vertical line.

Hamiltonian is SU(2) invariant, the lowest S + 1 degeneracy
related to the edge should remain up to a finite strength of
the perturbation. However, as a function of the perturbation
strength, there is always a possibility that a S = 0 state
separates from the bulk, crosses the S + 1 multiplet, and
becomes the ground state. Note that in such a process, the
bulk gap need not close anywhere. Thus, it seems that an
even-S AKLT state is, strictly speaking, indistinct from a
trivial state, regardless of the presence of time reversal or
SU(2) symmetries. We demonstrate this explicitly in Sec. IV,
where we show that the S = 2 AKLT state can be smoothly
connected to a fully dimerized state.

B. Inversion symmetry of a ring

We will now argue that the odd-S Haldane phase is also
protected just by link inversion symmetry (lattice inversion
about the center of a bond). To illustrate the point, it is
convenient to consider first an AKLT state on a chain of
odd length L with periodic boundary conditions. Although
the system is frustrated for odd L, the ground state of the
AKLT model is still unique, reflecting the short-range spin
correlations. For example, we discuss the S = 1 AKLT state
for L = 7 as shown in Fig. 2, and inversion I about the vertical
line.

Let us recall the original AKLT construction, starting from
two S = 1

2 ’s per site, and denote a valence bond (singlet of two
S = 1

2 ’s) between sites j and k by |(j,k)〉. The valence bond
|(j,k)〉 is antisymmetric under inversion, namely, the exchange
of j and k. Thus, under inversion I, the valence bond |(4,5)〉
crossing the line changes sign: I|(4,5)〉 = −|(4,5)〉. The other
valence bonds are flipped as well, for example, I|(3,4)〉 =
−|(5,6)〉. However, being paired with I|(5,6)〉 = −|(3,4)〉,
we find I|(3,4)〉|(5,6)〉 = |(3,4)〉|(5,6)〉. The symmetrization
operation in the AKLT construction is also invariant under I.
Thus we obtain

I
∣∣�AKLT

S=1

〉
L=7 = −∣∣�AKLT

S=1

〉
L=7. (9)

(For a related discussion in a different setting, see Ref. 23.)
The same argument can be easily applied to higher-spin
AKLT states: An odd-S AKLT state is odd under inversion
on a ring with any odd length L because there are an odd
number of valence bonds on every link. Even if we introduce
perturbations to the odd-S AKLT model, the ground state on
the odd length ring should still be odd under inversion, as
long as the Hamiltonian respects inversion symmetry and the
gap does not close. On the other hand, a trivial state given

by a tensor product of local states, such as |D〉 defined in
Eq. (2), is even under I. Therefore we conclude that there
must be a phase transition between the odd-S AKLT state and
the trivial |D〉 state, if inversion symmetry is kept. That is, the
odd-S Haldane phase is a topological phase protected just by
inversion symmetry. We emphasize that the topological phase
is characterized by the odd parity under inversion but not by a
spontaneous symmetry breaking.

In contrast, an even-S AKLT state is even under inversion,
regardless of the length of the chain because there is an even
number of valence bonds on the links. This argument suggests
that inversion does not protect the phase represented by the
even-S AKLT state. Together with the previous section, this
supports our conjecture that the even-S AKLT state is, in fact,
indistinct from a trivial state.

C. Argument based on the matrix-product state representation

The above heuristic argument, based on the global prop-
erties of the ground state under inversion, requires the ring
to have an odd length L. However, this is not essential, as
can be seen in the following more general formulation9,10

based on matrix product states24,25 (MPS). For completeness,
we repeat the argument of Ref. 9 below. Let us consider
an inversion-symmetric system. Although our analysis does
not depend essentially on translation symmetry, here we also
assume a translation invariant MPS as in Eq. (10), for the sake
of simplicity. On a chain of length L with periodic boundary
conditions, a translation invariant MPS is given by

|�〉 =
∑

m1,...,mL

Tr
(
Am1 · · ·AmL

)|m1, . . . ,mL〉, (10)

where Am are χ × χ matrices, and |mj 〉 represents a local
state at site j . We shall refer to the matrix dimension χ as the
ancilla dimension. We assume that the ground state |�0〉 fulfills
the following conditions: (a) |�0〉 can be well approximated
by the MPS Eq. (10) with finite dimensional matrices Am,
(b) the matrices Am evolve continuously as we change a
parameter of the Hamiltonian, and (c) |�0〉 is not a “cat state,”
i.e., a superposition of two states that are not connected by
any local operator (in analogy with Schrödinger’s cat or any
superposition of two macroscopically different states).26 The
correlation length of a MPS state can be determined from the
eigenvalue spectrum of the completely positive map acting on
the space of χ × χ matrices26

