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Systematic low-energy effective field theory for magnons and holes in an antiferromagnet
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Based on a symmetry analysis of the microscopic Hubbard and t-J models, a systematic low-energy effective
field theory is constructed for hole-doped antiferromagnets on the honeycomb lattice. In the antiferromagnetic
phase, doped holes are massive due to the spontaneous breakdown of the SU(2)s symmetry, just as nucleons
in Quantum Chromodynamics (QCD) pick up their mass from spontaneous chiral symmetry breaking. In the
broken phase, the effective action contains a single-derivative term, similar to the Shraiman-Siggia term in the
square lattice case. Interestingly, an accidental continuous spatial rotation symmetry arises at leading order. As an
application of the effective field theory, we consider one-magnon exchange between two holes and the formation
of two-hole bound states. As an unambiguous prediction of the effective theory, the wave function for the ground
state of two holes bound by magnon exchange exhibits f -wave symmetry.
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I. INTRODUCTION

The physics of correlated electron systems is strongly
influenced by the geometry of the underlying crystal lattice.
For example, at weak coupling, the half-filled Hubbard model
on the honeycomb lattice is a semimetal with massless
fermion excitations residing in two Dirac cones. This situation
is realized in graphene. At stronger coupling, the SU(2)s
symmetry breaks spontaneously and the system becomes an
antiferromagnet, which may be realized in the dehydrated
version of Na2CoO2 × yH2O. On a square lattice, on the other
hand, due to Fermi surface nesting, the system is an anti-
ferromagnet even at arbitrarily weak coupling. Upon doping,
antiferromagnets on both the square and the honeycomb lattice
may become high-temperature superconductors. Recently, a
spin-liquid phase was identified in numerical simulations
between the free-fermion-graphene and the strongly correlated
antiferromagnetic phases.1

The low-energy physics of undoped antiferromagnets on a
bipartite lattice is described by an O(3)-symmetric nonlinear
σ model,2 whose systematic treatment is realized in magnon
chiral perturbation theory.3–8 The effective theory for holes
doped into an antiferromagnet on the square lattice was
pioneered by Shraiman and Siggia.9 In particular, these authors
found an important term in the magnon-hole action known
as the Shraiman-Siggia term. Based on the microscopic t-J
model, interesting results on magnon-mediated forces between
holes were obtained in Ref. 10 and spiral phases were studied in
Refs. 11 and 12. In analogy to baryon chiral perturbation theory
for Quantum Chromodynamics (QCD),13–17 a systematic low-
energy effective field theory for magnons and holes was
constructed in Refs. 18 and 19. This theory has been used
in a detailed analysis of two-hole states bound by one-magnon
exchange19,20 as well as of spiral phases.21 The systematic
effective field theory investigations have also been extended to

electron-doped antiferromagnets.22 In that case, no Shraiman-
Siggia-type term (with just a single spatial derivative) exists.
Hence at low-energy, magnon-electron couplings are weaker
than magnon-hole couplings. As a consequence, in contrast
to hole-doped systems, in electron-doped systems there are
no spiral phases with a helical structure in the staggered
magnetization.22

In this paper, we construct a systematic low-energy effective
field theory for hole-doped antiferromagnets on the honey-
comb lattice. In the antiferromagnetic phase, the SU(2)s spin
symmetry is spontaneously broken and the fermions pick up a
mass. This is analogous to QCD where protons and neutrons
pick up their masses due to spontaneous chiral symmetry
breaking. Our analysis shows that the effective theory on the
honeycomb lattice contains a term similar to the Shraiman-
Siggia term in the square lattice case,9 which supports spiral
phases. Remarkably, the leading terms of the effective theory
have an accidental continuous rotation symmetry, which is
reduced to the discrete 60◦ rotation symmetry O of the
microscopic honeycomb lattice only by the higher-order terms.
While spiral phases in hole-doped antiferromagnets on the
honeycomb lattice were explored in Ref. 23, here—as a further
application of the effective field theory method—we derive the
one-magnon exchange potentials between two holes and study
the formation of two-hole bound states, which will turn out to
have f -wave symmetry.

The rest of the paper is organized as follows. Section II
contains a symmetry analysis of the underlying Hubbard
and t-J models. Section III is devoted to the low-energy
effective theory for magnons—in particular, a nonlinear
realization of the SU(2)s spin symmetry is constructed. Based
on the microscopic t-J model, in Sec. IV, we include the holes
in the effective field theory framework. A reader less interested
in the detailed symmetry analysis underlying the construction
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of the effective theory, may skip Sec. III as well as Sec. IV A,
and may proceed directly to Sec. IV B, which contains the
magnon-hole Lagrangian on which the applications in the
rest of the paper are based. In Sec. V, one-magnon exchange
potentials between two holes are derived and the resulting
two-hole bound states are investigated in Sec. VI. Finally,
Sec. VII contains our conclusions.

II. MICROSCOPIC THEORY

We assume that the Hubbard and the t-J -models are reliable
models to describe doped quantum antiferromagnets, and
therefore are valid as concrete microscopic models for the
low-energy effective field theory for magnons and holes. Due
to the fact that the effective Lagrangian to be constructed must
inherit all symmetries of the underlying microscopic systems,
a careful symmetry analysis of these microscopic models is
presented in this section.

A. Symmetries of the honeycomb lattice

The honeycomb lattice is not a Bravais lattice—rather, it
consists of two triangular Bravais sublattices A and B, as
depicted in Fig. 1. The primitive vectors that generate the
triangular sublattices in coordinate space are given by

a1 =
√

3a

(√
3

2
,
1

2

)
, a2 =

√
3a(0,1), (2.1)

where a is the lattice spacing between two neighboring sites.
The two basis vectors b1 and b2 that span the reciprocal lattice
obey

aibj = 2πδij , (2.2)

a1

a2

x1

x2

x1

x2

FIG. 1. Bipartite non-Bravais honeycomb lattice consisting of
two triangular Bravais sublattices. The translation vectors are a1

and a2.

and are given by

b1 = 4π

3a
(1,0), b2 = 4π

3a

(
− 1

2
,

√
3

2

)
. (2.3)

The vectors b1 and b2 generate the hexagonal first Brillouin
zone of the triangular lattice. Since the honeycomb lattice
consists of two triangular sublattices, its momentum space is
doubly covered.

The honeycomb lattice exhibits a number of discrete
symmetries. Translations by the vectors ai are denoted by
Di . Counterclockwise rotations by 60◦ around the center of
a hexagon are denoted by O, and reflections at the x1 axis
going through the center of the hexagon are denoted by
R. Translations by other distance vectors, rotations by other
angles or around other centers, and reflections with respect to
other axes can be obtained as combinations of the elementary
symmetry operations D1, D2, O, and R.

B. Symmetries of the Hubbard model

Let c
†
xs denote the operator which creates a fermion with

spin s ∈ {↑ ,↓} on a lattice site x = (x1,x2). The corresponding
annihilation operator is cxs . These fermion operators obey the
canonical anticommutation relations

{c†xs,cys ′ } = δxyδss ′ , {cxs,cys ′ } = {c†xs,c
†
ys ′ } = 0. (2.4)

The second quantized Hubbard Hamiltonian is defined by

H = −t
∑
〈x,y〉
s=↑,↓

(c†xscys + c†yscxs) + U
∑

x

c
†
x↑cx↑c

†
x↓cx↓

−μ′ ∑
x

s=↑,↓

c†xscxs, (2.5)

where 〈x,y〉 indicates summation over nearest neighbors, t is
the hopping parameter, and the parameter U > 0 fixes the
strength of the Coulomb repulsion between two fermions
located on the same lattice site. The parameter μ′ denotes
the chemical potential.

The fermion creation and annihilation operators can be used
to define the following SU(2)s Pauli spinors

c†x = (c†x↑,c
†
x↓), cx =

(
cx↑
cx↓

)
. (2.6)

In terms of these operators, the Hubbard model can be
reformulated as

H = −t
∑
〈xy〉

(c†xcy + c†ycx) + U

2

∑
x

(c†xcx − 1)2

−μ
∑

x

(c†xcx − 1). (2.7)

The parameter μ = μ′ − U
2 controls doping where the

fermions are counted with respect to half-filling.
Since all terms in the effective Lagrangian must be invariant

under all symmetries of the Hubbard model, a careful symme-
try analysis of Eq. (2.7) is needed. Let us divide the symmetries
of the Hubbard model into two categories: continuous sym-
metries [SU(2)s , U(1)Q fermion number and its non-Abelian
extension SU(2)Q], which are internal symmetries of Eq. (2.7),
and discrete symmetries (Di , O, and R), which are symmetry
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transformations of the underlying honeycomb lattice. There
is also time reversal, which is implemented by an antiunitary
operator T . This symmetry will be discussed further in the
effective field theory framework.

