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Sub-Ohmic two-level system representation of the Kondo effect
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It has been recently shown that the particle-hole symmetric Anderson impurity model can be mapped onto
a Z2 slave-spin theory without any need of additional constraints. Here, we prove by means of numerical
renormalization group that the slave-spin behaves in this model like a two-level system coupled to a sub-Ohmic
dissipative environment. It follows that the Z2 symmetry gets spontaneously broken at zero temperature, which
we find can be identified with the onset of Kondo coherence, being the Kondo temperature proportional to the
square of the order parameter. Since the model is numerically solvable, the results are very enlightening on the
role of quantum fluctuations beyond mean field in the context of slave-boson approaches to correlated electron
models, an issue that has been attracting interest since the 80′s. Finally, our results suggest as a byproduct that
the paramagnetic metal phase of the Hubbard model at half-filling, in infinite coordination lattices and at zero
temperature, as described for instance by dynamical mean-field theory, corresponds to a slave-spin theory with a
spontaneous breakdown of a local Z2 gauge symmetry.
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Mott’s localization (and all its annexes, like the local
moment formation and the Kondo effect) is a phenomenon
that escapes any mean-field single-particle description since it
directly affects only part of the electrons’ degrees of freedom,
namely, their charge. This is unfortunate because the mean-
field theory is the simplest and straightest way to approach
interacting many-body systems. A trick to circumvent this
difficulty, which has provided lots of physical insights along
the years, is to artificially enlarge the Hilbert space adding
new degrees of freedom that aim to describe just the electron
charge configurations, supplemented by local constraints that
project the enlarged Hilbert space onto the physical one.
The final scope is to make Mott’s localization accessible
already at the mean-field level. The most famous realization
of this work is the so-called slave-boson technique, originally
introduced to describe Anderson and Kondo models for
f -electron systems.1,2 A delicate issue of the slave-boson
theory is that the mean-field treatment, although providing
quite satisfactory results, explicitly breaks a local U(1) gauge
symmetry, which cannot be broken hence requires going
beyond mean field to be restored.3–5 More recently, novel
approaches have been proposed in the attempt of reducing the
dimension of the enlarged Hilbert space, hence the redundancy
of the representation, still maintaining the nice feature of
making Mott localization accessible at the mean-field level.6–8

For instance, in Ref. 8, it has been shown that it is sufficient to
introduce additional slave Ising variables on each site, namely,
just two-level systems rather than infinite level ones as in the
original slave-boson technique, to account at the mean-field
level for a Mott transition in the half-filled Hubbard model.
In this new representation, the continuous U(1) local gauge
symmetry of the slave-boson theory is replaced by a discrete
Z2 one. Alike in the slave-boson theory, the Z2 slave-spin
formulation must be supplemented by a constraint that projects
the enlarged Hilbert space onto the physical one. Remarkably,
it has been shown in Ref. 9 that the constraint is unnecessary
in the case of an Anderson impurity model at particle-hole
symmetry, and, equivalently, of a Hubbard model at half-filling

in the limit of infinite coordination lattices, which can be
mapped10 onto an impurity model self-consistently coupled to
a bath. Specifically, given the Anderson impurity Hamiltonian

HAIM =
∑
kσ

εkc
†
kσ ckσ

+
∑
kσ

Vk(d†
σ ckσ + H.c.) + U

2
(nd − 1)2

≡ Hbath + Hhyb + U

2
(nd − 1)2, (1)

where c
†
kσ creates a conduction electron while d†

σ an impurity
one, with nd = ∑

σ d†
σ dσ , and the Ising plus electron model

HZ2 = Hbath + σx Hhyb + U

4
(1 − σ z), (2)

where σa , a = x,y,z, are Pauli matrices, it follows that at
particle-hole symmetry the following identity holds:9

ZAIM ≡ Tr(e−βHAIM ) = 1
2 ZZ2 ≡ 1

2 Tr(e−βHZ2 ). (3)

The Ising operator σ z in Eq. (2) can be identified with
the electron operator 1 − 2 (nd − 1)2, which has value +1
if nd = 1 and −1 if nd = 0,2, hence it describes charge
fluctuations. Furthermore, the mixed operator σxdσ actually
represents the physical impurity annihilation operator. At
zero temperature, the two Hamiltonians (1) and (2) must
therefore have the same ground-state energy. It can be readily
shown that a mean-field factorized wave function |�〉 =
|Ising〉 × |electrons〉 for the model (2) allows to reproduce
all mean-field results of the slave-boson mean-field approach
to the Anderson impurity Hamiltonian (1). In fact, if we assume
that 〈Ising| σ z |Ising〉 = cos θ and 〈Ising| σx |Ising〉 = sin θ ,
then the electronic wave function must be the ground state
of the resonant level Hamiltonian