E(X) =
∑
m

AmXA†
m. (11)

This map can be interpreted as a transfer matrix which
determines correlation functions. The largest eigenvalue of
E for a normalized MPS is always equal to one. The second
largest (in terms of absolute value) eigenvalue ε2 determines
the largest correlation length

ξ = − 1

ln |ε2| (12)

for a state that is not a cat state.
It is useful to write the matrices Am in a canonical form

as Am = �m	, where 	 is a diagonal matrix containing the
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square roots of the eigenvalues of the reduced density matrix.
The matrices �m and 	 are then chosen to satisfy27,28

∑
m

�†
m	2�m = 1 and

∑
m

�m	2�†
m = 1. (13)

This implies that the transfer matrix Eq. (11) has an eigenvector
1 with eigenvalue λ = 1, and if condition (c) is fulfilled, all
other eigenvalues have smaller magnitudes.29

A reflection corresponds to transposing all matrices �m →
�T

m. This transformation preserves the canonical form of the
MPS. Since we assume the state to be invariant under inversion,
we know from Refs. 9 and 29 that there exists a unitary UI
with [UI ,	] = 0 such that

�T
m = eiθIU

†
I�mUI . (14)

By iterating this relation twice, we arrive at �m =
e2iθI (UIU

∗
I )†�mUIU

∗
I . Combining this relation with Eq. (13),

we obtain
∑

m �
†
m	UIU

∗
I	�m = e2iθIUIU

∗
I , i.e., the matrix

UIU
∗
I is an eigenvector of the transfer matrix with an

eigenvalue e2iθI . Since we assume that all eigenvectors with
unimodular eigenvalues are proportional to 1 with eigenvalue
λ = 1, θI is either 0 or π , and UIU

∗
I = e−iφI1, or UT

I =
eiφIUI . Iterating the latter relation twice, we find that φI can
be either 0 or π , i.e., UI is either symmetric or antisymmetric.
Equation (14) implies that, for �m to evolve continuously,
UI has to be continuous (up to a phase) and therefore must
remain symmetric or antisymmetric. Therefore, the only way
in which φI and θI can change is through a phase transition
in which one of the assumptions above breaks down. For
example, second-order phase transitions through conformal
critical points are characterized by a diverging entanglement
entropy and thus violate (a).30 A violation of (b) corresponds
to a first-order (discontinuous) phase transition. Violations
of (c) correspond to a level crossing in the spectrum of the
transfer matrix T which implies a quantum phase transition,
as discussed in detail in Ref. 31.

In the S = 1 AKLT state, we can represent the state by
a MPS with �a = σa/

√
2. Here σa (a = x,y,z) are Pauli

matrices and we use the time-reversal invariant spin ba-
sis |x〉 = 1√

2
(|1〉 − | − 1〉), |y〉 = i√

2
(|1〉 + |−1〉), |z〉 = |0〉.

Under reflection of the system, the matrices transform as
σa → σT

a = −σyσaσy . Therefore UI = σy and θI = φI = π .
We also find θI = φI = π for other odd S while θI = φI = 0
for even S. The state |D〉, on the other hand, transforms simply
as �T

m = �m (since the �m are scalars) and thus θI = φI = 0.
Consequently, the system has to undergo a phase transition
when going from the odd-S AKLT state to the trivial state |D〉,
in agreement with the heuristic argument of Sec. III B.

IV. TRIVIALITY OF THE EVEN-S AKLT STATE

We now complete the discussion by demonstrating that, on
the other hand, the even-S AKLT state is in the same phase
as trivial states when a number of different symmetries are
imposed. We begin by describing a state, formed by a MPS
similar to the one proposed in Ref. 13, which shows that the
S = 2 AKLT state is smoothly connectable to the trivial state
with Sz = 0 on every site. In this example, translation, time-
reversal, and inversion symmetries are maintained throughout

the path, but SU(2) symmetry is broken. We continue by
studying an SU(2) preserving example, in which we interpolate
smoothly from the S = 2 AKLT state to a fully dimerized
state. The same construction fails for S = 1, suggesting that
in this case the topological phase is protected in the presence
of sufficient symmetry, in agreements with our conclusion that
the odd-spin and even-spin states are distinct phases. Finally,
we analyze a spin ladder example, in which an interpolation
from an S = 2 AKLT state to a trivial state without breaking
any symmetry is possible.