In order to construct the appropriate unitary transformation
representing a global SU(2)s spin rotation, we first define the
total SU(2)s spin operator by


S =
∑

x


Sx =
∑

x

c†x

σ
2

cx. (2.8)

The spin symmetry is implemented by the unitary operator

V = exp(i 
η · 
S), (2.9)

which acts on cx as

c′
x = V †cxV = exp

(
i 
η · 
σ

2

)
cx = gcx, g ∈ SU(2)s .

(2.10)

The total spin is conserved and the Hubbard Hamiltonian is
invariant under global SU(2)s spin rotations. This symmetry,
however, is spontaneously broken: the corresponding order
parameter is the staggered magnetization vector


Ms =
∑

x

(−1)x 
Sx, (2.11)

which takes a nonzero expectation value in the ground state
of the antiferromagnet. We define (−1)x = 1 for all x ∈ A
and (−1)x = −1 for all x ∈ B, where A and B are the two
triangular sublattices of the honeycomb lattice.

The unitary transformation of the U(1)Q symmetry involves
the charge operator

Q =
∑

x

Qx =
∑

x

(c†xcx − 1) =
∑

x

(c†x↑cx↑ + c
†
x↓cx↓ − 1),

(2.12)

which counts the fermion number with respect to half-filling.
The corresponding unitary operator is given by

W = exp (iωQ), (2.13)

and the fermion operators transform as

Qcx = W †cxW = exp (iω)cx, exp (iω) ∈ U(1)Q. (2.14)

Charge or fermion numbers are conserved due to [H,Q] = 0.
The Hubbard model shows invariance under shifts along the

two primitive lattice vectors a1 and a2. These transformations
are generated by the unitary operators Di , which act on the
spinor cx as

Di cx = D
†
i cxDi = cx+ai

. (2.15)

By applying Eq. (2.15) on the Hubbard Hamiltonian of
Eq. (2.7) and redefining the sum over lattice sites x, one can
see that indeed [H,Di] = 0. Since the shift symmetry maps
A → A and B → B, this transformation does not affect the
order parameter 
Ms .

A spatial rotation by 60◦ leaves Eq. (2.7) invariant. Since
spin-orbit coupling is neglected in the Hubbard model, spin
decouples from the spatial motion and becomes an internal
quantum number. The rotation symmetry is implemented by

the use of a unitary operator O, which acts on the fermion
operators as

Ocx = O†cxO = cOx. (2.16)

Rotation symmetry on the honeycomb lattice is spontaneously
broken because O exchanges the two sublattices A ↔ B, and
therefore the staggered magnetization 
Ms gets flipped. This
is, however, just the same as redefining the sign of (−1)x and
does therefore not change the physics. In the construction of
the effective field theory for magnons and holes, it will turn
out to be useful to also consider the combined symmetry O ′
consisting of a spatial rotation O and a global SU(2)s spin
rotation g = iσ2. O ′ transforms cx as

O ′
cx = O

′†cxO
′ = (iσ2) Ocx = (iσ2)cOx. (2.17)

The specific SU(2)s element g = iσ2 corresponds to a global
spin rotation by 180◦ and thus flips back 
Ms , such that, in
fact, at the end the order parameter is not affected by O ′. As
opposed to the honeycomb lattice case, 
Ms changes sign under
the shift symmetry Di on a bipartite square lattice.18 In this
case, a combined shift symmetry D′

i leaves the ground state
invariant. Since on the square lattice a 90◦ rotation O maps
sublattices A → A and B → B, in that case, the ground state
is not affected by a rotation by an angle of 90◦.

Finally, the Hubbard Hamiltonian is invariant under the
reflection R at the x1 axis shown in Fig. 1. Under this
transformation, the fermion operators transform as

Rcx = R†cxR = cRx. (2.18)

Since R maps the two sublattices onto themselves, 
Ms remains
invariant.

In Refs. 24 and 25, Yang and Zhang proved the existence
of a non-Abelian extension of the U(1)Q fermion number
symmetry in the half-filled Hubbard model. This pseudospin
symmetry contains U(1)Q as a subgroup. The SU(2)Q sym-
metry is realized on the square as well as on the honeycomb
lattice and is generated by the three operators

Q+ =
∑

x

(−1)xc†x↑c
†
x↓, Q− =

∑
x

(−1)xcx↓cx↑,

(2.19)

Q3 =
∑

x

1

2
(c†x↑cx↑ + c

†
x↓cx↓ − 1) = 1

2
Q.

The factor (−1)x again distinguishes between the two sublat-
tices A and B of the honeycomb lattice. Defining Q1 and Q2

through Q± = Q1 ± iQ2, one readily shows that the SU(2)Q
Lie-algebra [Qa,Qb] = iεabcQ

c, with a,b,c ∈ {1,2,3}, indeed
is satisfied and that [H, 
Q] = 0 with 
Q = (Q1,Q2,Q3) for the
Hubbard Hamiltonian with μ = 0.

In order to write the Hubbard Hamiltonian (2.5) or (2.7) in a
manifestly invariant form under SU(2)s × SU(2)Q, we arrange
the fermion operators in a 2 × 2 matrix-valued operator,
arriving at the fermion representation

Cx =
(

cx↑ (−1)x c
†
x↓

cx↓ −(−1)x c
†
x↑

)
. (2.20)
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The SU(2)Q transformation behavior of Eq. (2.20) can now be
worked out by applying the unitary operator W= exp (i 
ω· 
Q),


QCx = W †CxW = Cx�
T , (2.21)

with

� = exp

(
i 
ω · 
σ

2

)
∈ SU(2)Q. (2.22)

Under an SU(2)s spin rotation, Cx transforms exactly like cx ,
i.e.,

C ′
x = gCx, g ∈ SU(2)s . (2.23)

Applying an SU(2)s × SU(2)Q transformation to Eq. (2.20)
then leads to


QC ′
x = gCx�

T . (2.24)

Since the SU(2)s spin symmetry acts from the left and the
SU(2)Q pseudospin symmetry acts from the right onto the
fermion operator, it is now obvious that these two non-Abelian
symmetries commute with each other. Under the discrete
symmetries of the Hubbard model, Cx has the following
transformation properties:

Di : DiCx = Cx+ai
,

O : OCx = COxσ3,
(2.25)

O ′ : O ′
Cx = (iσ2) COxσ3,

R : RCx = CRx.

In terms of Eq. (2.20), we are now able to write down the
Hubbard Hamiltonian in the manifestly SU(2)s , U(1)Q, Di ,
O, O ′, and R invariant form

H = − t

2

∑
〈xy〉

Tr(C†
xCy + C†

yCx) + U

12

∑
x

Tr(C†
xCxC

†
xCx)

− μ

2

∑
x

Tr(C†
xCxσ3). (2.26)

The σ3 Pauli matrix in the chemical potential term prevents
the Hubbard Hamiltonian from being invariant under SU(2)Q
away from half-filling. For μ = 0, SU(2)Q is explicitly broken
to its subgroup U(1)Q. In addition, the pseudospin symmetry
is realized in Eq. (2.26) only for nearest-neighbor hopping.
As soon as next-to-nearest-neighbor hopping is included, the
SU(2)Q invariance gets lost even for μ = 0. The continuous
SU(2)Q symmetry contains a discrete particle-hole symmetry.
Although this pseudospin symmetry is not present in real
materials, it will play an important role in the construction
of the effective field theory. The identification of the final
effective fields for holes will lead us to explicitly break the
SU(2)Q symmetry in Sec. IV.

C. Symmetries of the t- J model

Away from half-filling and for U � t , the Hubbard model
reduces to the t-J model, which is defined by the Hamiltonian

H = P

⎡
⎣−t

∑
〈xy〉

(c†xcy + c†ycx) + J
∑
〈xy〉


Sx · 
Sy

− μ
∑

x

(c†xcx − 1)

]
P. (2.27)

Using second-order perturbation theory, the antiferromagnetic
exchange coupling J is related to the parameters of the
Hubbard model by J = 2t2/U > 0. Again, t is the hopping
amplitude, 
Sx is the SU(2)s spin operator on a site x, and μ

controls the doping with respect to a half-filled system. The
projection operator P removes all doubly occupied sites from
the Hilbert space and hence the t-J model can only be doped
with holes. In Ref. 26, the single-hole sector of the t-J model
was simulated on the honeycomb lattice by using an efficient
loop-cluster algorithm. For the construction of the effective
theory for a hole-doped antiferromagnet, the t-J model will
serve as the microscopic starting point. Except for the SU(2)Q
symmetry, this model shares all symmetries with the more
general Hubbard model.

