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The time-dependent numerical renormalization-group approach (TD-NRG), originally devised for tracking
the real-time dynamics of quantum-impurity systems following a single quantum quench, is extended to multiple
switching events. This generalization of the TD-NRG encompasses the possibility of periodic switching, allowing
for coherent control of strongly correlated systems by an external time-dependent field. To this end, we have
embedded the TD-NRG in a hybrid framework that combines the outstanding capabilities of the numerical
renormalization group to systematically construct the effective low-energy Hamiltonian of the system with the
prowess of complementary approaches for calculating the real-time dynamics derived from this Hamiltonian. We
demonstrate the power of our approach by hybridizing the TD-NRG with the Chebyshev expansion technique
in order to investigate periodic switching in the interacting resonant-level model. Although the interacting
model shares the same low-energy fixed point as its noninteracting counterpart, we surprisingly find the gradual
emergence of damped oscillations as the interaction strength is increased. Focusing on a single quantum quench
and using a strong-coupling analysis, we reveal the origin of these interaction-induced oscillations and provide
an analytical estimate for their frequency. The latter agrees well with the numerical results.
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I. INTRODUCTION

The quantitative description of real-time dynamics in
strongly correlated systems is one of the outstanding chal-
lenges of contemporary condensed-matter physics, with rel-
evance to varied systems ranging from cold atoms1,2 and
dissipative systems3 to quantum-dot devices4,5 and biological
donor-acceptor molecules.6 Alongside fundamental questions
concerning the underlying time scales and the long-time
behavior, there are many technological issues that require
careful investigation. For example, the decoherence and
relaxation of spins appears to be the major obstacle for the
realization of quantum-computing algorithms in real systems.7

Another key issue is the understanding of coherent control
and the switching characteristics of nanodevices such as
single-electron transistors.8 These and related topics require
the development and application of suitable many-body
techniques.9

Over the years, the Kadanoff-Baym10 and Keldysh11

techniques have proven to be accurate tools for describing
the real-time dynamics of weakly correlated systems such
as light-matter interaction in semiconductors12 and the de-
coherence and relaxation of an impurity spin well above
the Kondo temperature.13 Geared toward perturbation theory,
these techniques generally fail upon the development of strong
correlations, when nonperturbative approaches are in order. A
case in point are quantum dots tuned to the Kondo regime,14

where traditional diagrammatic-based approximations are un-
suitable to describe the nonequilibrium state.15 The difficulty
lies in the fact that strongly correlated systems change their
nature as a function of certain control parameters such as the
temperature or the coupling constants, an aspect well captured
by renormalization-group approaches.16,17 The precise status

of a voltage bias as yet another control parameter in interacting
nanostructures is still under debate.

Recent years have witnessed an impressive advancement of
numerical techniques aimed at tracking the real-time dynamics
of strongly correlated systems, primarily with the development
of the time-dependent density-matrix renormalization group
(TD-DMRG).18–21 Yet while the adaptive TD-DMRG works
remarkably well on time scales of order the reciprocal
bandwidth, it is presently unsuited for tackling longer time
scales due to an accumulated error that grows first linearly
and then exponentially with the time elapsed. Alternative
formulations22 of the TD-DMRG circumvent the accumulated
error, but are simply too demanding to advance to long
times. Recent adaptations of continuous-time Monte Carlo
techniques to real-time dynamics23–26 are free of finite-size
effects, but are confined to short time scales due to an
inherent sign problem. The Chebyshev expansion technique,27

developed by Tal Ezer and Kosloff,28,29 offers yet another
extremely powerful approach for tracking the time evolution
of finite-size systems. However, it too is quite limited in
accessing long time scales in the presence of interactions due
to the exceedingly large Hilbert space that must be retained. A
complementary approach is provided by the time-dependent
numerical renormalization group (TD-NRG).30–32 The TD-
NRG can successfully bridge over vastly different time scales,
but is far more restrictive in the systems and perturbations to
which it can be applied. A composite approach that combines
the complementary traits of the different techniques mentioned
above is highly desirable.

In this paper, we devise such a hybrid approach that com-
bines the outstanding capabilities of the numerical renormal-
ization group (NRG) to systematically construct the effective
low-energy Hamiltonian of the system16,33 with the prowess
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of complementary approaches for calculating the real-time dy-
namics derived from this Hamiltonian. Typically strongly cor-
related systems possess multiple energy scales that markedly
differ in magnitude, hence their dynamics is governed by
vastly different time scales. This spread of time scales, which
may differ by many orders of magnitude, poses an enormous
obstacle for most computational approaches. The TD-NRG is
quite unique in this respect as it can efficiently bridge between
the different time scales. Our hybrid approach presented below
provides a flexible platform for combining the TD-NRG with
one’s method of choice for treating the effective low-energy
Hamiltonian. Possible choices for the complementary method
could be exact diagonalization, the TD-DMRG, and possibly
also the time-dependent noncrossing approximation.34,35 Here
we shall demonstrate the applicability of our approach by com-
bining the TD-NRG with the Chebyshev expansion technique
(CET), providing thereby an important proof of principle.

The basic philosophy underlying the hybrid-NRG is to
first exhaust the TD-NRG in order to decompose the time-
dependent wave function into distinct components, each
associated with a separate time scale and evolving according
to its own reduced Hamiltonian acting on a suitable subspace
of the full Fock space. Each of the individual components
with its associated Hamiltonian can then be treated with
improved accuracy using, e.g., the TD-DMRG or CET. In this
manner, one can exploit the successive reduction in energy
scales in order to boost the TD-DMRG and CET to long
time scales that otherwise would be inaccessible to either of
these methods. Concomitantly, the accuracy and flexibility
of the TD-NRG are greatly enhanced, as we demonstrate
by extending the approach to the physically relevant case of
repeated switchings. The hybrid platform further offers an
appealing way to reduce discretization errors inherent to the
Wilson chain by converting to hybrid chains.

The idea to use the NRG level flow to construct effective
Hamiltonians is, of course, not new. Dating back to the original
work of Wilson,16 this framework has been significantly
advanced by Hewson33 who used it as a starting point
for devising a renormalized perturbation theory. Hewson’s
approach requires, however, analytical knowledge of the form
of the low-energy Hamiltonian and its associated quantum field
theory. So far, it has been applied mainly to the single-impurity
Anderson model, where it was used, among other things, to
calculate the steady-state current 33,36 in the limit of a small
bias voltage.

Our approach is far more general as it makes no assumption
on the analytical form of the effective Hamiltonian. Rather,
it is solemnly based on Wilson’s original concept16 that the
NRG level flow contains all accessible information, and,
in particular, can accurately describe the crossover region
between two distinct fixed points (a regime that generally
lies outside the reach of perturbative methods). Our frame-
work exclusively uses the sequence of diagonalized NRG
Hamiltonians,16 circumventing thereby any prejudice on the
form of the effective Hamiltonian. As a result, our method
is model independent, relying solely on the NRG approach
itself.

In this paper, we extend the original TD-NRG algo-
rithm from a single quantum quench to multiple switchings,
which requires an additional approximation beyond the one

underlying the conventional TD-NRG. As we demonstrate
by explicit calculations, the quality of the approximation can
be systematically improved by enlarging the subspace treated
using the complementary method.

A. Preliminaries

In the TD-NRG, the continuous bath is represented by
a discretized Wilson chain,16 characterized by tight-binding
hopping matrix elements that decay exponentially along the
chain. This separation of energy scales enables access to
exponentially long time scales30,31 that otherwise would be
inaccessible using ordinary tight-binding chains. In analyzing
the accuracy of the TD-NRG, it is important to distinguish
between two sources of error: one extrinsic due to the
discretized representation of the continuous bath in terms of
a Wilson chain, and the other intrinsic due to the TD-NRG
algorithm for tracking the real-time dynamics on the Wilson
chain.

As already noted in Ref. 31, the latter source of error is
remarkably small. We illustrate this point in Fig. 1(a) for
the noninteracting resonant-level model (RLM), describing a
single fermionic level coupled by hybridization to a conduction
band (see Sec. V for an explicit definition of the model).
Abruptly shifting the energy of the level and tracking the
time evolution of the level occupancy nd (t), we compare the
TD-NRG to an exact analytical solution for a continuous bath
[given by Eq. (50) of Ref. 31] as well as to an exact numerical
solution on the Wilson chain using exact diagonalization of
the single-particle eigenmodes. Only minuscule deviations are
found between the TD-NRG and the exact solution on the
Wilson chain, both of which significantly depart at some point
from the continuum-limit result. As analyzed in Ref. 31, one
can decrease the deviations from the continuum limit and delay
them to a later time by reducing the Wilson discretization
parameter �. At the same time, the deviations are hardly
affected by prolonging the chain length N .

This leads to two important conclusions: (i) the main source
of error in the TD-NRG is extrinsic rather than intrinsic31 and
(ii) the exponentially decaying tight-binding matrix elements,
which lie at the heart of the NRG,16 are also the limiting factor
for reproducing the continuum-limit result for the quench
dynamics.

To understand the source of the deviations from the
continuum-limit result, we note that globally conserved quan-
tities such as the charge or the spin of the system are locally
connected by the continuity equation to associated charge
and spin currents. The exponentially decreasing tight-binding
matrix elements along the Wilson chain significantly slow
down the propagation of such currents,37 generating internal
reflections at the sites of the one-dimensional chain. This is
depicted in Fig. 1(b), where we plot the exact time-dependent
occupancies of the first 26 sites along the chain in response to
a sudden quench of the impurity level. The two-dimensional
contour plot clearly reveals reflections of the charge current
at certain positions and certain characteristic times. Once the
reflected currents reach the impurity site its level occupancy
starts to deviate significantly from the exact continuum-
limit result. Indeed, the red arrows in Fig. 1(b) indicate
instances in time when reflected charge wave fronts reach
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FIG. 1. (Color online) (a) Real-time dynamics of the impurity
charge nd (t) in the resonant-level model following a sudden quench
of the level energy from Ed = −2�0 to Ed = 2�0 at time t = 0. The
red solid line shows the exact time evolution on the Wilson chain,
obtained by exact diagonalization of the single-particle eigenmodes.
The dashed blue line depicts the TD-NRG result, while the solid black
line shows the exact analytical solution for a continuous band [given
by Eq. (50) of Ref. 31]. (b) A two-dimensional contour plot of the
exact time-dependent occupancies ni(t) of the first 26 sites along the
Wilson chain, labeled i = 0, . . . ,25. The red arrows indicate instances
in time when reflected currents reach the impurity site. The very
same times are marked by the black arrows in panel (a). Parameters:
� = 1.8, �0/D = 10−2, the number of states kept in the TD-NRG is
Ns = 800, and the chain length is N = 40.

the impurity site. At these very same times, the occupancy
on the impurity level develops new structures [marked by the
black arrows in Fig. 1(a)] that are absent in the continuum
limit. Upon decreasing the Wilson discretization parameter �

the magnitude of the reflected currents is suppressed and the
reflection points are pushed deeper down the chain, however,
the effect is never fully eliminated as long as � > 1.