1. From S = 2 AKLT to large-D limit

Let us present an explicit interpolation between the trivial
state |D〉 [Eq. (2)] and an even-S AKLT state, in terms of
MPS. We focus on the S = 2 case as the simplest example.
We take the standard Sz basis so that mj = −2,−1,0,1,2 can
be identified with the eigenvalue of Sz

j . We take χ = 3 as
for the S = 2 AKLT state and choose the matrices Am as a
function of a parameter t :

Am(t) ≡ tAAKLT
m + (1 − t)δm,0

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ . (15)

Here, AAKLT
m is the MPS representation for the S = 2 AKLT

state:32

∑
m

AAKLT
m |m〉= 1√

10

⎛
⎝ |0〉 √

3|1〉 √
6|2〉

−√
3|−1〉 −2|0〉 −√

3|1〉√
6|−2〉 √

3|−1〉 |0〉

⎞
⎠.

(16)

By construction, the resulting MPS state |�(t)〉 coincides with
the S = 2 AKLT state at t = 1, and reduces to the trivial state
|D〉 at t = 0. |�(t)〉 is not invariant under the global SU(2)
symmetry, except at t = 1. On the other hand, it respects U (1)
symmetry (conservation of total Sz), translation symmetry,
global D2 symmetry, time-reversal symmetry, and inversion
symmetry. Although Am(t) itself is not in the canonical form26

of the MPS, for 0 < t � 1, it can be transformed to it.
Thus, if |ε2| < 1 holds for t in this range, the correlation

length remains finite and the path represents an adiabatic
evolution without a phase transition. On the other hand, if
|ε2| = 1 occurs at a value of t in 0 < t < 1, the correlation
length diverges, signaling a phase transition.

The eigenvalue spectrum of E for the interpolating MPS
(15) can be obtained analytically as a function of t , using
MATHEMATICA. (The explicit expressions are lengthy and thus
omitted here.) The analytic expressions are plotted in Fig. 3.
The largest eigenvalue (without degeneracy) is unity for all
values of t , as expected. Clearly, the absolute value of all
the other eigenvalues are smaller than 1. Thus the correlation
length remains finite for 0 � t � 1 and has no discontinuities,
implying that the S = 2 AKLT state is connected adiabatically
to the trivial state |D〉, without crossing any quantum phase
transition. Moreover, the general theorem of Ref. 26 ensures
that |�(t)〉 is the unique ground state of a Hamiltonian with
only short-range interactions and there is a nonvanishing
excitation gap. Thus the apparent nontrivial structure in the
even-S AKLT states is rather fragile; these states can be
adiabatically connected to a trivial state even while preserving
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FIG. 3. (Color online) Eigenvalue spectrum of the transfer matrix
[completely positive map (11)] for the interpolating MPS defined in
(15). Except for the largest eigenvalue (unity), all the eigenvalues
have an absolute value smaller than 1 for 0 � t � 1, implying finite
correlation length. Thus the trivial state |D〉 at t = 0 and the S = 2
AKLT state at t = 1 are adiabatically connected without any phase
transition.

inversion, D2, and time-reversal symmetries. This is in sharp
contrast to the odd-S case.

2. From the AKLT state to a dimerized phase

In the particular example above we used an SU(2)-breaking
path to connect the S = 2 AKLT state adiabatically to a trivial
state. As explained in Secs. III A and III B, however, we
expect that even if SU(2) symmetry is respected, an even-S
AKLT state can be adiabatically connected to a trivial state,
if translational symmetry is broken. (Note that as long as
translational symmetry is retained, there is no path connecting
the AKLT state to a site-factorizable one, but for a trivial
reason: There is no site-factorizable state with SU(2) symmetry
for S > 0.)