III. EFFECTIVE THEORY FOR MAGNONS

In this section, we investigate the low-energy physics of
an undoped quantum antiferromagnet. We will first argue that
quantum antiferromagnets are systems featuring a spontaneous
SU(2)s → U(1)s symmetry breakdown, which induces two
massless Goldstone bosons—the magnons. We present the
leading-order effective action for the pure magnon sector of
an antiferromagnet on the honeycomb lattice. In addition,
a nonlinear realization of the spontaneously broken SU(2)s
spin symmetry is constructed, which will enable us to couple
magnons and doped holes in Sec. IV.

A. Low-energy effective action for magnons

In quantum antiferromagnets the symmetry group G =
SU(2)s of global spin rotations is spontaneously broken by
the formation of a staggered magnetization. The ground state
of these systems is invariant only under spin rotations in the
subgroup H = U(1)s . As a consequence of the spontaneous
global symmetry breaking, there are two magnons that are
described by a unit-vector field


e(x) = (e1(x),e2(x),e3(x)) ∈ S2, 
e(x)2 = 1, (3.1)

in the coset space, G/H = SU(2)s/U(1)s = S2. Here, x =
(x1,x2,t) denotes a point in Euclidean space time. The low-
energy physics of an undoped antiferromagnet can be com-
pletely described in terms of the field 
e(x), which represents
the direction of the local staggered magnetization.

Later, we will couple magnons to holes. Since holes have
spin 1/2 and are thus described by two-component fields, it is
convenient to work with a CP(1) representation instead of the
O(3) vector representation for the magnon field. We introduce
the 2 × 2 Hermitian projection matrices P (x) defined by

P (x) = 1

2
[1 + 
e(x) · 
σ ]

= 1

2

(
1 + e3(x) e1(x) − ie2(x)

e1(x) + ie2(x) 1 − e3(x)

)
, (3.2)
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obeying

P (x)† = P (x), Tr[P (x)] = 1, P (x)2 = P (x). (3.3)

In terms of P (x), to lowest order in a systematic derivative
expansion, the effective action for magnons is given by

S[P ] =
∫

d2x dt ρsTr

(
∂iP ∂iP + 1

c2
∂tP ∂tP

)
. (3.4)

Here, we have introduced two low-energy constants, the spin
stiffness ρs and the spin-wave velocity c. The values of these
low-energy constants have been determined very precisely
using Monte Carlo simulations.27–29 It should be pointed out
that this leading-order contribution to the effective action is
exactly the same as for an antiferromagnet on a square lattice.
Deviations will only show up when higher-order terms with
more derivatives are considered.

We now discuss how the magnon field P (x) transforms
under the various symmetries of the underlying microscopic
models. Under global SU(2)s spin transformations, the stag-
gered magnetization field transforms as

P (x)′ = gP (x)g†. (3.5)

Note that it is invariant under the Abelian and the non-Abelian
fermion number symmetries U(1)Q and SU(2)Q, i.e.,


QP (x) = P (x). (3.6)

Under the displacement Di and the reflection symmetry R, the
sublattices are not interchanged such that

Di P (x) = P (x),
(3.7)

RP (x) = P (Rx).

Under a rotation by 60◦, the staggered magnetization vector
changes sign, i.e., O 
e(x) = −
e(Ox), and therefore

OP (x) = 1
2 [1 − 
e(Ox) · 
σ ] = 1 − P (Ox). (3.8)

Note that in an antiferromagnet on the honeycomb lattice, the
60◦ rotation symmetry is spontaneously broken, whereas in an
antiferromagnet on the square lattice, it is the displacement
symmetry by one lattice spacing that is spontaneously broken.

The above transformation property simplifies under the com-
posed symmetry O ′,

O ′
P (x) = (iσ2) OP (x)(iσ2)† = P (Ox)∗. (3.9)

Under time-reversal T , which turns a space-time point x =
(x1,x2,t) into T x = (x1,x2, − t), the staggered magnetization
changes sign and, as a consequence,

T P (x) = 1 − P (T x). (3.10)

Since also T is a spontaneously broken symmetry, again it is
useful to consider the composed transformation T ′ consisting
of a regular time-reversal T and the specific spin rotation
g = iσ2. Under the unbroken symmetry T ′, the magnon field
P (x) transforms as

T ′
P (x) = (iσ2)T P (x)(iσ2)† = P (T x)∗. (3.11)

The effective action in Eq. (3.4) is invariant under all these
symmetries.

B. Nonlinear realization of the SU(2)s symmetry

In order to couple the fermions to the magnons, i.e., to
the antiferromagnetic order parameter, a nonlinear realization
of the SU(2)s symmetry has been constructed and discussed
in detail in Ref. 18. The spin symmetry is implemented
on the fermion fields by a nonlinear local transformation
h(x) ∈ U(1)s . This local transformation is constructed from the
global transformation g ∈ SU(2)s and the magnon field P (x)
as follows. One first defines a local, unitary transformation
u(x) ∈ SU(2)s that diagonalizes the staggered magnetization
field, i.e.,

u(x)P (x)u(x)† = 1

2
(1 + σ3) =

(
1 0

0 0

)
, u11(x) � 0.

(3.12)

In order to make u(x) uniquely defined, we demand that the
element u11(x) is real and non-negative. Using Eq. (3.2) and
spherical coordinates for 
e(x), i.e.,


e(x) = (sin θ (x) cos ϕ(x), sin θ (x) sin ϕ(x), cos θ (x)),

(3.13)

one obtains18

u(x) = 1√
2[1 + e3(x)]

(
1 + e3(x) e1(x) − ie2(x)

−e1(x) − ie2(x) 1 + e3(x)

)
=

(
cos

[
θ(x)

2

]
sin

[
θ(x)

2

]
exp [−iϕ(x)]

− sin
[

θ(x)
2

]
exp [iϕ(x)] cos

[
θ(x)

2

]
)

.

(3.14)

Note that the local transformation u(x) rotates an arbitrary
staggered magnetization field configuration P (x) into the
specific constant diagonal field configuration with P (x) =
1
2 (1 + σ3). Under a global SU(2)s transformation g the
diagonalizing field u(x) transforms as

u(x)′ = h(x)u(x)g†, u11(x)′ � 0, (3.15)

which implicitly defines the nonlinear symmetry transforma-
tion

h(x)=exp[iα(x)σ3]=
(

exp [iα(x)] 0

0 exp [−iα(x)]

)
∈ U(1)s .

(3.16)
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The transformation h(x) is uniquely defined since we demand
that u11(x)′ is again real and non-negative.

The transformation behavior of the field u(x) can be easily
worked out from the known transformation behavior of P (x).
Since u(x) contains only magnon degrees of freedom, it
transforms trivially under both the Abelian and the non-
Abelian fermion number symmetries U(1)Q and SU(2)Q, i.e.,


Qu(x) = u(x). (3.17)

Under the displacement Di and the reflection symmetry R one
finds

Di u(x) = u(x), Ru(x) = u(Rx). (3.18)

The spontaneous breaking of the 60◦ rotation symmetry O that
takes 
e(x) to −
e(Ox) leads to

Ou(x) = τ (Ox)u(Ox), (3.19)

with

τ (x) = 1√
e1(x)2 + e2(x)2

×
(

0 −e1(x) + ie2(x)

e1(x) + ie2(x) 0

)

=
(

0 − exp [−iϕ(x)]

exp [iϕ(x)] 0

)
. (3.20)

Under the combined symmetry O ′ one finds

O ′
u(x) = u(Ox)∗. (3.21)

Since time reversal T is a spontaneously broken discrete
symmetry in an antiferromagnet, it acts on u(x) as

T u(x) = τ (T x)u(T x). (3.22)

On the other hand, the combined time reversal T ′ is unbroken
and therefore realized in a linear manner, i.e.,

T ′
u(x) = u(T x)∗. (3.23)

Finally, we introduce the composite magnon fields vμ(x)
whose components will be used to couple the magnons to the
fermions. Using the diagonalizing field u(x), we define the
composite magnon field

vμ(x) = u(x)∂μu(x)†, (3.24)

which under SU(2)s transforms as

vμ(x)′ = h(x)u(x)g†∂μ[gu(x)†h(x)†]

= h(x)[vμ(x) + ∂μ]h(x)†. (3.25)

Since the field vμ(x) is traceless and anti-Hermitian, it can be
written as a linear combination of the Pauli matrices σa ,

vμ(x) = iva
μ(x)σa, a ∈ {1,2,3}, va

μ(x) ∈ R. (3.26)

Introducing

v±
μ (x) = v1

μ(x) ∓ iv2
μ(x), (3.27)

we arrive at

vμ(x) = i

(
v3

μ(x) v+
μ (x)

v−
μ (x) −v3

μ(x)