An alternative perspective on the effect of the Wilson
discretization procedure is provided by examining the exact
single-particle energy levels of the RLM. For an ordinary
tight-binding chain of length N with a constant hopping
matrix element ξ , the single-particle energy levels are roughly
uniformly distributed in the energy range [−D,D], where
D = 2ξ is the conduction-electron bandwidth. As the chain
length is increased, the energy levels become more densely
distributed until a continuous spectrum is recovered for N →
∞. A different picture applies to the Wilson chain. As depicted
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FIG. 2. (Color online) The exact single-particle energy levels of
the RLM on a Wilson chain with � = 1.8, �0/D = 10−2, and Ed = 0.
The chain length is N = 40. Panel (a) depicts positive energies on
a logarithmic scale. Panel (b) shows the full spectrum on a linear
scale.

in Fig. 2, the single-particle energy levels are uniformly
distributed on a logarithmic scale, resulting in a sparse
distribution of levels at higher energies. Enumerating the
positive single-particle energy levels from high to low, these
scale as εn ∝ �−n, in accordance with Wilson’s logarithmic
discretization of the conduction band.16 By prolonging the
chain length N one increases the total number of levels, yet
the distribution of high-energy levels retains its sparse form
even as N → ∞. A continuous band is recovered only upon
implementing the combined limit � → 1+, N → ∞, which
illustrates the limitation of working with a fixed � > 1.38

These argumentations clearly point to an intrinsic tradeoff
within the TD-NRG, as the very same logarithmic discretiza-
tion that enables access to exponentially long time scales
also prevents from fully recovering the continuum limit. The
question then arises whether one can somehow reconcile these
two apparently contradicting properties, which is one of the
main goals of this work.

B. Plan of the paper

Briefly stated, the aim of this paper is a two-fold extension
of the TD-NRG. The first goal is to devise a flexible framework
for hybridizing the TD-NRG with complementary methods of
calculating real-time dynamics that do not rely on the special
structure of the Wilson chain. By liberating ourselves from
working on the Wilson chain at all time scales, the hybrid
method should enable a systematic improvement of both finite-
size and discretization errors.

The second objective is to extend the method from a single
quantum quench to repeated switchings between two distinct
Hamiltonians Ha and Hb. Besides being of considerable
interest on its own right, this protocol can be viewed as
a first vital step toward treating a general time-dependent
Hamiltonian H(t). Indeed, discretizing the time axis and
replacing H(t) within each time interval i with the constant
form Hi , the full time evolution can be interpreted as a
sequence of quenches.

075118-3
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Despite its conceptual simplicity, this strategy has not
been pursued thus far since the initial nonequilibrium density
operator ρ̂i at the beginning of each time interval is neither
explicitly known nor of the analytical form required by the
original TD-NRG formulation.31

To this end, we derive the hybrid-NRG in Sec. II. Since
the formulation relies heavily on the TD-NRG, we shall
commence in Sec. II A with a brief review of the TD-NRG
following Ref. 31. This exposition is essential not only for
keeping the paper self-contained, but mainly for introducing
the notations and tools that will be used throughout our
construction of the hybrid-NRG. After setting the stage in
Sec. II A, we present the first major conceptual result of this
paper in Sec. II B: the hybrid-NRG approach. The key idea is to
partition the Wilson chain into two parts: the high-energy part
is treated with the TD-NRG while the low-energy part is fed
into the complementary method of choice. The standard TD-
NRG approach can be embedded into this more general hybrid
framework by shifting the partition to the end of the Wilson
chain. In order to make contact with the complementary
approach used for hybridizing with the TD-NRG (e.g., the
CET), we examine the interface with the TD-NRG from a
wave-function perspective in Sec. II B 2.

Using the central results of Sec. II, we extend the hybrid
approach to periodic switching between two Hamiltonians in
Sec. III, making the simulation of coherent control by an
external field accessible to the hybrid method. This section
covers the second major conceptual result of this paper. Since
the exact evaluation of the reduced density matrix of an arbi-
trary density operator has remained a computational challenge,
we propose a set of approximations that neglect some of the
high-energy contributions to the real-time dynamics. These
approximations are systematic and are carefully analyzed.
The complementary method used to supplement the TD-NRG
in this paper, the Chebyshev expansion technique,28,29 is
reviewed in Sec. IV.

Since the deviations of finite-size nonequilibrium dynamics
from the continuum limit are linked to the bath discretization,
our hybrid framework targets the liberation of numerical
simulations from the particular form of the Wilson chain
without losing access to exponentially long time scales. In
Sec. V, we demonstrate the potential of our hybrid framework
by investigating the influence of different hybrid chain types
on the discretization errors encountered in the local dynamics.
In Sec. VI, we present our results for periodic switching. Since
the TD-NRG is embedded in our hybrid framework, we first
discuss in Sec. VI A 1 the limitations of a simple extension
of the TD-NRG to periodic switching. The exact solution
of the finite-size RLM subject to a periodic drive is used
to benchmark both the hybrid NRG-CET and the periodic
TD-NRG.

The interacting resonant-level model39–43 (IRLM) serves
as a first nontrivial test of our hybrid approach. It includes an
additional local capacitive coupling U between the charge
on the impurity level and the fermionic band, preventing
an exact solution of its dynamics. The low-energy fixed
point of the IRLM is identical to that of the noninteracting
RLM, featuring a renormalized, U -dependent hybridization
strength. By comparing the real-time dynamics of both models
with identical renormalized hybridization strengths, we show

in Sec. VI B that the local charge dynamics significantly
deviates with increasing U from the noninteracting case.
Interaction-induced oscillations are found in the IRLM, whose
characteristic frequency depends only on the renormalized
hybridization and not directly on U . Those oscillations are
completely absent in the noninteracting RLM, even though
both models share the same low-energy fixed point. Using
a strong-coupling analysis, we provide a simple physical
picture for this surprising effect. Finally, we conclude with
a discussion and outlook in Sec. VII.

II. THE HYBRID-NRG

A. The time-dependent NRG

The TD-NRG has been designed to track the real-time
dynamics of quantum-impurity systems following an abrupt
quantum quench. The perturbations under consideration are
implicitly assumed to be of local character, i.e., perturbations
that are applied either to the impurity itself or to its close
vicinity.

The Hamiltonian of a quantum-impurity system has the
generic structure

H = Hbath + Himp + Hmix, (1)

where Hbath models the continuous bath, Himp represents the
decoupled impurity, and Hmix describes the coupling between
the two subsystems. The entire system is characterized at time
t = 0 by the density operator

ρ̂0 = e−βHi

Tr(e−βHi )
, (2)

when a static perturbation �H is suddenly switched on:H(t �
0) = Hi + �H ≡ Hf . The density operator evolves thereafter
in time according to

ρ̂(t > 0) = e−itHf

ρ̂0e
itHf

. (3)

Our objective is to use the NRG to compute the time-dependent
expectation value O(t) of a general local operator Ô . As shown
in Refs. 30 and 31, the result can be written in the form

〈Ô〉(t) =
N∑
m

trun∑
r,s

eit(Em
r −Em

s )Om
r,sρ

red
s,r (m), (4)

where Em
r and Em

s are the dimension-full NRG eigenenergies
of the perturbed Hamiltonian at iteration m � N , Om

r,s is the
matrix representation of Ô at that iteration, and ρred

s,r (m) is
the reduced density matrix defined in Eq. (10) below. The
restricted sum over r and s requires that at least one of
these states is discarded at iteration m. The NRG chain length
N implicitly defines the temperature entering Eq. (2): TN ∝
�−N/2, where � > 1 is the Wilson discretization parameter.

The derivation of Eq. (4) relies on two key ingredients:
(i) the identification of a complete basis set of approximate
NRG eigenstates for the many-body Fock space FN of
the Wilson chain and (ii) expectation values are obtained
by explicitly tracing over this complete basis set using a
suitable resummation procedure. Below, we review these two
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FIG. 3. (Color online) The full Wilson chain of length N is
divided into a subchain of length m and the “environment” Rm,N .
The Hamiltonian Hm can be viewed either as acting only on the
subchain of length m or as acting on the full chain of length N , but
with the hopping matrix elements tm, . . . ,tN−1 all set to zero. The
former picture is the traditional one. In the TD-NRG, one adopts the
latter point of view.

key components following the notations and presentation of
Ref. 31.

1. Complete basis set

The NRG targets an iterative solution of a quantum impurity
coupled to a finite Wilson chain with N chain links.44 Similar
to the initial sweep in the finite-size DMRG, one can view
the NRG procedure as a set of operations, where at first all
hopping matrix elements are set to zero along the N -site chain,
and at each successive step, another hopping matrix element
is switched on. The full Hamiltonian HN is recovered once all
hopping matrix elements have been switched on. The entire
sequence of Hamiltonians Hm with m � N act in this picture
on the same Fock space FN of the N -site chain, hence each
NRG eigenenergy of Hm has an extra degeneracy of d (N−m),
where d is the number of distinct configurations at each site
along the chain. The extra degeneracy stems from the N −
m “environment” sites at the end of the chain, denoted by
Rm,N in Fig. 3, which remain decoupled from the impurity at
iteration m.

When acting on the m-site chain, we label the NRG
eigenstates and eigenenergies of Hm by {|r; m〉} and Em

r ,
respectively. Consider now the action of Hm on the full
N -site chain. Enumerating the different configurations
of site i by {αi}i=1,...,d , each of the tensor-product states
|r; m〉 ⊗ |αm+1, . . . ,αN 〉 with arbitrary αm+1, . . . ,αN is a
degenerate NRG eigenstate of Hm with energy Em

r . To label
these states, we introduce the shorthand notation |r,e; m〉,
where the “environment” variable e = {αm+1, . . . ,αN }
encodes the N − m site labels αm+1, . . . ,αN , and the index
m is used to record where the chain is partitioned into a
“subsystem” and an “environment” (see Fig. 3).