We demonstrate this by constructing a continuous path
in MPS space between an S = 2 AKLT state and a fully
dimerized state. The explicit form of the MPS |� (t)〉 used
to interpolate between the dimerized state at t = 0 and a
uniform AKLT state for t = 1 is given for general spin S

in the Appendix [see Fig. 4 (a)]. The state |� (t)〉 is invariant
under SU(2) and inversion for any value of t . To show that the
correlation length remains finite throughout the path, we have
diagonalized numerically the transfer matrix corresponding to
|�t 〉 [Eq. (14)], for a range of values between t = 0 and 1.
The results for the are shown in Fig. 4(b). As can be seen in
the figure, although the correlation length is large, it remains
finite for any 0 � t � 1.

3. Spin ladders

In order to illustrate the arguments in an especially intuitive
way, we contrast S = 1

2 and S = 1 two-leg ladder systems. The
Hamiltonian is given by

H = Jleg

∑
i

{S1,i · S1,i+1 + S2,i · S2,i+1} + Jrung

∑
i

S1,i · S2,i ,

(17)

with the rung and leg couplings Jrung and Jleg, respectively.
This Hamiltonian has been studied extensively in the literature
for both S = 1

2 and S = 1 (for example, see Refs. 33–37).
Here, we are interested in the case where we continuously

(a)

(b)

FIG. 4. (Color online) (a) Dimerized state of spin-S singlets on
every second bond at t = 0 and the AKLT state formed by S/2 singlets
on every bond at t = 1. (b) Eigenvalue spectrum of the two-site
transfer matrix along the path connecting the fully dimerized state
and the AKLT state for the spin S = 2 chain (see text for details).

tune the coupling Jrung on the rungs from negative to positive
values while we keep the coupling on the legs constant
(Jleg = 1). In the limit of Jrung → −∞, the system maps to
a 2S Heisenberg model. If Jrung → ∞, the spins form rung
singlets, and the ground state is a product state. In the S = 1

2
case, the point Jrung = 0 is a critical point because the systems
corresponds to two decoupled S = 1

2 Heisenberg chains, each
having gapless excitations. Thus the two limits cannot be
connected adiabatically, at least through this path. In the S = 1
case, the point Jrung = 0 corresponds to two decoupled S = 1
Heisenberg chains which are gapped. Furthermore, previous
Monte Carlo studies35 have shown that the correlation length
remains finite along the entire path. Thus the two limits are
connected adiabatically. This is in agreement with the above
arguments: The S = 1 Heisenberg model cannot be connected
to a trivial product state while the S = 2 Heisenberg point can.

We used the infinite time evolving block decimation
(iTEBD)27 algorithm to numerically calculate the entangle-
ment spectrum along the path connecting the two limits
(see Fig. 5). The results are presented as a function of
R = Jrung/(Jleg + |Jrung|) for Jleg > 0. In the case of S = 1

2 ,
we clearly observe the predicted twofold degeneracy in the
Haldane phase.9 At the critical point R = 0, the entanglement
spectrum collapses to one point, and for positive R, the
entanglement spectrum has no double degeneracies anymore.

In the S = 1 case, the systems remains gapped along the
entire path and no divergence occurs, in agreement with the
results of Ref. 35. Note that, in this case, the lowest entangle-
ment level is threefold degenerate for R < 0, corresponding
to an effective S = 1 edge state, as expected in an S = 2
AKLT state. However, this edge degeneracy is not sufficient to
distinguish the AKLT state from the trivial (rung singlet) phase.
Indeed, at R = 0, a level crossing occurs in the entanglement
spectrum, and for R > 0 the lowest entanglement level is
singly degenerate, and the gap in the entanglement spectrum

075125-6



SYMMETRY PROTECTION OF TOPOLOGICAL PHASES IN . . . PHYSICAL REVIEW B 85, 075125 (2012)

(a)

(b)
−0.5 0 0.5

0

2

4

6

R

−
2 

ln
 (

λ α)

Haldane Rung Singlet

Spin−1/2 Ladder 

(c)
−0.5 0 0.5

0

1

2

3

4

5

R

−
2 

ln
 (

λ α)

Spin−1 Ladder 

FIG. 5. (Color online) (a) Ladder geometry used for the calcu-
lation. Entanglement spectra for (b) S = 1

2 and (c) S = 1 ladders.
The entanglement spectrum is plotted vs the ratio R = Jrung/(Jleg +
|Jrung|) for Jleg > 0. Thus R = −1 corresponds to infinite ferromagnet
coupling on the rungs and R = 1 to infinite antiferromagnet cou-
plings. The number of dots on each level indicates its degeneracy.

increases monotonically with R, reaching that of the trivial
state for R → ∞. Such a level crossing in the entanglement
spectrum can occur without a bulk phase transition. In this
sense, the existence of an edge state generally does not define
a phase.