)
. (3.28)

Under global SU(2)s transformations, the components of vμ

transform as

v3
μ(x)′ = v3

μ(x) − ∂μα(x),
(3.29)

v±
μ (x)′ = exp [±2iα(x)]v±

μ (x),

which indicates that v3
μ behaves like an Abelian U(1)s

gauge field, while v±
μ (x) exhibit the behavior of vector fields

“charged” under U(1)s . The transformation properties of the
components v3

μ(x) and v±
μ (x) under the discrete symmetries

can be worked out from the definition of vμ(x) in Eq. (3.24)
as well, and are summarized as follows:

Di : Di v3
μ(x) = v3

μ(x),

O : Ov3
1(x) = 1

2

[−v3
1(Ox) + ∂1ϕ(Ox) − √

3v3
2(Ox)

+
√

3∂2ϕ(Ox)
]
,

Ov3
2(x) = 1

2

[√
3v3

1(Ox) − √
3∂1ϕ(Ox) − v3

2(Ox)

+ ∂2ϕ(Ox)
]
,

Ov3
t (x) = −v3

t (Ox) + ∂tϕ(Ox),

O ′ : O ′
v3

1(x) = − 1
2

[
v3

1(Ox) + √
3v3

2(Ox)
]
,

O ′
v3

2(x) = 1
2

[√
3v3

1(Ox) − v3
2(Ox)

]
,

O ′
v3

t (x) = −v3
t (Ox),

(3.30)
R : Rv3

1(x) = v3
1(Rx),

Rv3
2(x) = −v3

2(Rx),
Rv3

t (x) = v3
t (Rx),

T : T v3
i (x) = −v3

i (T x) + ∂iϕ(T x),
T v3

t (x) = v3
t (T x) − ∂tϕ(T x),

T ′ : T ′
v3

i (x) = −v3
i (T x),

T ′
v3

t (x) = v3
t (T x),

and

Di : Di v±
μ (x) = v±

μ (x),

O : Ov±
1 (x) = − exp [∓2iϕ(Ox)] 1

2 [v∓
1 (Ox)

+
√

3v∓
2 (Ox)],

Ov±
2 (x) = exp [∓2iϕ(Ox)] 1

2 [
√

3v∓
1 (Ox)

− v∓
2 (Ox)],

Ov±
t (x) = − exp [∓2iϕ(Ox)]v∓

t (x),

O ′ : O ′
v±

1 (x) = − 1
2 [v∓

1 (Ox) + √
3v∓

2 (Ox)],
O ′

v±
2 (x) = 1

2 [
√

3v∓
1 (Ox) − v∓

2 (Ox)],
O ′

v±
t (x) = −v∓

t (Ox),
(3.31)

R : Rv±
1 (x) = v±

1 (Rx),
Rv±

2 (x) = −v±
2 (Rx),

Rv±
t (x) = v±

t (Rx),

T : T v±
i (x) = − exp [∓2iϕ(T x)]v∓

i (T x),
T v±

t (x) = exp [∓2iϕ(T x)]v∓
t (T x),

T ′ : T ′
v±

i (x) = −v∓
i (T x),

T ′
v±

t (x) = v∓
t (T x).
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The magnon action of Eq. (3.4) can now be reformulated in
terms of the composite magnon field vμ(x),

S[v±
μ ] =

∫
d2x dt 2ρs

(
v+

i v−
i + 1

c2
v+

t v−
t

)
. (3.32)

At a first glance, the expression v+
μ v−

μ looks like a mass
term of a charged vector field. However, since it contains
derivatives acting on u(x), it is just the kinetic term of a
massless Goldstone boson.

IV. EFFECTIVE THEORY FOR MAGNONS AND HOLES

In this section, we construct a systematic low-energy
effective theory for holes coupled to magnons. As a first
step toward building the effective theory, we identify the
correct low-energy degrees of freedom that describe the holes.
Then the transformation behavior of these fermionic fields is
investigated in great detail. Finally, the most general effective
Lagrangian for magnons and holes is constructed.

A. Fermion fields and their transformation properties

In order to construct the effective theory for hole-doped
antiferromagnets, it is essential to know where the hole pockets
are located in momentum space. The dispersion relation E(k)
for a single hole in the t-J model on the honeycomb lattice
was simulated using an efficient loop-cluster algorithm.26

The result is shown in Fig. 2. This simulation clearly
shows spherically shaped hole pockets centered around (± 2π

3a
,

± 2π

3
√

3a
) and (0, ± 4π

3
√

3a
) in the first Brillouin zone. Therefore

doped holes occupy the two pockets α and β with lattice
momenta

kα = −kβ =
(

0,
4π

3
√

3a

)
. (4.1)

Together with the origin, these two points form a minimal
set of three points in momentum space. The three points in
coordinate space that are related to 0,kα,kβ by a discrete
Fourier transform, define three triangular sublattices A1, A2,
and A3 as well as B1, B2, and B3 on the A and B sublattices
of the honeycomb lattice. The geometry of these six triangular

 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

FIG. 2. The dispersion relation E(k)/t for a single hole in an
antiferromagnet on the honeycomb lattice simulated in the t-J model
for J/t = 2 (see Ref. 26).

x1

x2

B3 B3

B3 B3 B3

B3 B3 B3

B3

B2 B2 B2

B2 B2 B2

B2 B2 B2

B1 B1 B1

B1 B1

B1

B1 B1 B1

A3 A3 A3

A3

A3 A3

A3 A3 A3

A2 A2 A2

A2 A2 A2

A2 A2 A2

A1

A1 A1 A1

A1 A1 A1

A1 A1

FIG. 3. (Color online) {A1,A2,A3} and {B1,B2,B3} sublattice
structure and the corresponding primitive lattice vectors.

sublattices is illustrated in Fig. 3. We now introduce fermionic
lattice operators with a sublattice index X as an intermediate
step between the microscopic and the effective fermion fields,

�X
x = u(x)Cx, (4.2)

with x ∈ X, X ∈ {A1,A2,A3,B1,B2,B3}. The above definition
of �X

x contains the diagonalizing matrix u(x) of Eq. (3.14) and
hence accounts for the nonlinearly realized SU(2)s symmetry
on the effective fermion fields. On even and odd sublattices
the fermion operator has the following components:

�X
x = u(x)

(
cx↑ c

†
x↓

cx↓ −c
†
x↑

)
=

(
ψX

x,+ ψX†
x,−

ψX
x,− −ψX†

x,+

)
,

(4.3)
x ∈ X,X ∈ {A1,A2,A3},

and

�X
x = u(x)

(
cx↑ −c

†
x↓

cx↓ c
†
x↑

)
=

(
ψX

x,+ −ψX†
x,−

ψX
x,− ψX†

x,+

)
,

(4.4)
x ∈ X,X ∈ {B1,B2,B3}.

Note that with the spontaneously broken spin symmetry only
the spin direction relative to the local staggered magnetization
is still a good quantum number. The subscript +(−) then
indicates antiparallel (parallel) spin alignment with respect
to the direction of 
e(x). According to Eqs. (2.23) and (3.15),
under the SU(2)s symmetry one obtains

�X
x

′ = u(x)′C ′
x = h(x)u(x)g†gCx = h(x)�X

x . (4.5)

Similarly, under the SU(2)Q symmetry one finds


Q�X
x = 
Qu(x)


QCx = u(x)Cx�
T = �X

x �T . (4.6)
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The discrete symmetries are implemented on the above
fermionic lattice operators �X

x as

Di : Di �X
x = �

DiX
x+ai

,

O : O�X
x = τ (Ox)�OX

Ox σ3,
(4.7)

O ′ : O ′
�X

x = (iσ2)�OX
Ox σ3,

R : R�X
x = �RX

Rx .

In the effective theory, doped holes are described by
anticommuting matrix-valued Grassmann fields

�X(x) =
(

ψX
+ (x) ψ

X†
− (x)

ψX
− (x) − ψ

X†
+ (x)

)
, X ∈ {A1,A2,A3},

(4.8)

�X(x) =
(

ψX
+ (x) − ψ

X†
− (x)

ψX
− (x) ψ

X†
+ (x)

)
, X ∈ {B1,B2,B3},

consisting of Grassmann field components ψX
± (x) instead of

lattice operators ψX
x,±. We also introduce

�X†(x) =
(

ψ
X†
+ (x) ψ

X†
− (x)

ψX
− (x) −ψX

+ (x)

)
, X ∈ {A1,A2,A3},

(4.9)

�X†(x) =
(

ψ
X†
+ (x) ψ

X†
− (x)

−ψX
− (x) ψX

+ (x)

)
, X ∈ {B1,B2,B3},

consisting of the same Grassmann fields as �X(x). Therefore
�X†(x) is not independent of �X(x). By postulating that the
matrix-valued fields �X(x) transform exactly as the lattice
operator �X

x , one obtains

SU(2)s : �X(x)′ = h(x)�X(x),

SU(2)Q :

Q�X(x) = �X(x)�T ,

Di : Di �X(x) = �DiX(x),

O : O�X(x) = τ (Ox)�OX(Ox)σ3,

O ′ : O ′
�X(x) = (iσ2)�OX(Ox)σ3,

(4.10)
R : R�X(x) = �RX(Rx),

T : T �X(x) = τ (T x)(iσ2)[�X†(T x)T ]σ3,
T �X†(x) = −σ3[�X(T x)T ](iσ2)†τ (T x)†,

T ′ : T ′
�X(x) = −[�X†(T x)T ]σ3,

T ′
�X†(x) = σ3[�X(T x)T ].