In order to retain a manageable number of states, the high-
energy eigenstates are discarded after each iteration, which is
fully justified in equilibrium by the hierarchy of the energy
scales along the Wilson chain and the Boltzmann form of the
equilibrium density operator. Regarding all states of the final
iteration as discarded, it has been show in Refs. 30 and 31
that the collection of all states discarded in the course of the
NRG iterations form a complete basis set of approximate NRG
eigenstates for the full N -site chain.

To understand this important point, consider the first itera-
tion mmin at which states are discarded. In order to keep track
of the complete basis set of the N -site chain, the eigenstates
|r,e; mmin〉 can be formally divided into two distinct subsets:
the discarded high-energy states labelled {|l,e; mmin〉dis} and

the kept low-energy states labelled {|k,e; mmin〉kp}. Obviously,
the sum of the two subsets forms a complete basis set of the full
chain. To simplify the notations, we shall omit hereafter the
subscripts “dis” and “kp,” and will use in exchange the indices
l and k to label the discarded and kept states, respectively. At
the next NRG iteration only the kept states are used to construct
the NRG eigenstates of Hmmin+1 within the truncated subspace
spanned by {|k,e; mmin〉}. The resulting NRG eigenstates can
again be divided into two subsets of discarded and kept states
which, when combined with the discarded eigenstates of
iteration mmin, form a complete basis set of the Fock space
FN of the full N -site chain. Repeating this procedure at all
subsequent iterations, one continues to maintain a complete
basis set of FN up to the final NRG iteration m = N .
In this manner, we arrive at the following completeness
relation:

N∑
m=mmin

∑
l,e

|l,e; m〉〈l,e; m| =
N∑

m=mmin

P̂m = 1, (5)

where the summation over m starts from the first iteration mmin

at which a basis-set reduction is imposed. Here, the summation
indices l and e implicitly depend on m, and the projector onto
the subspace discarded at iteration mmin � m � N is defined
as

P̂m =
∑
l,e

|l,e; m〉〈l,e; m|. (6)

The complementary projector 1̂+
m onto the subspace retained

at iteration m (m < N ) is given in turn by

1̂+
m =

∑
k,e

|k,e; m〉〈k,e; m|, (7)

which can be recast in the form

1̂+
m =

N∑
m′=m+1

P̂m′ . (8)

This latter equality reflects the fact that all states retained at
iteration m are necessarily discarded at some later iteration
m′. In particular, since all states of the final iteration N are
regarded discarded, then 1̂+

N is identically zero while 1̂+
N−1

coincides with P̂N . Combined with Eq. (8), the completeness
relation of Eq. (5) can further be partitioned into

1 =
M∑

m=mmin

P̂m + 1̂+
M (9)

with arbitrary mmin � M � N . This useful identity will be
repeatedly used in constructing the hybrid-NRG.

2. Reduced density matrix and the TD-NRG algorithm

Following a sudden quench, the time evolution of the
system is governed by the perturbed Hamiltonian Hf while
the initial condition is encoded in the initial density matrix
ρ̂0. For quantum-impurity systems, all relevant information on
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the initial condition is contained in Eq. (4) in the form of the
reduced density matrices30,31 ρred

s,r (m), defined as

ρred
s,r (m) =

∑
e

〈s,e; m|ρ̂0|r,e; m〉. (10)

Here, the states |r,e; m〉 and |s,e; m〉 correspond to the Hamil-
tonian Hf , and the summation runs over the environment
degrees of freedom e. The only approximation entering
Eq. (4) is the standard NRG approximation HN |r,e; m〉 ≈
Hm|r,e; m〉 = Em

r |r,e; m〉, which enables us to write

〈s,e; m|ρ̂(t)|r,e; m〉 = eit(Em
r −Em

s )〈s,e; m|ρ̂0|r,e; m〉. (11)

Apart from this sole point, Eq. (4) constitutes an exact
evaluation of O(t) on the discretized N -site chain.

Practical calculations hinge on the ability to accurately
compute the reduced density matrices of Eq. (10). For a
general ρ̂0 this can be a daunting task. However, in the case
of interest where ρ̂0 has the standard Boltzmann form of
Eq. (2), the summation over e can be carried out exactly.
Hence ρred

s,r (m) can be evaluated at the same level of accuracy
as the equilibrium density operator ρ̂0. Technically, this goal
is achieved by implementing two independent NRG runs, one
for the initial Hamiltonian Hi in order to construct ρ̂0 using
Eq. (2), and another for the full Hamiltonian Hf . The reduced
density matrix ρred

s,r (m) is first evaluated with respect to the
eigenstates of the initial Hamiltonian, and then rotated30,31

to the eigenstates of the full Hamiltonian using the overlap
matrices

〈qi ; m|r; m〉 = Sqi ,r (m). (12)

Here, |r; m〉 denotes an NRG eigenstate of the full Hamiltonian
at iteration m, and |qi ; m〉 is an NRG eigenstate of the initial
Hamiltonian at the same iteration. The method of calculating
the overlap matrices Sqi ,r (m) is detailed in Ref. 31.

B. Derivation of the hybrid-NRG

The original TD-NRG approach, summarized above, tracks
the quench dynamics of a quantum-impurity system in terms of
the phase factors eit(Em

r −Em
s ) and the reduced density matrices

ρred
s,r (m) assigned to each NRG iteration m. Although quite

elegant and useful, it is less transparent how to incorporate
ideas from methods such as the TD-DMRG or CET, as these
deal with wave functions directly. To develop a convenient
and flexible interface between the TD-NRG and these vastly
different approaches, we reformulate the former approach from
a wave-function perspective.

1. Wave-function formulation

Let us commence with accurately stating the problem from
a wave-function perspective. We are interested in tracking the
time evolution of some initial state |ψ0〉 under the dynamics
defined by the Hamiltonian H acting on a finite Wilson chain
of length N . We shall not concern ourselves at this stage with
how the initial state |ψ0〉 is generated, but will elaborate on
this important point later on.

Formally, our task boils down to computing

|ψ(t)〉 = e−iHt |ψ0〉 . (13)

Application of the completeness relation of Eq. (9) to the state
|ψ(t)〉 leads to its partitioning according to

|ψ(t)〉 =
M∑

m=mmin

|φm(t)〉 + |χM (t)〉 , (14)

where

|φm(t)〉 = P̂m|ψ(t)〉 (15)

and

|χM (t)〉 = 1̂+
M |ψ(t)〉 (16)

are the projections of |ψ(t)〉 onto the subspaces defined by
P̂m and 1̂+

M , respectively. Equation (14) simply converts the
general state |ψ(t)〉 into a concrete representation in terms of
our complete basis set.

2. Evaluation of expectation values

Given the time-evolved wave function of Eq. (14), we
proceed to compute time-dependent averages of physical
observables:

A(t) = 〈ψ(t)|Â|ψ(t)〉. (17)

To this end, we use the completeness relation of Eq. (9) to
decompose any arbitrary operator Â into

Â =
M∑

m,m′
P̂mÂP̂m′ +

M∑
m

(P̂mÂ1̂+
M + 1̂+

MÂP̂m)

+ 1̂+
MÂ1̂+

M, (18)

where the summations over m and m′ start from mmin. Writing
the first two terms on the right-hand side of Eq. (18) as

∑
m=mmin

[
P̂mÂP̂m + P̂mÂ

(
M∑

m′=m+1

P̂m′ + 1̂+
M

)

+
(

M∑
m′=m+1

P̂m′ + 1̂+
M

)
ÂP̂m

]
(19)

and noting that

1̂+
m =

M∑
m′=m+1

P̂m′ + 1̂+
M, (20)

the operator Â is recast in the exact form

Â =
M∑

m=mmin

Â(m) + Âχ , (21)

where

Â(m) = P̂mÂP̂m + 1̂+
mÂP̂m + P̂mÂ1̂+

m (22)

and

Âχ = 1̂+
MÂ1̂+

M . (23)

Here, the index M can take any value in the range mmin � M �
N . Explicitly, the operator Â(m) has the formal representation

Â(m) =
trun∑
r,s

∑
e,e′

|r,e; m〉〈r,e; m|Â|s,e′; m〉〈s,e′; m|, (24)
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where the restricted sum
∑trun

r,s implies, as before, that at least
one of the states r and s is discarded at iteration m.

As in the original TD-NRG, we focus hereafter on local
operators Â that act solely on degrees of freedom that reside
either on the impurity itself or on the first mmin sites along
the Wilson chain.31 For any such local operator, the matrix
elements in Eq. (24) are diagonal in and independent of the
environment variables e and e′:

〈r,e; m|Â|s,e′; m〉 = Am
r,sδe,e′ . (25)

Substituting the operator decomposition of Eq. (21) into
Eq. (17) and using the definition |χM (t)〉 = 1̂+

m|ψ(t)〉 of
Eq. (16), the time-dependent expectation value takes the form

A(t) =
M∑

m=mmin

〈ψ(t)|Â(m)|ψ(t)〉 + 〈χM (t)|Â|χM (t)〉. (26)

This general expression reduces for a local operator to

A(t) = 〈χM (t)|Â|χM (t)〉 +
M∑

m=mmin

trun∑
r,s

Am
r,sρ

m
s,r (t), (27)

where

ρm
s,r (t) =

∑
e

〈s,e; m|ψ(t)〉〈ψ(t)|r,e; m〉 (28)

is the reduced density matrix at iteration m.
Three comments should be made about Eqs. (27) and (28).