The difference between the two situations can be summa-
rized as in Fig. 6. In the Haldane phase, the entire entanglement
spectrum is at least doubly degenerate.9 Therefore, even if
level crossings occur, the lowest entanglement level is always
doubly degenerate. This degeneracy is related to an edge state,
in the presence of global D2 or time-reversal symmetry. Such
an edge state is robust and signals a distinct phase. In the
presence of time-reversal symmetry, the protection of the edge
state could also be understood as a consequence of the Kramers
degeneracy at the edge; all the energy levels at the edge are
doubly degenerate and thus the edge state persists even in the
presence of a level crossing at the boundary. The degeneracy
of the lowest entanglement level or the edge state can be
eliminated only via a bulk phase transition (in the presence
of an appropriate symmetry), such as the critical point R = 0
of the two-leg S = 1

2 ladder. This difference between robust
and nonrobust edge states is also useful in understanding more
complicated systems such as spin tubes.38

As a final remark, we comment on the relation of our results
to those of Anfuso and Rosch.39 They constructed a path in
the parameter space of a fermionic spin- 1

2 two-leg ladder
model which adiabatically connects the S = 1 Heisenberg
point (described as a Mott insulator with strong ferromagnetic
interactions across the rungs) with a trivial product state (a

FIG. 6. Schematic diagrams of evolution of entanglement spectra.
In the trivial phase (upper panel), the degeneracy of the lowest
entanglement level can change, for example, between unity and 3
(which is indeed the case when R changes sign, in the S = 1 two-leg
ladder discussed in the text). This means that the edge state with
S = 1 can appear and disappear without a bulk phase transition. In
contrast, in the Haldane phase (lower panel), the entire entanglement
spectrum is doubly degenerate. Thus the lowest entanglement level is
always doubly degenerate, which implies existence of an edge state.
The edge state can be removed only via a bulk phase transition (in
the presence of an appropriate symmetry described in the text).

band insulator). The Hamiltonian along this path is time-
reversal and D2 symmetric, in apparent contradiction with
our results for the odd-S AKLT state. (Their model breaks
inversion symmetry explicitly along the path.) The reason for
this discrepancy is that the model of Anfuso et al. includes the
possibility of charge fluctuations; i.e., the elementary objects
are not odd-S spins, but mobile S = 1

2 fermions. In that case,
one cannot define uniquely the parity of S

2 on a given site; even
in the Mott insulator phase, virtual fluctuations in the fermion
number can switch the site from integer to half integer S.
Therefore, the arguments presented above for protection by
time-reversal or D2 symmetries, which relied crucially on the
fact that every site has a well-defined spin, break down. In
contrast, in the models we consider here, we assume that the
particles are immobile, and therefore the local spin is well
defined. On the other hand, in the presence of a lattice inversion
symmetry, we expect that the Haldane phase is still robust as
a topological phase, even in fermionic models. This does not
contradict with Ref. 39, as their model breaks the inversion
symmetry explicitly.

V. CONCLUSIONS

To summarize, we have shown that the topological phase
in the odd-S AKLT state is protected as long as either
time-reversal, link-centered inversion, or global D2 rotational
symmetry is preserved. This symmetry protection, which
has been argued before9 on the basis of properties of the
entanglement states, is shown to follow from simple physical
arguments: The D2 protection is a result of the hidden
symmetry breaking in the AKLT state;19 protection by time-
reversal symmetry is related to the Kramers degeneracy due to
the effective half-integer edge spin in an odd-S AKLT state;
and the protection by link inversion follows from the odd
parity of this state under inversion. Note that none of the above
arguments depends on translational symmetry.

In contrast, we argue that even-S AKLT states are fun-
damentally different. Even in the presence of all the above-
mentioned symmetries, this state is adiabatically connectable
to a trivial state, as we demonstrated explicitly using a path
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in the MPS space. A similar adiabatic connection between the
S = 2 AKLT state and a trivial state is suggested recently in
the analysis of finite-length S = 2 chains with both exchange
and single-ion anisotropy.40 Even if the full SU(2) invariance
is maintained along the path, we have demonstrated that an
even-S AKLT state is adiabatically connectable to a trivial
dimerized state with broken translational symmetry.