Here, the transformation behavior under time reversal T and
T ′ is also listed. The form of the time-reversal symmetry T

for an effective field theory with a nonlinearly realized SU(2)s
symmetry can be deduced from the canonical form of time
reversal in the path integral of a nonrelativistic theory with a
linearly realized spin symmetry. The fermion fields in the two
formulations just differ by a factor u(x). Note, that an upper
index T on the left denotes time reversal, while on the right,
it denotes transpose. In components the transformation rules
take the form

SU(2)s : ψX
± (x)′ = exp [±iα(x)]ψX

± (x),

U(1)Q : QψX
± (x) = exp (iω)ψX

± (x),

Di : Di ψX
± (x) = ψ

DiX± (x),

O : OψX
± (x) = ∓ exp [∓iϕ(Ox)]ψOX

∓ (Ox),

O ′ : O ′
ψX

± (x) = ±ψOX
∓ (Ox),

R : RψX
± (x) = ψRX

± (Rx),

T : T ψX
± (x) = exp [∓iϕ(T x)]ψX†

± (T x),
T ψ

X†
± (x) = − exp [±iϕ(T x)]ψX

± (T x),

T ′ : T ′
ψX

± (x) = −ψ
X†
± (T x),

T ′
ψ

X†
± (x) = ψX

± (T x). (4.11)

Since the spin as well as the staggered magnetization get
flipped under time reversal, the projection of one onto the
other remains invariant.

We now want to directly relate the fermion fields to the
lattice momenta kα and kβ , i.e., to the hole pockets α and β.
The new degrees of freedom are thus labeled with an additional
“flavor” index f ∈ {α,β}. These fields are defined using the
following discrete Fourier transformations:

ψA,f (x) = 1√
3

3∑
n=1

exp (−ikf vn)ψAn(x),

(4.12)

ψB,f (x) = 1√
3

3∑
n=1

exp (−ikf wn)ψBn(x),

where

v1 =
(
− 1

2
a, −

√
3

2
a

)
, v2 = (a,0),

v3 =
(
− 1

2
a,

√
3

2
a

)
, w1 =

(
1

2
a, −

√
3

2
a

)
, (4.13)

w2 = (−a,0), w3 =
(

1

2
a,

√
3

2
a

)
.

The above vectors connect the discrete three-sublattice struc-
ture of A and B in position space with lattice momenta kf in
momentum space (see Fig. 4). The fields with the pocket (or
momentum) index then read

�A,α(x) = 1√
3

[
exp

(
i
2π

3

)
�A1 (x)

+�A2 (x) + exp

(
− i

2π

3

)
�A3 (x)

]
,

�A,β(x) = 1√
3

[
exp

(
−i

2π

3

)
�A1 (x) + �A2 (x)

+ exp

(
i
2π

3

)
�A3 (x)

]
,

(4.14)

�B,α(x) = 1√
3

[
exp

(
i
2π

3

)
�B1 (x) + �B2 (x)

+ exp

(
− i

2π

3

)
�B3 (x)

]
,

�B,β (x) = 1√
3

[
exp

(
− i

2π

3

)
�B1 (x) + �B2 (x)

+ exp

(
i
2π

3

)
�B3 (x)

]
.
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w3v3

w2

v1 w1

v2

FIG. 4. Sublattice vectors from Eq. (4.13).

The Fourier-transformed matrix-valued fields of Eq. (4.14) can
be written as

�A,f (x) = 1√
3

3∑
n=1

exp (−ikf vn)�An(x)

=
(

ψ
A,f
+ (x) ψ

A,f ′†
− (x)

ψ
A,f
− (x) −ψ

A,f ′†
+ (x)

)
,

(4.15)

�B,f (x) = 1√
3

3∑
n=1

exp (−ikf wn)�Bn(x)

=
(

ψ
B,f
+ (x) −ψ

B,f ′†
− (x)

ψ
B,f
− (x) ψ

B,f ′†
+ (x)

)
,

with their conjugated counterparts

�A,f †(x) =
(

ψ
A,f †
+ (x) ψ

A,f †
− (x)

ψ
A,f ′
− (x) −ψ

A,f ′
+ (x)

)
,

(4.16)

�B,f †(x) =
(

ψ
B,f †
+ (x) ψ

B,f †
− (x)

−ψ
B,f ′
− (x) ψ

B,f ′
+ (x)

)
.

The transformation properties of the fields in Eq. (4.14) are

SU(2)s : �X,f (x)′ = h(x)�X,f (x),

SU(2)Q :

Q�X,f (x) = �X,f (x)�T ,

Di : Di �X,f (x) = exp (ikf ai)�
X,f (x),

O : O�A,α(x) = exp

(
−i

2π

3

)
τ (Ox)�B,β (Ox)σ3,

O�A,β(x) = exp

(
i
2π

3

)
τ (Ox)�B,α(Ox)σ3,

O�B,α(x) = exp

(
i
2π

3

)
τ (Ox)�A,β (Ox)σ3,

O�B,β(x) = exp

(
−i

2π

3

)
τ (Ox)�A,α(Ox)σ3,

O ′ : O ′
�A,α(x) = exp

(
−i

2π

3

)
(iσ2)�B,β (Ox)σ3,

O ′
�A,β(x) = exp

(
i
2π

3

)
(iσ2)�B,α(Ox)σ3,

O ′
�B,α(x) = exp

(
i
2π

3

)
(iσ2)�A,β(Ox)σ3,

O ′
�B,β (x) = exp

(
−i

2π

3

)
(iσ2)�A,α(Ox)σ3,

R : R�X,f (x) = �X,f ′
(Rx),

T : T �X,f (x) = τ (T x)(iσ2)[�X,f ′†(T x)T ]σ3,
T �X,f †(x) = −σ3[�X,f ′

(T x)T ](iσ2)†τ (T x)†,

T ′ : T ′
�X,f (x) = −[�X,f ′†(T x)T ]σ3,

T ′
�X,f †(x) = σ3[�X,f ′

(T x)T ]. (4.17)

For the Grassmann-valued components, we read off

SU(2)s : ψ
X,f
± (x)′ = exp [±iα(x)]ψX,f

± (x),

U(1)Q : Qψ
X,f
± (x) = exp (iω)ψX,f

± (x),

Di : Di ψ
X,f
± (x) = exp (ikf ai)ψ

X,f
± (x),

O : Oψ
A,α
± (x) = ∓ exp

(
−i

2π

3

)
exp [∓iϕ(Ox)]

×ψ
B,β
∓ (Ox),

Oψ
A,β
± (x) = ∓ exp

(
i
2π

3

)
exp [∓iϕ(Ox)]

×ψ
B,α
∓ (Ox),

Oψ
B,α
± (x) = ∓ exp

(
i
2π

3

)
exp [∓iϕ(Ox)]

×ψ
A,β
∓ (Ox),

Oψ
B,β
± (x) = ∓ exp

(
−i

2π

3

)
exp [∓iϕ(Ox)]

×ψ
A,α
∓ (Ox),

(4.18)

O ′ : O ′
ψ

A,α
± (x) = ± exp

(
−i

2π

3

)
ψ

B,β
∓ (Ox),

O ′
ψ

A,β
± (x) = ± exp

(
i
2π

3

)
ψ

B,α
∓ (Ox),

O ′
ψ

B,α
± (x) = ± exp

(
i
2π

3

)
ψ

A,β
∓ (Ox),

O ′
ψ

B,β
± (x) = ± exp

(
−i

2π

3

)
ψ

A,α
∓ (Ox),

R : Rψ
X,f
± (x) = ψ

X,f ′
± (Rx),

T : T ψ
X,f
± (x) = exp [∓iϕ(T x)]ψX,f ′†

± (T x),
T ψ

X,f †
± (x) = − exp [±iϕ(T x)]ψX,f ′

± (T x),

T ′ : T ′
ψ

X,f
± (x) = −ψ

X,f ′†
± (T x),

T ′
ψ

X,f †
± (x) = ψ

X,f ′
± (T x).