First, these expressions are both general and exact for the
real-time dynamics on the discretized chain. Apart from the
restriction to local operators, no further approximations or
assumptions are involved. Second, Eqs. (27) and (28) can
be easily extended to a statistical admixture of initial states
{|ψi〉} with the statistical weights {wi}. This requires the simple
substitutions

〈χM (t)|Â|χM (t)〉 →
∑

i

wi〈χM,i(t)|Â|χM,i(t)〉 (29)

and

ρ̂(t) = |ψ(t)〉〈ψ(t)| →
∑

i

wi |ψi(t)〉〈ψi(t)| (30)

in Eqs. (27) and (28), respectively. Third, the conventional
TD-NRG approach is recovered from Eqs. (27) and (28) by
(i) setting M = N , (ii) realizing that Âχ = 0 for N = M , and
(iii) adopting the standard NRG approximation H|r,e; m〉 ≈
Em

r |r,e; m〉, which simplifies ρm
s,r (t) to ei(Em

r −Em
s )t ρred

s,r (m) with

ρred
s,r (m) =

∑
e

〈s,e; m|ψ0〉〈ψ0|r,e; m〉. (31)

A natural generalization of the TD-NRG is to apply
the NRG approximation H|r,e; m〉 ≈ Em

r |r,e; m〉 to the early
iterations m � M only, converting Eqs. (27) and (28) to

A(t) =
M∑

m=mmin

trun∑
r,s

ei(Em
r −Em

s )tAm
r,sρ

red
s,r (m)

+〈χM (t)|Â|χM (t)〉. (32)

This equation, which constitutes one of the central results of
this paper, interpolates between the TD-NRG, corresponding

to M = N , and the exact time-dependent expectation value,
obtained for M = mmin. Of course, the latter statement
assumes an exact evaluation of |χM (t)〉, which is an impractical
task for M = mmin. As discussed below, a proper choice of
the parameter M allows for an improved evaluation of |χM (t)〉
using alternative methods such as the TD-DMRG or CET, with
minimal loss of accuracy at the early iterations to which the
NRG approximation is applied. Furthermore, by resorting to
methods that do not rely on the special structure of the Wilson
chain to evaluate |χM (t)〉, one can abandon the exponential
decay of the hopping matrix elements beyond site M , reducing
thereby the discretization errors inherent to the Wilson chain.
These principles form the core of the hybrid approach. We now
turn to elaborate on the technicalities of how M is selected, the
interface with the hybridized method, and the way in which
the initial state |ψ0〉 is constructed.

C. Interface between the TD-NRG and the hybridized approach

1. Hierarchy of energy scales and the time evolution of |χM (t)〉
To turn Eq. (32) into an operative platform for hybridizing

the TD-NRG with alternative methods of computing the
real-time dynamics of |χM (t)〉, it is useful to go back to the
partitioning of |ψ(t)〉 specified in Eq. (14) and gain a deeper
insight into the energy scales encoded into the projectors
P̂m. Applying the operator decomposition of Eq. (21) to the
Hamiltonian H, the latter is written as

H =
M∑

m=mmin

H(m) + ĥχ , (33)

where

H(m) ≡ P̂mHP̂m + P̂mH1̂+
m + 1̂+

mHP̂m (34)

and

ĥχ = 1̂+
MH1̂+

M. (35)

It is rather easy to see that the different Hamiltonian terms
that appear in Eq. (33) generally do not commute with
one another, i.e., [H(m),ĥχ ] �= 0 and [H(m),H(m′)] �= 0 if
m �= m′. According to the NRG philosophy, however, the
off-diagonal terms P̂mHP̂m′ with m �= m′ are expected to be
small, as these couple excitations on different energy scales.
Consequently, one can approximate H(m) with ĥm = P̂mHP̂m

to obtain the approximate Hamiltonian

H ≈
M∑

m=mmin

ĥm + ĥχ . (36)

Evidently, Eq. (36) becomes exceedingly more accurate the
smaller is M , acquiring the status of an identity for M = mmin,
since H = ĥχ in this case. Furthermore, since the Hamiltonian
terms ĥχ and ĥm with m � M are confined to the subspaces
projected out by 1̂+

M and P̂m, respectively, the Hamiltonian of
Eq. (36) is block-diagonal in these subspaces with [ĥm,ĥm′ ] =
[ĥm,ĥχ ] = 0. This allows us to write the time-dependent state
|ψ(t)〉 within this approximation as

|ψ(t)〉 =
M∑

m=mmin

e−iĥmt |φm〉 + e−iĥχ t |χM〉, (37)
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where |φm〉 = P̂m|ψ0〉 and |χM〉 = 1̂+
M |ψ0〉 are the projections

of the initial state onto the subspaces defined by P̂m and 1̂+
M ,

respectively. In other terms, it suffices in this approximation to
first project out |χM〉 and |φm〉 from the initial state, and then
propagate them separately in time, each according to its own
Hamiltonian.

Physically, Eq. (37) prescribes a decomposition of the
desired time-dependent state into independent components,
each associated with a different time scale tm = 1/Dm ∼ �m/2

and evolving according to its own reduced Hamiltonian (either
ĥm or ĥχ ). In the case of spinless electrons, the reduced
Hamiltonian ĥm has the explicit form

ĥm =
∑
l,e

Em
l |l,e; m〉〈l,e; m| +

N−1∑
n=m

tn(P̂mf
†
n+1fnP̂m + H.c.),

(38)

where f
†
n creates an electron on the nth site of the Wilson chain,

tn is the dimension-full hopping matrix element between sites
n and n + 1 along the chain, l runs over the NRG eigenstates
discarded at iteration m, and Em

l denotes their corresponding
NRG eigenenergies. Note that the projection operators P̂m in
the right-most term are attached in practice only to fm and f

†
m,

as all other operators fn with n > m do not possess any matrix
element that takes us out of the subspace defined by P̂m. The
Hamiltonian ĥχ is nearly identical, except that the index m is
replaced with M and the discarded states |l,e; m〉 are replaced
with the NRG eigenstates retained at the conclusion of iteration
M . In the presence of additional bands, the Wilson orbitals f

†
n

acquire an additional flavor index ν, which may label the spin
σ , an orbital channel α, or the spin-channel tuple ν = (σ,α)
as in two-channel Kondo models (see, e.g., Ref. 45). Other
than setting f

†
n → f

†
nν and adding a suitable summation over

ν, the very same equations carry over to the general multiband
case.

2. Physical role of the parameter M

The Hamiltonian of Eq. (38) can be interpreted as modeling
a hyperimpurity with the localized configurations |l〉 and
eigenenergies Em

l , which are tunnel coupled to a chain of
length N − m. The size of the impurity is equal to the number
of states discarded at iteration m. Thus the calculation of
|φm(t)〉 = e−ihmt |φm〉 becomes exceedingly more affordable
the larger is m due to the exponential reduction of the Fock
space of the chain Rm,N attached to the hyperimpurity. We
stress, however, that the dimension of the subspace associated
with P̂mmin is comparable in size to that of the full Wilson
chain, hence an accurate evaluation of |φmmin (t)〉 is similar in
complexity to the calculation of the full state |ψ(t)〉.

There is little computational gain in implementing Eq. (37)
if all components of the wave function must be accurately
computed. Fortunately, this generally is not the case for
the class of problems of interest, where |ψ0〉 is some low-
lying eigenstate (typically the ground state) of an initial
HamiltonianHi . Under these circumstances, |ψ0〉 typically has
only negligible overlap with the high-energy states of H, i.e.,
〈φm|φm〉  1 for the initial NRG iterations. Overlap becomes
significant only upon approaching a characteristic energy scale

t  ~ m Λ
−m/2

tMt  = m

Wilson chain constant hopping

tM−1 tM tM
impurity

t0

FIG. 4. (Color online) A hybrid Wilson chain where the first M +
1 hopping matrix elements decrease according to tn ∝ �−n/2 with
� > 1, and all further hopping matrix elements are held constant and
equal to tM .

DM where the spectra of the full and the unperturbed Hamil-
tonians begin to notably deviate from one another. Usually
this happens at some characteristic low-energy scale of the
problem, e.g., the Kondo temperature TK in case of the Kondo
Hamiltonian.

Consequently, the initial NRG iterations with m � M can
be treated using further approximations such as setting tn = 0
in Eq. (38), corresponding to the standard NRG approximation.
Since the reduced density matrix ρm

s,r (t) requires only the
matrix element 〈ψ(t)|r,e; m〉, one can implement eiHt |r,e; m〉
instead of propagating |φm(t)〉 in time, which simplifies the
exact result of Eq. (27) to the approximate expression of
Eq. (32). The computational effort can therefore be focused
on evaluating |χM (t)〉, which dominates the expectation value
A(t). Most importantly, given the initial state |χM〉 and the
effective Hamiltonian ĥχ generated by the NRG, |χM (t)〉 can
be computed using one’s method of choice.

The physical role of the integer M , which so far served
as a mere parameter, is now disclosed: it defines the NRG
iteration M beyond which the time-dependent state should
be accurately computed. Moreover, this partitioning can be
used to improve the discrete representation of the continuous
bath as noted above. For example, one can design a hybrid
chain such that all sites up to m = M are discretized with
� > 1 and all further sites are converted to � → 1+ (see
Fig. 4). Such a chain is impractical for pure NRG-based
calculations, but is made possible by resorting to alternative
methods for tracking the time evolution of |χM (t)〉. In this
manner, discretization errors are significantly reduced at the
energy scale DM , corresponding to the time scale tM = 1/DM .
The crucial point to notice is that the reduced Hamiltonian
hχ has the effective bandwidth DM ∝ �−M/2  D and acts
on a reduced chain of length N − M . This enables access to
long time scales of order tM � 1/D using techniques such as
the TD-DMRG or CET, which otherwise are restricted to far
shorter times.

The only remaining uncertainty pertains to a suitable
choice of the iteration number M . In the absence of a sharp
mathematical criterion, the choice of M should be considered
on a case-by-case basis. Qualitatively, one expects the scale
DM to correspond to max{�0,|εd |} for the resonant-level model
[see Eq. (72) below], and to the Kondo temperature16 TK for
the Kondo model. The case of an Anderson impurity is clearly
more subtle, as spin and charge relax on different time scales.30

Here, a different optimal choice of M may apply to observables
acting on the spin and charge sectors.
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3. Construction of the initial state |ψ0〉
So far, we have assumed the decomposition of the initial

state |ψ0〉 according to Eq. (14) but did not specify how |ψ0〉 is
obtained in practice. The construction of |ψ0〉 and its projection
|χM〉 onto the low-energy subspace defined by 1̂+

M depends
in detail on the method hybridized with the TD-NRG. Our
discussion below covers both the TD-DMRG and CET.

We begin with the initial NRG run, which provides us with
the low-energy Hamiltonian ĥi

χ = 1̂+
i,MHi 1̂+

i,M corresponding

to the initial HamiltonianHi . Here, 1̂+
i,M denotes the projection

operator onto the low-energy subspace of Hi retained at
the conclusion of iteration M . As detailed in Eq. (38), ĥi

χ

comprises a hyperimpurity, a residual chain of length N − M ,
and a tunnel coupling between both parts of the system.
In the next step, the ground state |ψ0〉 of ĥi

χ is computed.
In case of the TD-DMRG, this is done using the standard
DMRG algorithm,46 while for the CET (for which a shorter
chain RM,N is employed) the Davidson method47 can be
used. At the conclusion of this step one has the initial
state |ψ0〉 at hand, expressed via the kept NRG eigenstates
of Hi

M :

|ψ0〉 =
∑
ki ,e

cki ,e|ki,e; M〉. (39)

Given |ψ0〉, the state |χM〉 is obtained by projecting |ψ0〉
onto the low-energy subspace of the full Hamiltonian defined
by 1̂+

M . This in turn yields

|χM〉 =
∑
k,e

bk,e|k,e; M〉 (40)

with

bk,e =
∑
ki

S∗
ki ,k

(M)cki ,e, (41)

where S(M) is the overlap matrix defined in Eq. (12). This state
is then propagated in time according to |χM (t)〉 = e−iĥχ t |χM〉
using either the TD-DMRG or CET and fed into Eq. (32).
As for the reduced density matrices ρred

s,r (m) entering Eq. (32),
these are computed recursively from |ψ0〉 using the standard
TD-NRG algorithm.31

III. REPEATED SWITCHINGS

Armed with the hybrid-NRG platform, we proceed in this
section to the second major result of this paper—the extension
of the TD-NRG from a single quantum quench to repeated
switching events.