Our analysis can be extended to more general one-
dimensional quantum spin systems, such as chains with
bond alternation, spin ladders, and tubes. In the AKLT-type
construction based on valence bonds, when a “cut” (such
as the vertical line in Fig. 2) is crossed by an odd number
of valence bonds, the state has a robust topological phase
protected by either time-reversal or link-inversion symmetry,
thanks, respectively, to the edge Kramers degeneracy or the odd
parity with respect to link inversion. For example, the n-leg
S = 1 Heisenberg ladder, in the weak rung coupling limit
(where each chain becomes independent), is topologically
distinct from a product state when n is odd. The topological
phase survives at a finite rung coupling (persisting until the
system passes through a quantum transition) provided that
either time-reversal or link inversion is kept.
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APPENDIX: MPS PATH FROM A DIMERIZED STATE
TO THE AKLT STATE

In this Appendix, we construct a path between a fully
dimerized state (a broken translational symmetry state in which
every pair of spins are coupled in a singlet) and an AKLT state,
for general spin S, which remains gapped when the spin is
even. The path is parametrized by a parameter t , where t = 0
corresponds to the fully dimerized state and t = 1 corresponds
to the AKLT state. The MPS along the path is of the form

|�〉 =
∑

m1,...,mL

Tr
[
Am1 (t)Bm2 (t) · · ·AmL−1 (t)BmL

(t)
]

× |m1, . . . ,mL〉, (A1)

where the matrices Am(t), Bm(t) are given by

Am(t) =
(

tA11
m t(1 − t)A12

m

t(1 − t)A21
m (1 − t)A22

m

)
,

Bm (t) =
(

tB11
m t(1 − t)B12

m

t(1 − t)B21
m (1 − t)B22

m

)
.

Here, A11
m is an (S + 1) × (S + 1) matrix, A12

m is (S + 1) ×
1, A21

m is (2S + 1) × (S + 1), and A22
m is (2S + 1) × 1. The

dimensions of B
ij
m are the same as those of (Aji

m )T .
As t varies from 1 to 0, the state evolves from the AKLT

state, which corresponds to the upper left blocks of the A and
B matrices, into the dimerized state, which is defined by the
lower right block of A, B. For intermediate values of t , the
off-diagonal blocks A12, A21, B12, B21 mix these two states
together.

The matrix elements of the matrices A11
m ,B11

m are given by[
A11

m

]
α,β

= [
B11

m

]
α,β

= (−1)β〈S/2,α,S/2,β; S,m〉, (A2)

where 〈j1,m1,j2,m2; J,M〉 are Clebsch-Gordan coefficients,
and we index the matrix elements by α,β = −S/2, . . . ,S/2.
The matrices A11

m ,B11
m are exactly the matrices of the AKLT

state in Eq. (16).
Similarly, the matrix elements of the other matrices are[

A12
m

]
α,β

= [
B21

m

]
α,β

= 0, (A3)

[A21]α,β = (−1)β〈S,α,S/2,β; S,m〉,
(A4)[

B12
m

]
α,β

= (−1)β〈S/2,α,S,β; S,m〉,

[A22]α,β = (−1)β〈S,α,0,β; S,m〉,
(A5)[

B22
m

]
α,β

= (−1)β〈0,α,S,β; S,m〉.
Now for odd S, this path fails (as we expect) to be

continuous. The matrix A21 vanishes because it is not possible
to make a spin S state (which is an integer) out of integer- and
half-integer spin particles S and S/2. Thus, the AKLT state
and the dimerized state are not combined with one another
in any way, and the transition is discontinuous. The state is
just tN |AKLT〉 + (1 − t)N |Dimerized〉; at a certain value of
t = tc, the two terms have equal weights. Everywhere else,
one of the two terms is exponentially bigger than the other,
so the correlation functions change discontinuously from the
AKLT state’s correlation functions to the dimerized state’s
correlation function. [The correlation length of the MPS cannot
be calculated using Eq. (12) in this case because the state is
not a pure state in the sense of Ref. 31.]
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