At the moment, the matrix-valued fermion fields have a
well defined transformation property under SU(2)Q. Therefore
these fields represent both electrons and holes. Since we want
to construct an effective theory for the t-J model, which
contains holes only, a crucial step is to identify the degrees
of freedom that correspond to the holes. In order to remove
the electron degrees of freedom one has to explicitly break the
particle-hole SU(2)Q symmetry, leaving the ordinary fermion
number symmetry U(1)Q intact. This task can be achieved by
constructing all possible fermion mass terms that are invariant
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under the various symmetries. Picking the eigenvectors that
correspond to the lowest eigenvalues of the mass matrices

then allows one to separate electrons from holes. The most
general mass terms read

∑
f =α,β

1

2
Tr[M(�A,f †σ3�

A,f − �B,f †σ3�
B,f ) + m(�A,f †�A,f σ3 + �B,f †�B,f σ3)]

=
∑

f =α,β

[M(ψA,f †
+ ψ

A,f
+ −ψ

A,f †
− ψ

A,f
− +ψ

B,f †
− ψ

B,f
− −ψ

B,f †
+ ψ

B,f
+ )+m(ψA,f †

+ ψ
A,f
+ +ψ

A,f †
− ψ

A,f
− + ψ

B,f †
+ ψ

B,f
+ + ψ

B,f †
− ψ

B,f
− )]

=
∑

f =α,β

[
(ψA,f †

+ , ψ
B,f †
+ )

(M + m 0

0 −M + m

) (
ψ

A,f
+

ψ
B,f
+

)
+ (ψA,f †

− , ψ
B,f †
− )

(−M + m 0

0 M + m

) (
ψ

A,f
−

ψ
B,f
−

)]
. (4.19)

The terms proportional toM are invariant under SU(2)Q while
the terms proportional to m are invariant only under the U (1)Q
fermion number symmetry. Since these matrices are already
diagonal, we can directly read off the eigenvalues that are given
by ±M + m. For m = 0 we have a particle-hole symmetric
situation. The eigenvalue M corresponds to the rest mass of
the electrons, while the rest mass of the holes is given by the
eigenvalue −M. The masses are shifted to ±M + m when
we allow the SU(2)Q breaking term (m = 0), which implies
that the particle-hole symmetry is destroyed. Hole fields now
correspond to the lower eigenvalue −M + m and are identified
by the corresponding eigenvectors ψ

B,α
+ (x), ψB,β

+ (x), ψA,α
− (x),

and ψ
A,β
− (x). One can show that these hole fields and their

conjugated counterparts form a closed set under the various
symmetry transformations. We can thus simplify the notation,
since a hole with spin + (−) is always located on sublattice
B (A). Hence, we drop the sublattice index and the full set
of independent low-energy degrees of freedom describing a
doped hole in an antiferromagnet on the honeycomb lattice is
then given by

ψα
+(x) = ψ

B,α
+ (x), ψ

β
+(x) = ψ

B,β
+ (x),

ψα
−(x) = ψ

A,α
− (x), ψ

β
−(x) = ψ

A,β
− (x),

(4.20)
ψ

α†
+ (x) = ψ

B,α†
+ (x), ψ

β†
+ (x) = ψ

B,β†
+ (x),

ψ
α†
− (x) = ψ

A,α†
− (x), ψ

β†
− (x) = ψ

A,β†
− (x).

Even though SU(2)Q will now no longer be considered as a
symmetry of the effective theory, it was of central importance
for the correct identification of the fields for doped holes.

Under the symmetries of the t-J model, the hole fields
transform as

SU(2)s : ψ
f
±(x)′ = exp [±iα(x)]ψf

±(x),

U(1)Q : Qψ
f
±(x) = exp (iω)ψf

±(x),

Di : Di ψ
f
±(x) = exp (ikf ai)ψ

f
±(x),

O : Oψα
±(x) = ∓ exp

[
± i

2π

3
∓ iϕ(Ox)

]
ψ

β
∓(Ox),

Oψ
β
±(x) = ∓ exp

[
∓ i

2π

3
∓ iϕ(Ox)

]
ψα

∓(Ox),

O ′ : O ′
ψα

±(x) = ± exp

(
± i

2π

3

)
ψ

β
∓(Ox),

O ′
ψ

β
±(x) = ± exp

(
∓ i

2π

3

)
ψα

∓(Ox),

R : Rψ
f
±(x) = ψ

f ′
± (Rx),

T : T ψ
f
±(x) = exp [∓iϕ(T x)]ψf ′†

± (T x),
T ψ

f †
± (x) = − exp [±iϕ(T x)]ψf ′

± (T x),

T ′ : T ′
ψ

f
±(x) = −ψ

f ′†
± (T x),

T ′
ψ

f †
± (x) = ψ

f ′
± (T x). (4.21)

The action to be constructed below must be invariant under all
these symmetries.

B. Low-energy effective Lagrangian for magnons and holes

The terms in the action can be characterized by the number
nψ of fermion fields they contain, i.e.,

S
[
ψ

f †
± ,ψ

f
±,v±

μ ,v3
μ

] =
∫

d2x dt
∑
nψ

Lnψ
. (4.22)

The leading terms in the effective Lagrangian without fermion
fields describe the pure magnon sector and take the form

L0 = 2ρs

(
v+

i v−
i + 1

c2
v+

t v−
t

)
. (4.23)

The leading terms with two fermion fields (containing at
most one temporal or two spatial derivatives), describing the
propagation of holes as well as their couplings to magnons,
are given by

L2 =
∑
f =α,β

s=+,−

{
Mψf †

s ψf
s + ψf †

s Dtψ
f
s + 1

2M ′ Di ψ
f †
s Diψ

f
s

+�ψf †
s

(
isvs

1 + σf vs
2

)
ψ

f
−s

+ iK
[
(D1 + isσf D2)ψf †

s

(
vs

1 + isσf vs
2

)
ψ

f
−s

− (
vs

1 + isσf vs
2

)
ψf †

s (D1 + isσf D2)ψf
−s

]
+ σf Lψf †

s εij f
3
ijψ

f
s + N1ψ

f †
s vs

i v
−s
i ψf

s

+ isσf N2
(
ψf †

s vs
1v

−s
2 ψf

s − ψf †
s vs

2v
−s
1 ψf

s

)}
. (4.24)
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Here, M is the rest mass and M ′ is the kinetic mass of a hole,
� and K are hole-one-magnon couplings, while L, N1, and
N2 are hole-two-magnon couplings. Note that all low-energy
constants are real valued. The sign σf is + for α and − for β.
We have introduced the field strength tensor of the composite
Abelian “gauge” field,

f 3
ij (x) = ∂iv

3
j (x) − ∂jv

3
i (x), (4.25)

and the covariant derivatives Dt and Di acting on ψ
f
±(x) as

Dtψ
f
±(x) = [

∂t ± iv3
t (x) − μ

]
ψ

f
±(x),

(4.26)
Diψ

f
±(x) = [

∂i ± iv3
i (x)

]
ψ

f
±(x).

The chemical potential μ enters the covariant time-derivative
like an imaginary constant vector potential for the fermion
number symmetry U(1)Q. It is remarkable that the term propor-
tional to � with just a single (uncontracted) spatial derivative
satisfies all symmetries. Due to the small number of derivatives
it contains, this term dominates the low-energy dynamics of a
lightly hole-doped antiferromagnet on the honeycomb lattice.
Interestingly, for antiferromagnets on the square lattice, a
corresponding term, which was first identified by Shraiman
and Siggia, is also present in the hole-doped case.19 On the
other hand, a similar term is forbidden by symmetry reasons
in the electron-doped case.22 For the honeycomb geometry,
we even identify a second hole-one-magnon coupling, K ,
whose contribution, however, is subleading. Interestingly, the
field-strength tensor fij appearing in Eq. (4.24) and defined
by Eq. (4.25) is not allowed for hole- or electron-doped
antiferromagnets on the square lattice due to symmetry
constraints.

The dispersion relation for a single free hole of both flavor
α and β can be derived from L2 and is given by

Eα,β (p) = M + p2
i

2M ′ + O(p4), (4.27)

which is just the usual dispersion relation for a free nonrel-
ativistic particle. Note that p = (p1,p2) is defined relative to
the center of the hole pockets. Equation (4.27) confirms that
the two pockets α and β are of circular shape, which is in
agreement with the result of simulating the one-hole sector of
the t-J model on the honeycomb lattice.26

The leading terms without derivatives and with four fermion
fields are given by

L4 =
∑

s=+,−

[
G1

2

(
ψα†

s ψα
s ψ

α†
−sψ

α
−s + ψβ†

s ψβ
s ψ

β†
−sψ

β
−s

)

+G2ψ
α†
s ψα

s ψβ†
s ψβ

s + G3ψ
α†
s ψα

s ψ
β†
−sψ

β
−s

]
. (4.28)

The low-energy four-fermion coupling constants G1, G2, and
G3 again are real valued. Although potentially invariant under
all symmetries, terms with two identical hole fields vanish due
to the Pauli principle.