Coherent control of small nanodevices such as semicon-
ductor quantum dots or superconducting flux qubits can be
achieved by applying gate-voltage pulses or time-dependent
electromagnetic fields. For example, circularly polarized laser
pulses are used to induce and control the spin polarization in
semiconductor quantum dots.48 Alternatively, one can apply
rapid changes to close-by gate voltages in order to control
the energy levels and/or the tunneling rates of a quantum dot.
Each of these protocols involves repeated switchings between
two distinct configurations of the applied fields, which we
denote hereafter by a and b. Theoretically this corresponds to
periodic conversions in time between two quantum-impurity

Hamiltonians, Ha and Hb, that differ in those components
describing the isolated dot and its coupling to the leads. Our
goal is to track the time evolution of local expectation values
in response to such a sequence of switching events.

To clearly formulate the problem, we assume that the
system resides at time t = 0 in a low-lying eigenstate of the
Hamiltonian Ha , when its Hamiltonian is abruptly converted
from Ha to Hb. The system then evolves in time under the
influence of Hb up to time τ > 0, when the Hamiltonian of the
system is suddenly switched back to Ha for the duration τ <

t < 2τ . This sequence of switchings is repeated periodically
with a period of 2τ , as described by the time-dependent
Hamiltonian

H(t > 0) =
{
Ha, (2n − 1)τ � t < 2nτ,

Hb, 2nτ � t < (2n + 1)τ
(42)

(here n = 0,1,2, . . .). Within each time interval where the
Hamiltonian is constant, the expectation value of a general
local operator Â is given by Eqs. (27) and (28) where,
depending on the time interval in question, |χM (t)〉 and ρm

s,r (t)
pertain either to Ha or Hb. Explicitly, |χM (t)〉 is replaced
with |χ (α)

M (t)〉 = 1+
α,M |ψ(t)〉, where 1+

α,M denotes the projection
operator of Eq. (7) written with respect to NRG eigenstates of
Hα (α = a,b). With these adjustments, the resulting expression
is formally exact, but requires explicit knowledge of the states
|ψ(t)〉 and |χ (α)

M (t)〉.
Consider a particular time interval (2n − 1)τ < t < 2nτ

in which the system evolves according to the Hamiltonian
Ha . As discussed in Sec. II B 2, the expectation value A(t)
can be approximated by applying the conventional NRG
approximation to the early iterations m � M only. This yields
Eq. (32), where |χM (t)〉, the eigenenergies Em

r and Em
s , and

the state labels s and r correspond to Ha . The only formal
modification as compared to Eq. (32) pertains to the reduced
density matrix ρred

s,r (m), in which the initial state |ψ0〉 must
be replaced with |ψ(t)〉 at time t2n−1 = (2n − 1)τ . The same
set of rules carry over to any given time interval 2nτ < t <

(2n + 1)τ , except that Ha is replaced with Hb, and the initial
state |ψ0〉 is replaced with |ψ(t)〉 at time t2n = 2nτ . This
leaves us with those instances in time where the Hamiltonian
is abruptly converted from Ha to Hb or vice versa.

For concreteness let us focus on the time instance t2n =
2nτ , when the Hamiltonian is converted from Ha to Hb. As
described in Eq. (14), the state of the system can be formally
decomposed within the time interval (2n − 1)τ < t < 2nτ

into

|ψ(t)〉 = ∣∣χ (a)
M (t)

〉 + |δψ (a)(t)〉 (43)

with |δψ (a)(t)〉 = ∑
m�M |φ(a)

m (t)〉. Here, the states |φ(a)
m (t)〉

are projected according to the NRG eigenstates of Ha .
The time-dependent density operator is next divided into
ρ̂(a)

χ (t) + δρ̂(a)(t), where

ρ̂(a)
χ (t) = ∣∣χ (a)

M (t)
〉〈
χ

(a)
M (t)

∣∣ (44)

and δρ̂(a)(t) = ρ̂(t) − ρ̂(a)
χ (t). Setting t → t2n and replacing

ρ̂0 = |ψ0〉〈ψ0| → |ψ(t2n)〉〈ψ(t2n)| in Eq. (10), the reduced
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density matrix with respect to the eigenstates of Ha reads

ρred (a)
s,r (m) =

∑
e
〈s,e; m|ρ̂(a)

χ (t2n)|r,e; m〉︸ ︷︷ ︸
χ

(a)
s,r (m)

+δρ(a)
s,r (m), (45)

where we have defined

δρ(a)
s,r (m) ≡

∑
e

〈s,e; m|δρ̂(a)(t2n)|r,e; m〉. (46)

An equivalent expression ρred (b)
s,r (m) = χ (b)

s,r (m) + δρ(b)
s,r (m) ap-

plies to the reduced density matrix with respect to the NRG
eigenstates of the Hamiltonian Hb.

In the notations of Ref. 31 [see Eqs. (31) and (32)
therein], the first term χ (a)(m) in Eq. (45) is of the pure form
χ++(m), having none of the components χ+−(m), χ−+(m),
and χ−−(m). Thus one has the exact conversion31

χ (b)(m) = S†(m) χ (a)(m) S(m), (47)

where S(m) is the overlap matrix between the NRG eigenstates
ofHa andHb defined by Eq. (12). By contrast, the second term
δρ(a)(m) in Eq. (45) involves all four components δρ++(m),
δρ+−(m), δρ−+(m), and δρ−−(m), and as a result lacks
an explicit relation31 to δρ(b)(m). Similar to Eq. (47), we
approximate δρ(b)(m) by

δρ(b)(m) = S†(m) δρ(a)(m) S(m), (48)

leading to the compact transformation rule

ρred (b)(m) = S†(m) ρred (a)(m) S(m). (49)

The complementary transformation rule for switching from
Hb to Ha reads

ρred (a)(m) = S(m) ρred (b)(m) S†(m). (50)

It should be emphasized that Eq. (48) is an ad hoc
approximation, whose quality is difficult to assess a priori.
Its accuracy is necessarily controlled by the smallness of
〈δψ (α)|δψ (α)〉, which in turn is reduced the smaller is M .
Below, we present numerical results demonstrating this point.

In addition to the reduced density matrix, Eq. (32) requires
explicit knowledge of the projected state, either |χ (a)

M (t)〉 or
|χ (b)

M (t)〉, depending on the time interval in question. It is
therefore necessary to formulate the transformation rule of
|χM (t)〉 upon conversion of the Hamiltonian. Focusing again
on the time instance t = t2n, the state |χ (b)

M (t2n)〉 is formally
given by ∣∣χ (b)

M (t2n)
〉 = 1̂+

b,M |ψ(t2n)〉

=
M∑

m=mmin

1̂+
b,M

∣∣φ(a)
m (t2n)

〉 + 1̂+
b,M

∣∣χ (a)
M (t2n)

〉
, (51)

where |φ(a)
m (t2n)〉 and |χ (a)

M (t2n)〉 are projected according to the
operators P̂ a,m and 1̂+

a,M pertaining to the Hamiltonian Ha .
The right-most term in Eq. (51) has the exact representation

1̂+
b,M

∣∣χ (a)
M (t2n)

〉 = S†(M)
∣∣χ (a)

M (t2n)
〉
, (52)

which follows from the fact that P̂ a,m|χ (a)
M (t2n)〉 vanishes by

construction for all m � M . As for the remaining terms on the
right-hand side of Eq. (51), these require explicit knowledge

of the states |φ(a)
m (t2n)〉. Unfortunately, it is unfeasible to

keep track of the states |φ(a)
m (t)〉, which forces yet another

approximation. Our strategy is to omit these terms altogether,
with the expectation that their combined contribution is
typically small. Naturally, the quality of this approximation
will depend on the choice of M and on details of Ha and Hb.
This leaves us with the approximate transformation rule∣∣χ (b)

M (t2n)
〉 ≈ S†(M)

∣∣χ (a)
M (t2n)

〉
, (53)

along with its counterpart∣∣χ (a)
M (t2n+1)

〉 ≈ S(M)
∣∣χ (b)

M (t2n+1)
〉
. (54)

We are now in position to summarize the proposed
algorithm for computing A(t) = 〈ψ(t)|Â|ψ(t)〉 for a sequence
of switching events. We begin by rewriting Eq. (32) in the form

A(t) =
M∑

m=mmin

trun∑
r,s

Am,(α)
r,s ρred (α)

s,r (m; t) + 〈
χ

(α)
M (t)

∣∣Â∣∣χ (α)
M (t)

〉
,

(55)

where α equals a or b depending on the time interval,
and Am,(α)

r,s is the matrix representation of Â at iteration m

with respect to the NRG eigenstates of Hα . The first step
is to evaluate ρred (a)

s,r (m; t = 0) and |χ (a)
M (t = 0)〉 using the

TD-NRG methodology detailed in Ref. 31 and in Sec. II C 3
above. From this point on, these quantities are evolved in time
according to the following set of rules: (i) at time t = t2n we
switch from Ha to Hb by setting

ρred (b)(m; t2n) = S†(m) ρred (a)(m; t2n) S(m),
(56)∣∣χ (b)

M (t2n)
〉 = S†(M)

∣∣χ (a)
M (t2n)

〉
.

(ii) In the time interval t2n � t � t2n+1, the density matrices
and wave function are propagated in time according to

ρred (b)
s,r (m; t) = ρred (b)

s,r (m; t2n) ei(Em
r −Em

s )(t−t2n),
(57)∣∣χ (b)

M (t)
〉 = e−iĥb

χ (t−t2n)
∣∣χ (b)

M (t2n)
〉
,

where ĥb
χ is the projected low-energy Hamiltonian

corresponding to Hb. (iii) At time t = t2n+1, we switch
back from Hb to Ha by setting

ρred (a)(m; t2n+1) = S(m) ρred (b)(m; t2n+1) S†(m),
(58)∣∣χ (a)

M (t2n+1)
〉 = S(M)

∣∣χ (b)
M (t2n+1)

〉
.

(iv) The density matrices and wave function are propagated
in the time interval t2n+1 � t � t2n+2 according to

ρred (a)
s,r (m; t) = ρred (a)

s,r (m; t2n+1) ei(Em
r −Em

s )(t−t2n+1),
(59)∣∣χ (a)

M (t)
〉 = e−iĥa

χ (t−t2n+1)
∣∣χ (a)

M (t2n+1)
〉
,

where ĥa
χ is the projected low-energy Hamiltonian

corresponding to Ha .
We stress that four distinct approximations enter Eqs. (56)–

(59): (i) a discrete representation of the continuous bath,
(ii) the standard NRG approximation HN |r,e; m〉≈Em

r |r,e; m〉
that is used to propagate the reduced density matrices within
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each time interval where H is fixed, (iii) the transformation
rule of Eq. (48) for δρ(m) at each switching event, and
(iv) The omission of those terms that originate from the |φm〉’s
in Eq. (51) in the transformation rule for |χM (t)〉 at each
switching event. While the first two approximations are general
in nature and apply, in particular, to the TD-NRG, the latter
two approximations are specific to the present formulation
of repeated switchings. The quality of those approximations,
which become exact for M = mmin, can be tested a posteriori
by comparison to cases where exact solutions are available, as
done in Sec. VI A for the noninteracting resonant-level model.

IV. CHEBYSHEV EXPANSION TECHNIQUE

Our presentation thus far was quite general and did not
specify a particular method to be hybridized with the TD-NRG.
As a proof of principle, we shall demonstrate in Sec. VI the
hybridization of the TD-NRG with the CET, whose principles
and implementation are reviewed below.

The CET27–29 offers an accurate way to calculate the time
evolution of an initial state |ψ0〉 under the influence of a general
stationary finite-dimensional Hamiltonian H:

|ψ(t)〉 = e−iHt |ψ0〉. (60)

The main idea of the method is to construct a stable numerical
approximation for the time-evolution operator e−iHt that is
independent of the initial state |ψ0〉 and whose error can be
reduced to machine precision. Its limitation lies in the need to
explicitly store certain states in the course of the calculation,
which limits the size of the Hilbert space that can be handled.

There are different ways to expand the time-evolution
operator, the most direct one being the conventional expansion
of the exponent in powers of H. One would like, however, to
use an expansion that converges uniformly, independent of
the initial state |ψ0〉. A suitable choice are the Chebyshev
polynomials, defined by the recursion relation

Tn+1(z) = 2zTn(z) − Tn−1(z), (61)

subject to the initial conditions T0(z) = 1 and T1(z) = z. As is
well known, the Chebyshev polynomials can be used to expand
any function f (z) on the interval −1 � z � 1. Explicitly, f (z)
is expressed as an infinite series

f (z) =
∞∑

n=0

bnTn(z), (62)

where the expansion coefficients bn are given by

bn = 2 − δn,0

π

∫ 1

−1

f (x)Tn(x)√
1 − x2

dx. (63)

The expansion in terms of Chebyshev polynomials can be
equally applied to any function F (z) with an arbitrary support
λmin � z � λmax using the transformation

z′ = 2
z − λmin

λmax − λmin
− 1, (64)

which maps the interval λmin � z � λmax onto −1 � z′ � 1.
In doing so, one expands in practice the function f (z′) = F (z).

Using the rules detailed above, the function e−iz is expanded
for λmin � z � λmax as

e−iz =
∞∑

n=0

bnTn(z′) (65)

with

b0 = e−iϕJ0

(
�λ

2

)
, (66a)

bn>0 = 2ine−iϕJn

(
�λ

2

)
. (66b)

Here, Jn(x) are the Bessel functions, ϕ equals (λmax + λmin)/2,
and �λ = λmax − λmin. Accordingly, the time-evolution oper-
ator e−iHt is expanded as

e−iHt =
∞∑

n=0

bn(t)Tn(H′), (67)

where

b0(t) = e−iαtJ0

(
�Et

2

)
, (68a)

bn>0(t) = 2ine−iαtJn

(
�Et

2

)
. (68b)

Here, Emax (Emin) is the maximal (minimal) eigenenergy of
H, �E equals Emax − Emin, α = (Emax + Emin)/2, and H′ is
the “transformed” Hamiltonian

H′ = 2
H − Emin

Emax − Emin
− 1. (69)

Finally, applying Eq. (67) to the initial state |ψ0〉, one obtains

|ψ(t)〉 =
∞∑

n=0

bn(t)|φn〉, (70)

where the infinite set of states |φn〉 = Tn(H′)|ψ0〉 obey the
recursion relation27

|φn+1〉 = 2H′|φn〉 − |φn−1〉, (71)

subject to the initial condition |φ0〉 = |ψ0〉 and |φ1〉 = H′|ψ0〉.
Several comments are in order. First, all time dependence

is confined in Eq. (70) to the expansion coefficients bn(t)
of Eqs. (68), which are independent of the initial state |ψ0〉.
Second, the Chebyshev recursion relation of Eq. (71) reveals
the iterative nature of the calculations. Starting form the initial
state |ψ0〉, one constructs all subsequent states |φn〉 using
repeated applications of the “transformed” Hamiltonian H′.
Note that in practice only two such states need be stored in
memory at each given time. Third, since Jn(x) ∼ (ex/2n)n

for large order n, the Chebyshev expansion converges quickly
as n exceeds �Et . Finally, the Chebyshev expansion has the
virtue that numerical errors are practically independent of t ,
allowing access to extremely long times. The main limitation
of the approach, as commented above, stems from the size
of the Hilbert space, since each of the states |φn〉 must be
constructed explicitly. In our applications of the approach
(where |χM〉 serves as the initial state), this Hilbert space
comprises the tensor products of the kept NRG states at
iteration M—typically of the order of 210 states— and the
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remaining chain RM,N , whose dimension is dN−M (d = 2
being the number of distinct configurations of a single spinless
site). As a result, application of the CET is confined to rather
short chains that cannot be used to access arbitrarily long time
scales.

V. SINGLE-QUENCH DYNAMICS ON A HYBRID CHAIN

As already pointed out in the introduction, the Wilso-
nian discretization of the continuous bath significantly in-
fluences the quench dynamics, independent of which finite-
size approach—exact diagonalization, TD-NRG, or the TD-
DMRG—is used to track the real-time dynamics of the
system. As illustrated in Fig. 1, deviations from the exact
continuum-limit result stem from current reflections at sites
along the Wilson chain, caused by the exponentially decreasing
hopping matrix elements that are used. These in turn produce
an exponentially decreasing transport velocity.

In this section, we present a preliminary discussion aimed
at demonstrating the potential of substituting the standard
Wilson chain with a hybrid chain of the type depicted in Fig. 4.
We shall do so by investigating a single quantum quench in
the noninteracting resonant-level model (RLM), which can
be solved exactly on essentially any finite-size chain using
exact diagonalization of the single-particle eigenmodes. The
availability of an exact analytical solution for the real-time
dynamics of the level occupancy in the continuum limit
[see Eq. (50) of Ref. 31] makes this model an ideal benchmark
for testing the quality of different hybrid chains in reproducing
the continuum-limit result. Thus one can clearly separate
deviations caused by the structure of the chain from those that
originate from further approximations underlying the TD-
DMRG or TD-NRG. Furthermore, the RLM sets the stage for
more complicated interacting models, such as the interacting
resonant-level model discussed below.

Physically, the RLM describes the coupling of a single
spinless level to a continuous band of width 2D via the single-
particle hopping matrix element V :

H =
∑

k

εkc
†
kck + Edd

†d + V√
Nk

∑
k

(c†kd + H.c.). (72)

Here, d† creates an electron on the level, c
†
k creates a band

electron with momentum k, and Nk labels the number of
distinct values of k. The relevant energy scales in the problem
include the level energy Ed , along with the hybridization width
�0 = π�V 2, where � is the conduction-electron density of
states at the Fermi level.

We are interested in tracking the real-time dynamics of the
level occupancy nd (t) = 〈d†(t)d(t)〉 in response to a sudden
quench from (Ei

d,�i) to (Ef

d ,�f ). Figure 5 depicts the time
evolution of nd (t) after the level energy has been abruptly
shifted from Ei

d = −2�0 to E
f

d = 2�0 while keeping the
hybridization width fixed at �0. We used the same model
parameters as in Fig. 1, but varied the chain structure by
considering different values of the partitioning parameter
M and different chain lengths N . Explicitly, as illustrated
in Fig. 4, these chains comprise an initial Wilson chain
with exponentially decreasing hopping matrix elements tm ∝
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FIG. 5. (Color online) Comparison of the exact continuum-limit
solution for nd (t) in the RLM (solid black line) and its exact numerical
evaluation for various hybrid chains of the type depicted in Fig. 4. The
full red line depicts the case of a pure Wilson chain of length N = 40.
(a) Keeping the total chain length fixed at N = 40 and varying the
partitioning parameter M . (b) For M = 12 and two different chain
lengths N = 40 and 112. Model parameters are �i = �f = �0, Ef

d =
−Ei

d = 2�0, �0/D = 10−2, and � = 1.8.

�−m/2 up to m = M , converting to a constant hopping matrix
element tm = tM for M � m � N .

As can be seen in Fig. 5(a), there is a systematic improve-
ment in the agreement with the continuum-limit result upon
decreasing M . Specifically, for M = 12, the deviations remain
quite small up to t � ∼ 8, at which point, there is a revival
of nd (t), which nearly reaches its original value nd (t = 0)
for t � ≈ 9.5. In contrast to a pure Wilson chain, the current
velocity becomes a constant along the chain sites with m > M ,
hence current reflections occur only at the end of the chain.22

The time at which the revival of nd (t) is observed is simply
given by the round-trip time for a charge pulse that originates
from the impurity to reach the chain end and return. Note that
this time is shorter for M = 12 than for M = 14.