C. Accidental symmetries

Interestingly, the leading-order terms in the effective
Lagrangian for magnons and holes constructed above feature
two accidental global symmetries. First, we notice that for

c → ∞ and without the term proportional to iK in L2,
Eqs. (4.23), (4.24), and (4.28) have an accidental Galilean
boost symmetry. This symmetry acts on the magnon and hole
fields as

G : GP (x) = P (Gx), Gx = (x1 − v1t,x2 − v2t,t),
Gψ

f
±(x) = exp

( − p
f

i xi + ωf t
)
ψ

f
±(Gx),

Gψ
f †
± (x) = exp

(
p

f

i xi − ωf t
)
ψ

f †
± (Gx),

Gv3
i (x) = v3

i (Gx), (4.29)
Gv3

t (x) = v3
t (Gx) − viv

3
i (Gx),

Gv±
i (x) = v±

i (Gx),
Gv±

t (x) = v±
t (Gx) − viv

±
i (Gx),

with

p
f

1 = M ′v1, p
f

2 = M ′v2, ωf =
(
p

f

i

)2

2M ′ . (4.30)

The Galilean boost velocity 
v can be derived alternatively by
means of the hole dispersion relation in Eq. (4.27) and is given
by vi = dEf /dp

f

i for i ∈ {1,2}. Although the Galilean boost
symmetry is explicitly broken at higher orders of the derivative
expansion, this symmetry has physical implications, namely,
the leading one-magnon exchange between two holes, to be
discussed in the next section, can be investigated in their rest
frame without loss of generality.

In addition, we notice an accidental global rotation sym-
metry O(γ ). Except for the term proportional to iK , L2 of
Eq. (4.24) as well as L4 of Eq. (4.28) are invariant under a
continuous spatial rotation by an angle γ . The involved fields
transform under O(γ ) as

O(γ )ψf
s (x) = exp

(
isσf

γ

2

)
ψf

s [O(γ )x], s = ±,

O(γ )v1(x) = cos γ v1[O(γ )x] + sin γ v2[O(γ )x], (4.31)
O(γ )v2(x) = − sin γ v1[O(γ )x] + cos γ v2[O(γ )x],

with

O(γ )x = O(γ )(x1,x2,t)

= (cos γ x1 − sin γ x2, sin γ x1 + cos γ x2,t).

(4.32)

Here, vi denotes the composite magnon field. This symmetry
is not present in the � term of the square lattice. The O(γ )
invariance has some interesting implications for the spiral
phases in a lightly doped antiferromagnet on the honeycomb
lattice and was investigated in detail in Ref. 23.

V. ONE-MAGNON EXCHANGE POTENTIALS

In the effective theory framework, at low energies, holes
interact with each other via magnon exchange. Since the long-
range dynamics is dominated by one-magnon exchange, we
will calculate the one-magnon exchange potentials between
two holes of the same flavor α and β and of different flavor.
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F. KÄMPFER et al. PHYSICAL REVIEW B 85, 075123 (2012)

In order to address the one-magnon physics, we expand in
the magnon fluctuations m1(x) and m2(x) around the ordered
staggered magnetization


e(x) =
(

m1(x)√
ρs

,
m2(x)√

ρs

,1

)
+ O(m2). (5.1)

For the composite magnon fields, this leads to

v±
μ (x) = 1

2
√

ρs

∂μ[m2(x) ± im1(x)] + O(m3),

(5.2)

v3
μ(x) = 1

4ρs

[m1(x)∂μm2(x) − m2(x)∂μm1(x)] + O(m4).

Since vertices with v3
μ(x) involve at least two magnons, one-

magnon exchange results from vertices with v±
μ (x) only. As a

consequence, two holes can exchange a single magnon only if
they have antiparallel spins (+ and −), which are both flipped
in the magnon-exchange process. We denote the momenta of
the incoming and outgoing holes by 
p± and 
p±′, respectively.
The momentum carried by the exchanged magnon is denoted
by 
q. The incoming and outgoing holes are asymptotic free
particles with momentum 
p = (p1,p2) and energy E( 
p) =
M + p2

i /2M ′. One-magnon exchange between two holes is
associated with the Feynman diagram in Fig. 5.

Evaluating these Feynman diagrams, in momentum space,
one arrives at the following potentials for various combinations
of flavors f,f̃ ∈ {α,β} and couplings F,F̃ ∈ {�,K}

〈 
p′
+ 
p′

−|V f f̃

F F̃
| 
p+ 
p−〉 = V

f f̃

F F̃
(
q )δ( 
p+ + 
p− − 
p′

+ − 
p′
−),

F,F̃ ∈ {�,K}, (5.3)

with

V
ff

��(q) = − �2

2ρs

, V
ff ′
�� (q) = �2

2ρsq2
(iq1 − σf q2)2,

V
ff

KK (q) = − K2

2ρs

[2(p+1 − iσf p+2) − q1 + iσf q2]

× [2(p−1 + iσf p−2) + q1 + iσf q2],

V
ff ′
KK (q) = − K2

2ρsq2
(q1 − iσf q2)2

× [2(p+1 − iσf p+2) − q1 + iσf q2]

× [2(p−1 − iσf p−2) + q1 − iσf q2],

V
ff

�K (q) = − i�K

2ρsq2
(q1 + iσf q2)2

× [2(p−1 + iσf p−2) + q1 + iσf q2],

f+

f̃−

f−

f̃+

p+

q

p−

p− p+

FIG. 5. Tree-level Feynman diagram for one-magnon exchange
between two holes.

V
ff ′
�K (q) = − i�K

2ρs

[2(p−1 − iσf p−2) + q1 − iσf q2],

V
ff

K�(q) = iK�

2ρsq2
(q1 − iσf q2)2

× [2(p+1 − iσf p+2) − q1 + iσf q2],

V
ff ′
K� (q) = iK�

2ρs

[2(p+1 − iσf p+2) − q1 + iσf q2]. (5.4)

We noted earlier that the leading contribution to the low-energy
physics comes from the � vertex. From here on, we therefore
concentrate on the potential with two � vertices only. In
coordinate space, the �� potentials are given by

〈
r ′
+
r ′

−|V f f̃

�� |
r+
r−〉 = V
f f̃

�� (
r )δ(
r+ − 
r ′
−) δ(
r− − 
r ′

+), (5.5)

with

V
ff

��(
r ) = − �2

2ρs

δ(2)(
r ),

(5.6)

V
ff ′
�� (
r ) = �2

2πρs
r 2
exp (2iσf ϕ).

Here, 
r = 
r+ − 
r− denotes the distance vector between the
two holes and ϕ is the angle between 
r and the x1 axis. The
δ functions in Eq. (5.5) ensure that the holes do not change
their position during the magnon exchange. It should be noted
that the one-magnon exchange potentials are instantaneous
although magnons travel with the finite speed c. Retardation
effects occur only at higher orders.

Interestingly, in the �� channel, one-magnon exchange
over long distances between two holes can only happen for
holes of opposite flavor. For two holes of the same flavor,
one-magnon exchange acts as a contact interaction. In the
next section, we will concentrate on the long-range physics
of weakly bound states of holes and therefore we will only
consider the binding of holes of different flavor.

VI. TWO-HOLE BOUND STATES

We now investigate the Schrödinger equation for the relative
motion of two holes with flavors α and β. In the following,
we will treat short-distance interactions by imposing a hard-
core boundary condition on the pair’s wave function. Due
to the accidental Galilean boost invariance, without loss of
generality, we can consider the hole pair in its rest frame. The
total kinetic energy of the two holes is given by

T =
∑

f =α,β

T f =
∑

f =α,β

p2
i

2M ′ = p2
i

M ′ . (6.1)

We introduce the two probability amplitudes �1(
r ) and �2(
r ),
which represent the two flavor-spin combinations α+β− and
α−β+, respectively, where we choose the distance vector 
r
to point from the β to the α hole. Since the holes undergo a
spin flip during the magnon exchange, the two probability am-
plitudes are coupled through the magnon exchange potentials
and the Schrödinger equation describing the relative motion of
the hole pair is a two-component equation. Using the explicit
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form of the potentials, the relevant Schrödinger equation for
two holes reads(

− 1
M ′ � γ 1


r 2 exp (−2iϕ)

γ 1

r 2 exp (2iϕ) − 1

M ′ �

)(
�1(
r )

�2(
r )

)

= E

(
�1(
r )

�2(
r )

)
, (6.2)

with

γ = �2

2πρs

. (6.3)

Making the separation ansatz

�1(r,ϕ)=R1(r) exp (im1ϕ), �2(r,ϕ)=R2(r) exp (im2ϕ),

(6.4)

with r = |
r |, and using the Laplace operator in polar coordi-
nates one arrives at the coupled equations

−
(

d2

dr2
+ 1

r

d

dr
− 1

r2
m2

1

)
R1(r)

+ γM ′ R2(r)

r2
exp [−iϕ(2 + m1 − m2)] = M ′ER1(r),

−
(

d2

dr2
+ 1

r

d

dr
− 1

r2
m2

2

)
R2(r)

(6.5)

+ γM ′ R1(r)

r2
exp[iϕ(2 + m1 − m2)] = M ′ER2(r).