Since charge is a globally conserved quantity, true thermal-
ization and relaxation can occur only in the thermodynamic
limit N → ∞. The deviation of the total charge from its
thermalized value following the quench is simply given by
the difference in the equilibrated charges before and after
the quench. Since the change in total charge is O(1) for
such a local quench, there is an O(1/N) contribution to each
reservoir degree of freedom, which can be safely neglected in
the thermodynamic limit.
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For any finite-size chain, however, this effect remains
finite and relevant for the long-time limit. In particular, the
continuity equation leads to charge reflections at the end of the
tight-binding chain22,37 such that the round-trip time is con-
trolled by the chain length. Indeed, in Fig. 5(b), we compare
nd (t) for two hybrid chains, each partitioned at M = 12. The
two chains share the same characteristic energy scale DM for
their partitioning, but one has a total length of N = 40 and
the other N = 112. While the short-time dynamics is nearly
identical and agrees well with the continuum-limit result, the
revival time for the long hybrid chain is pushed way beyond
the time interval presented in Fig. 5. Thus discretization errors
have been nearly eliminated on the time scale of interest.

This latter example vividly illustrates the potential of
hybridizing the TD-NRG with the TD-DMRG, as the tight-
binding chain length involved is of typical DMRG size. Since
in our example the effective bandwidth DM is of order �0,
the TD-NRG generates an effective Hamiltonian hχ whose
effective bandwidth DM can be of several orders of magnitude
smaller than the bare conduction-electron bandwidth D. This
in turn allows access to long-time scales of order 1/�0 �
1/D, which lie beyond the reach of pure TD-DMRG, while
significantly reducing discretization errors that are inherent to
the TD-NRG.

A concluding word is in order about the optimal choices of
M and the structure of the hybrid chain. The answers to these
questions are quite difficult and can be expected to depend
both on the model and observable of interest. For instance,
spin and charge excitations generally propagate with different
velocities. It is therefore quite feasible that the optimal choices
of M and N will dependent on the observable in question. A
more systematic study of the optimal hybrid chain is left for
future research.

VI. PERIODIC SWITCHING

A. Periodic switching in the resonant-level model

So far, we have stressed the potential of using hybrid
chains by comparing their exact numerical solutions with the
continuum-limit result for simple quenches. In this section, we
extend our focus to the hybrid-NRG approach as formulated
in Sec. III for periodic switching. To benchmark our switching
algorithm, we compare it with exact diagonalization solutions
on a pure Wilson chain, postponing further discussion of the
usage of hybrid chains and the comparison to exact continuum-
limit results. Therefore all calculations are performed on a
standard Wilson chain with identical parameters, hybridizing
the CET with the TD-NRG at a given site M . In order to
illustrate how the effective low-energy Hamiltonian generated
by the NRG can be fed into the CET (or into any other
method of choice for that matter), we consider an extreme
wide-band limit by setting the bare bandwidth of the RLM
to D = 105�0.

Using the notations introduced in Sec. III, we start at time
t = 0 with a system that resides in the ground state of Ha , and
switch repeatedly between Ha and Hb after each additional
time interval τ . As our basic energy scale, we set �0 = 10−5D,
whose associated time scale 1/�0 = 105/D lies many orders
of magnitude beyond the reach of the CET when applied
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FIG. 6. (Color online) Comparison of the hybrid NRG-CET
approach and exact diagonalization for the RLM on a Wilson chain
with � = 1.4 and N = 84. The TD-NRG resummation is applied
up to iteration M , beyond which the CET is used to track the time
evolution of |χM (t)〉. The number of states retained in the course
of the NRG is equal to Ns = 1024. The resulting occupancy nd (t)
is averaged over Nz = 8 equally distributed values of the twist
parameter z, both for the hybrid-NRG and in exact diagonalization.
Model parameters are �a = �b = �0, Eb

d = −Ea
d = �0, and τ =

5/�0, with �0/D = 10−5. Upon decreasing M , the hybrid NRG-CET
approach gradually converges onto the exact result.

directly to the full Wilson chain. We work with a chain of fixed
length N = 84 and the logarithmic discretization parameter
� = 1.4, such that DN ∼ �0/10.

To initiate the calculation, we first perform an NRG run
for the initial Hamiltonian Ha and select the ground state
of the N th iteration as our initial state49 |ψ0〉 (for even
N the ground state is unique). We then perform a second
NRG run for the other Hamiltonian Hb, during which we
construct the overlap matrices S(m). Technically, these two
NRG runs can be performed in parallel, in which case the
overlap matrices S(m) are calculated at the end of each NRG
iteration. Backtracking from iteration N to iteration mmin, the
reduced density matrices ρred (a)(m; 0) are computed using the
standard TD-NRG algorithm.31 These density matrices, along
with the projected state |χ (a)

M (0)〉, are then used as a seed for
the hybrid-NRG algorithm detailed in Eqs. (55)–(59).

1. Simple extension of the TD-NRG to periodic switching

Before discussing the full hybrid approach, let us focus for
a moment on a simple extension of the TD-NRG to periodic
switching, corresponding to setting M = N in Eqs. (55)–(59).
This implies taking |χM (t)〉 = 0 throughout the calculation.

Using τ = 5/�0 and Eb
d = −Ea

d = �0, Fig. 6 depicts a
comparison of the TD-NRG with an exact diagonalization
solution on a Wilson chain with N = M = 84. Since the decay
rate is given by �0, the system almost fully equilibrates before
the next switching event takes place. As a result the deviations
of the periodic TD-NRG from the exact numerical solution
are surprisingly small. In particular, the periodic TD-NRG
correctly tracks the general structure of the precise solution.
Nevertheless, a systematic degradation in accuracy is observed
upon going from one switching cycle to the next. This loss
of accuracy can be quantified by the growing discontinuity
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FIG. 7. (Color online) Same as Fig. 6 but for τ = 1/�0 and Nz =
1 (i.e., no z averaging). Note the much stronger M dependence as
compared to τ = 5/�0.

�n
(i)
d = |nd (ti + 0+) − nd (ti − 0+)| at successive switching

events, caused by the approximation made to ρred (α)(m; t).
Reduction of the switching time to τ = 1/�0 prevents

the system from relaxing to a new equilibrium state. In this
case, high-energy excitations, which are cut off by neglecting
the three additional terms δρ+−(m), δρ−+(m), and δρ−−(m),
contribute significantly to the time evolution of ρ̂(t). Since
switching occurs on a shorter time scale, energy is frequently
pumped into the system, exciting it in such a way that the three
neglected high-energy contributions to ρred (α)(m; t) gain in-
creasing importance with time. Indeed, the periodic TD-NRG
result for nd (t), depicted by the blue curve in Fig. 7(b), shows
a sizable accumulated error that grows systematically in time.

2. Hybrid approach to periodic switching

Although the simple periodic extension of the TD-NRG
already captures the correct short-time dynamics, the exter-
nally driven nonequilibrium state increasingly deviates with
time from the transient dynamics of a single quantum quench.
Energy is locally added and removed from the system, which
can be partially dissipated via heat current flowing between
the impurity and the finite-size bath.

To properly capture this physics, we next employ the hybrid
approach to periodic switching. The key idea is to identify
a suitable low-energy subspace that is large enough for the
neglected contributions in our approximation to be small. A
trivial limit is given by setting M � mmin, for which the hybrid

approach reproduces by construction the exact solution on
the finite-size chain. Even though this limit has no practical
value, it illustrates the point that a reduction in M should
systematically improve the quality of the results.

With this understanding, we extend our discussion of the
hybrid approach to mmin < M < N . At each time interval
where H is fixed we evolve |χ (α)

M (t)〉 in time using the CET,
which is essentially exact on all time scales of interest.
The CET is restricted, however, in the size of the Hilbert
space one can treat, which limits the length of the residual
chain RM,N extending beyond site M . With our machines
we can comfortably access up to 222 ≈ 4 × 106 basis states,
above which the computational effort rapidly becomes too
exhaustive. Keeping Ns = 210 = 1024 states at the conclusion
of each NRG iteration, this sets an upper limit of 12 addition
Wilson sites beyond site M , i.e., M � N − 12 = 72. To reduce
finite-size effects, we average over Nz equally distributed
values of the twist parameter50 z ∈ (0,1]. Below, we present
results for different values of M � 72 and Nz � 1.

Figures 6 and 7 show the time evolution of nd (t) in response
to repeated switchings between Ea

d = −�0 and Eb
d = �0,

keeping �a = �b = �0 fixed. Figure 6 depicts four successive
switch events with the time interval τ = 5/�0, while Fig. 7
shows ten successive switch events with the shorter time
interval τ = 1/�0. For comparison, the exact time evolutions
on the Wilson chain are depicted by the black lines, after
averaging over the different values of z. These solutions
are obtained by exact diagonalization of the single-particle
eigenmodes of each Hamiltonian and using them to propagate
d†(t)d(t) in time.

Several points are noteworthy. Upon decreasing M , the
hybrid NRG-CET curves gradually converge onto the exact
result for the Wilson chain, both for τ = 1/�0 and τ = 5/�0.
Specifically, by M = 72 the hybrid NRG-CET approach
essentially reproduces the exact curves. The largest deviations
are usually found immediately following a switching event,
when a discontinuity generally develops in the occupancy
produced by the hybrid NRG-CET approach. As noted above,
the discontinuity stems from the approximations employed in
deriving Eqs. (56)–(59). It decreases in size with decreasing
M , reflecting a reduction in the accumulated weight of the
|φm(t)〉’s in favor of |χM (t)〉 in the expansion of Eq. (14).
Indeed, the smaller the accumulated weight of the |φm(t)〉’s
the more accurate are the approximations employed in deriving
the hybrid-NRG.

For M = 84, the hybrid approach corresponds to the simple
extension of the TD-NRG to periodic switching. As can be seen
in Fig. 7(b), the discontinuities at tn = nτ are particularly
large for the shorter switching time τ = 1/�0 since more
energy is pumped into the system. These discontinuities
are greatly reduced for the longer time interval τ = 5/�0

as depicted in Fig. 6. As discussed above, this behavior
is correlated with the fact that the occupancy nd (t) for
τ = 5/�0 has nearly decayed in each time interval to its
new equilibrium value corresponding to the Hamiltonian
Hα in that time segment. In other terms, the state of the
system behaves as if it has effectively decayed to the new
ground state, leaving behind only weak traces of the transient
behavior.
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FIG. 8. (Color online) The time-dependent response to repeated
switchings between �a = �0/2 and �b = �0 for fixed Ea

d = Eb
d =

�0/2. All other parameters are the same as in Fig. 6.