The radial and angular parts can be separated provided that the
condition m2 − m1 = 2 is satisfied. Introducing the parameter
m, which is implicitly defined by

m1 = m − 1, m2 = m + 1, (6.6)

the radial equations are then given by

−
[

d2

dr2
+ 1

r

d

dr
− 1

r2
(m − 1)2

]
R1(r) + γM ′ R2(r)

r2

= M ′ER1(r),

−
[

d2

dr2
+ 1

r

d

dr
− 1

r2
(m + 1)2

]
R2(r) + γM ′ R1(r)

r2

= M ′ER2(r). (6.7)

While the other cases would have to be investigated numeri-
cally, for m = 0, the two radial equations decouple and can be
solved analytically. In particular, by taking appropriate linear
combinations, for m = 0 the two equations can be cast into
the form[

−
(

d2

dr2
+ 1

r

d

dr

)
+ (1 + γM ′)

1

r2

]
[R1(r) + R2(r)]

= M ′E[R1(r) + R2(r)],[
−

(
d2

dr2
+ 1

r

d

dr

)
+ (1 − γM ′)

1

r2

]
[R1(r) − R2(r)]

= M ′E[R1(r) − R2(r)]. (6.8)

Because the two equations are different, but contain the same
energy E, one of the equations has a vanishing solution. In the
first equation, the potential always has a positive sign and is
thus repulsive. In the second equation, on the other hand, the

potential has a negative sign and is therefore attractive when
the low-energy constants obey the relation

1 − γM ′ = 1 − M ′�2

2πρs

� 0. (6.9)

Thus magnon-mediated forces can lead to bound states only if
the low-energy constant � is larger than the critical value

�c =
√

2πρs

M ′ . (6.10)

Interestingly, the same critical value arises in the investigation
of spiral phases in a lightly doped antiferromagnet on the
honeycomb lattice.23 There it marks the point where spiral
phases become energetically favorable compared to the homo-
geneous phase. Here, we are interested in the solution of the
above system where the first equation has a zero solution and
the second a nonzero one, i.e., R1(r) + R2(r) = 0. Identifying
R(r) = R1(r) − R2(r), the second equation takes the form[
−

(
d2

dr2
+ 1

r

d

dr

)
+ (1 − γM ′)

1

r2

]
R(r) = −M ′|E|R(r),

(6.11)

where we have set E = −|E|. The same equation occurred in
the square lattice case19,20 and can be solved along the same
lines. As it stands, the equation is ill defined because the 1/r2

potential is too singular at the origin. However, we have not
yet included the contact interaction proportional to the four-
fermion coupling G3. Here, in order to keep the calculation
analytically feasible, we model the short-range repulsion by
a hard core radius r0, i.e., we require R(r0) = 0 for r � r0.
Equation (6.11) is solved by a modified Bessel function

R(r) = AKν

(√
M ′|E|r), ν = i

√
γM ′ − 1, (6.12)

with A being a normalization constant. Demanding that
the wave function vanishes at the hard core radius gives
a quantization condition for the bound-state energy. The
quantum number n then labels the nth excited state. For large
n, the binding energy is given by

En ∼ − 1

M ′r2
0

exp

( −2πn√
γM ′ − 1

)
. (6.13)

Like every quantity calculated within the framework of the
effective theory, the binding energy depends on the values of
the low-energy constants. The binding is exponentially small
in n and there are infinitely many bound states. While the
highly excited states have exponentially small energy, for
sufficiently small r0, the ground state could have a small
size and be strongly bound. However, as already mentioned,
for short-distance physics the effective theory should not be
trusted quantitatively. If the holes were really tightly bound,
one could construct an effective theory, which incorporates
them explicitly as relevant low-energy degrees of freedom. As
long as the binding energy is small compared to the relevant
high-energy scales, our result is valid and receives only small
corrections from higher-order effects such as two-magnon
exchange.
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Finally, let us discuss the angular part of the wave function.
The ansatz (6.4) leads to the following solution for the ground-
state wave function,

�(r,ϕ) =
(

�1(
r )

�2(
r )

)
= R(r)

(
exp (−iϕ)

− exp (iϕ)

)
. (6.14)

Applying the 60◦ rotation O and using the transformation rules
of Eq. (4.21), one obtains

O�(r,ϕ) = −�(r,ϕ). (6.15)

Interestingly, the wave function for the ground state of two
holes of flavors α and β thus exhibits f -wave symmetry.
(Strictly speaking, the continuum classification scheme of
angular momentum eigenstates does not apply here, since we
are not dealing with a continuous rotation symmetry.) The
corresponding probability distribution depicted in Fig. 6, on
the other hand, seems to show s-wave symmetry. However,
the relevant phase information is not visible in this picture,
because only the probability density is shown. Interestingly,
for two-hole bound states on the square lattice, the wave
function for the ground state of two holes of flavors α and β

shows p-wave symmetry, while the corresponding probability
distribution (which again does not contain the relevant phase
information) resembles dx2−y2 symmetry.19 Remarkably, the
ground-state wave function (6.14) of a bound hole pair on
the honeycomb lattice remains invariant under the reflection
symmetry R, the shift symmetries Di , as well as under the
accidental continuous rotation symmetry O(γ ).

We would like to emphasize that the f -wave character of the
two-hole bound state on the honeycomb lattice is an immediate
consequence of the systematic effective field theory analysis.
It seems that the issue of the true symmetry of the pairing
state, realized in the dehydrated version of Na2CoO2 × yH2O
is still controversial.30 Still, it is quite interesting to note that

FIG. 6. Probability distribution for the ground state of two holes
of flavors α and β.

a careful analysis of the available experimental data for this
compound suggests that the pairing symmetry indeed is f

wave.31

VII. CONCLUSIONS

In complete analogy to our earlier investigations on the
square lattice, we have constructed a systematic low-energy
effective field theory of magnons and doped holes in an
antiferromagnet on the honeycomb lattice. Due to the different
lattice geometry, there are important symmetry differences
that have an impact on the allowed terms that enter the
effective Lagrangian. Interestingly, in contrast to the square
lattice case, on the honeycomb lattice, an accidental continuous
spatial rotation invariance arises for the leading terms of the
low-energy effective Lagrangian.

As an important result, we have identified the leading
magnon-hole vertex, which results from a term with a single
uncontracted spatial derivative. This term, which is analogous
to the Shraiman-Siggia term on the square lattice, yields a
rather strong magnon-hole coupling since it appears at a
low order in the systematic low-energy expansion. As we
have investigated earlier, at nonzero hole doping, when � is
sufficiently strong, this term gives rise to spiral phases in the
staggered magnetization.23

In the present work, we have studied the effect of the
magnon-hole vertex on two-hole bound states. Again, in
contrast to the square lattice case, it turned out that the
magnon-hole coupling constant � must exceed a critical
value in order to obtain two-hole bound states. Our analysis
implies that the wave function for the ground state of two
holes of flavors α and β exhibits f -wave symmetry (while
the corresponding probability distribution seems to suggest
s-wave symmetry). This is quite different from the square
lattice case, where the wave function for the ground state of
two holes of flavors α and β exhibits p-wave symmetry (while
the corresponding probability distribution resembles dx2−y2

symmetry).
We like to stress again that the effective theory provides

a theoretical framework in which the low-energy dynamics
of lightly hole-doped antiferromagnets can be investigated
in a systematic manner. Once the low-energy parameters
have been adjusted appropriately by comparison with either
experimental data or numerical simulations, the resulting
physics is completely equivalent to the one of the Hubbard
or t-J model.
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23F.-J. Jiang, F. Kämpfer, C. P. Hofmann, and U.-J. Wiese, Eur. Phys.

J. B 69, 473 (2009).
24S. Zhang, Phys. Rev. Lett. 65, 120 (1990).
25C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 4, 759 (1990).
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