Figure 8 shows the complementary response to repeated
switchings between two different hybridization widths: �a =
�0/2 and �b = �0 for fixed Ea

d = Eb
d = �0/2. As can be seen,

the discontinuities at tn = nτ are barely visible in this case,
yet discretization errors do give rise to high-frequency wiggles
that are essentially absent in Figs. 6 and 7. The usage of z

averaging is essential for reducing these discretization effects,
both at the level of the hybrid-NRG and in the framework
of exact diagonalization. Similar to the case of a single
quantum quench, discretization errors become more and more
pronounced the larger are the deviations between Ha and Hb

and the longer the time that has elapsed. Clearly, the nature
of the perturbation (e.g., Ea

d �= Eb
d versus �a �= �b) is also of

importance. It should be emphasized, however, that z averaging
alone is insufficient for removing low-frequency oscillations
that appear when the deviations between Ha and Hb are
large.

To summarize this section, we have demonstrated how the
NRG can be used to systematically construct effective low-
energy Hamiltonians ĥa

χ and ĥb
χ whose bandwidth is smaller

by orders of magnitude than the bare conduction-electron
bandwidth D of the original model. As a result, methods such
as the TD-DMRG, whose accuracy is usually confined to times
of order 102/D, can be used within the hybrid platform to
access exponentially long time scales. This follows from the
fact that the new effective bandwidth ≈DM ∝ D�−M/2 can
be exponentially smaller than D.

B. Interacting resonant-level model

Having established the accuracy of the hybrid NRG-CET
approach for the noninteracting RLM, we proceed to apply it to
an interacting problem that lacks an exact reference solution.
Specifically, we shall use the hybrid NRG-CET to track the
real-time dynamics of the interacting resonant-level model
(IRLM) in a regime not accessible to other available methods.
In the IRLM,39,40,42,43 the resonant-level model of Eq. (72) is
supplemented by a local contact interaction U between the
level and the band electrons:

HU = U

(
d†d − 1

2

)
1

Nk

∑
k,k′

:c†kck′ : . (73)

Here :c†kck′:= c
†
kck′ − δk,k′θ (−εk) stands for normal ordering

with respect to the filled Fermi sea. Physically, the contact
interaction U accounts for the local capacitive coupling
between the localized level d† and the band electrons. The
total Hamiltonian of the model is given by

H = HRLM + HU , (74)

where HRLM represents the RLM Hamiltonian of Eq. (72).
At low energies, the IRLM is equivalent to a renormalized

noninteracting RLM, both describing a phase-shifted Fermi
liquid.41,51 At resonance, the model is characterized by the
renormalized tunneling rate

�eff ≈ D

(
�0

D

)1/(1+α)

, (75)

where �0 = π�V 2 is the noninteracting hybridization width
of the RLM defined in Eq. (72), α equals 2δ̃ − δ̃2, and

δ̃ = (2/π ) arctan(π�U/2) (76)

is the scattering phase shift associated with U alone (namely,
in the absence of V ). Within the NRG, �eff is conveniently
extracted from the zero-temperature charge susceptibility
χc = −dnd/dEd , evaluated at Ed = 0. Explicitly, we adopt
the working definition �eff = 1/(πχc).

In Fig. 9, we show the time evolution of nd (t) in response
to repeated switchings between Ea

d = −�eff and Eb
d = �eff for

U/D = 1. The bare hybridization strength �a = �b = �0 =
6 × 10−9D was adjusted numerically so as to maintain a fixed
�eff = 10−5D. The effect of a finite U is twofold. First, it
renormalizes the bare hybridization width from �0 to �eff ,
which sets the basic time scale in the problem: 1/�eff . Second,
there are pronounced oscillations that are absent for U = 0,
having the characteristic period tosc ≈ 3/�eff . To illustrate this
point, we have borrowed from Fig. 6 the exact time evolution
of nd (t) on the Wilson chain for U = 0 and �a = �b = �0 =
10−5D. The effect of U clearly goes beyond just a simple
renormalization of the parameters of the noninteracting RLM,
generating new interaction-induced oscillations.

0 5 10 15 20
t ⋅ Γ

0

0

0.2

0.4

0.6

0.8

n d(t
)

U=0
M=72
M=84

FIG. 9. (Color online) Same as Fig. 6, for U/D = 1 and Eb
d =

−Ea
d = �eff . Here, �a = �b = �0 = 6 × 10−9D was adjusted so as to

maintain a fixed �eff = 10−5D. The black line shows for comparison
the exact time evolution on the Wilson chain for U = 0 and �a =
�b = �0 = 10−5D (taken from Fig. 6).
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FIG. 10. (Color online) The real-time dynamics following a
single quantum quench from Ea

d = −�eff to Eb
d = �eff , for the IRLM

with �a = �b = �0 and different values of the Coulomb repulsion
U . Here, �0 was adjusted separately for each value of U so as to
maintain a fixed �eff = 10−5D. All remaining parameters are as in
Fig. 6.

To further investigate this point, we have plotted in Fig. 10
the real-time dynamics in response to a single quantum
quench from Ea

d = −�eff to Eb
d = �eff , for different values

of the Coulomb repulsion U . The bare hybridization width
�a = �b = �0 was adjusted separately for each value of U

so as to maintain a fixed �eff = 10−5D. All curves begin at
essentially the same initial occupancy nd � 0.75 and decay
at long time to nd � 0.25. Hence the low-energy fixed point,
which governs the thermodynamics, is fully determined by
�eff and Ed .

The intermediate dynamics, on the other hand, is quite
sensitive to U . Starting from U = 0 and increasing U , damped
oscillations gradually develop with a characteristic period that
only weakly depends on U . In contrast, the amplitude of the
oscillations and their damping rate strongly depend on U . The
larger is U , the slower does the envelope function decay to
zero, resulting in the emergence of two distinct time scales
for large U : the period of oscillations tosc and the character-
istic damping time tdamp. For example, while tosc � 3.1/�eff

for U/D = 2, the corresponding damping time is of order
10/�eff .

To understand the origin of these interaction-induced
oscillations, it is instructive to consider the limit of a large
Coulomb repulsion, U → ∞. In this extreme, the level degree
of freedom d† and the zeroth Wilson shell f

†
0 decouple from

the rest of the chain, being confined to a total valence of one:
d†d + f

†
0 f0 = 1 [this valence is fixed by the normal-ordered

form of HU as defined in Eq. (73)]. The corresponding
subspace comprises the two configurations d†|0〉 and f

†
0 |0〉,

where |0〉 denotes the state in which the resonant level and the
zeroth Wilson shell are both empty. Omitting the coupling to
the rest of the chain, the problem has been reduced in effect to
a 2 × 2 matrix whose eigenenergies are

ε± = Ed

2
±

√(
Ed

2

)2

+ V 2. (77)

Consequently, nd (t) must display quantum beats with the
frequency

� = ε+ − ε− = 2

√(
Ed

2

)2

+ V 2. (78)

To make contact with Fig. 10, it is necessary to express the
period tosc = 2π/� in terms of �eff = 1/(πχc). A straightfor-
ward calculation gives

nd (Ed ) = 1

2
− 1

4

Ed√
(Ed/2)2 + V 2

, (79)

resulting in �eff = 4V/π . Substituting V = (π/4)�eff into
Eq. (78) then yields

tosc = 4

�eff

1√
1 + (2Ed/π�eff)2

. (80)

Finally, setting Ed = �eff to match the value used in the curves
of Fig. 10, one obtains tosc = 3.37/�eff , in excellent agreement
with the period observed in Fig. 10.

Our strong-coupling analysis clearly reveals that U enters
the quantum-beat frequency only via �eff . However, U directly
influences the amplitude of the oscillations and their damping
rate. In contrast to the period of oscillations, which is well
described by U → ∞, the damping time tdamp requires a finite
coupling to the rest of the chain. For U → ∞, the impurity and
the zeroth Wilson shell decouple from the rest of the chain,
resulting in coherent quantum beats between the two singly
occupied eigenstates. Once U becomes finite the system can
decay incoherently to the lowest of the two singly occupied
states through a residual coupling to the rest of the chain. It
is this decay that determines tdamp. Since the residual coupling
should scale as 1/U for large interactions, tdamp should scale
as U 2 for U � D. This corresponds to a damping rate that
falls off as 1/U 2.

VII. DISCUSSION AND OUTLOOK

In this paper, we have extended the TD-NRG in two ways.
First, we devised a platform for combining the TD-NRG with
complementary methods such as the TD-DMRG and CET for
tracking the real-time dynamics of quantum-impurity systems.
Second, we extended the TD-NRG from its original realm
of a single quantum quench to more complicated forms of
driven dynamics where repeated switchings are applied to the
system. As a proof of principle, we combined the TD-NRG
with the CET to compute the response of a resonant level,
both with and without interactions, to repeated switchings of its
energy level and tunneling amplitude to the band. Such a model
can be used to describe a single Coulomb-blockade resonance
in small quantum dots in regimes where spin degeneracy is
unimportant.

In the absence of interactions, we have critically examined
our new approach by detailed comparisons to an exact
evaluation of the time evolution on the Wilson chain. As long as
the perturbations are not too large, good accuracy is maintained
over a fairly large number of switching events. Usage of
the hybrid NRG-CET greatly improves the accuracy in cases
where large deviations develop between the exact curve and the
one produced without invoking the CET, see, e.g., Fig. 7. Our
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present implementation of the hybrid approach is subject to the
inherent restriction of the CET to rather small finite-size sys-
tems. We expect a significant boost in accuracy and flexibility
by combining the TD-NRG with the TD-DMRG, which is ca-
pable of treating far larger systems. In particular, our approach
opens the possibility to boost the TD-DMRG to exponentially
long time scales by using the TD-NRG to (i) construct an effec-
tive low-energy Hamiltonian and (ii) account for the short-time
dynamics. This portion of the research is left for future work.

The potential of the hybrid approach was next demonstrated
by applying it to repeated switchings in the IRLM. Apart from
specially tuned models,52 this constitutes to our knowledge
the first study of such driven dynamics in interacting quantum
impurity systems. Although equivalent at sufficiently low
energies to a noninteracting RLM, the driven dynamics of
the IRLM shows clear traces of the interaction. In particular,
interaction-induced oscillations develop for strong Coulomb

repulsion, which have no equivalent in the absence of interac-
tions. We were able to explain the period of oscillations and
its weak dependence on U by invoking the limit U → ∞.
The associated damping time scales as U 2, and can greatly
exceed the natural damping time 1/�0 of the noninteracting
RLM. Such a long damping time is strictly the effect of
interactions.
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23L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
24P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320 (2009);

P. Werner, T. Oka, M. Eckstein, and A. J. Millis, ibid. 81, 035108
(2010).

25S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77,
195316 (2008).
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