H∗ = Hbath + sin θ Hhyb + U

4
(1 − cos θ ), (4)
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with energy E(θ ) and hybridization width �∗ = sin2 θ �, lower
than its bare value �. Minimization of E(θ ) leads to the
same result as obtained by slave-boson mean-field theory.11

For instance, if we assume that �(ε) = � for ε ∈ [−D,D] and
zero otherwise, assumption that we shall make hereafter taking
D = 1 our unit of energy, then, for U � �, we find that the
known mean-field result

sin2 θ = 1

�
exp

(
− πU

16�

)
. (5)

By analogy with slave bosons, it is tempting to interpret the
finite value of sin θ as manifestation of Kondo coherence, and
the impurity operator dσ in Eq. (2) as the coherent quasiparticle
with weight sin2 θ . In fact, within mean field the spectral
function Adσ (ε) of the physical electron σx dσ is simply the
convolution of the spectral functions of the resonant level,
Ad (ε) and of the Ising operator σx ,

Aσ (ε) = sin2 θ δ(ε) + cos2 θ

2
[δ(ε − 
) + δ(ε + 
)], (6)

where 
 = U/2 cos θ is the effective Zeeman splitting of the
Ising spin. Specifically, one finds that

Adσ (ε) → (Ad ∗ Aσ )(ε)

= sin2 θAd (ε) + cos2 θ

2
[θ (ε − 
) Ad (ε − 
)

+ θ (−ε − 
) Ad (ε + 
)]. (7)

The mean-field expression of Adσ (ε) displays a low-energy
resonance with width �∗ and weight sin2 θ , the rest of its
weight being concentrated in two symmetric peaks at energies
±
. It is quite reasonable to regard these latter as the Hubbard
side bands and instead the central peak as the Abrikosov-Suhl
resonance, hence �∗ the Kondo temperature TK . However,
while the mean-field result predicts that the Hubbard bands
are broadened on the same scale �∗ as the central resonance,
in reality, their width is controlled by the bare �.

Another questionable aspect of the mean field solution with
〈σx〉 
= 0 is that it explicitly breaks the discrete symmetry
of Eq. (2): dσ → −dσ and σx → −σx . Therefore just like
in the conventional slave-boson approach,3 we may wonder
how reliable is mean field. We are going to show that,
unlike in slave-boson theory, the breaking of the discrete Z2

symmetry of Eq. (2) is not an artifact of mean-field but does
spontaneously occur in the actual ground state.

We start noticing that the model (2) resembles a two-
level system coupled to a dissipative bath,12 where the two
levels are the states with σx = ±1 and the tunneling is
provided by σ z. In reality, the two models are not rigorously
equivalent, since the hybridization operator Hhyb does not
behave exactly like the coupling to a dissipative bath of bosons.
However, if we judge solely from the low-frequency behavior
of the dissipative-bath spectral function, J (ω) ∼ ωs ,12 we
should conclude that the model (2) behaves like a spin-boson
Hamiltonian with an extremely sub-Ohmic dissipation, s = 0.
In such a case, we expect the tunneling to be irrelevant
at low energy, hence unable to split the degeneracy of the
two levels. This conclusion is remarkable because it means
that the mean-field result is more correct than we would
have expected; the Z2 symmetry is spontaneously broken at

zero temperature. There is still another aspect that we find
worth mentioning. In reality, the Anderson impurity model
(1) con be mapped into another spin-boson model13 with
the role of the spin being played now by the physical spin
of the impurity, rather than by the charge as in Eq. (2). In
this alternative and more familiar representation, the bath is
however Ohmic and leads to incoherent delocalization of the
physical spin, once again the Kondo effect. We find quite
amusing that the Kondo effect, known to occur in the Anderson
impurity model (1) with constant �, happens to be described
by two complementary spin-boson models, in one of which it
corresponds to delocalization while in the other, the model (2),
to localization.

The above speculation can be supported by actual cal-
culations, affordable because of the reduced dimension of
the Hilbert space as opposed to conventional slave bosons.
In particular, we shall consider both the Anderson impurity
model (1) and the model (2), and study them by means of the
numerical renormalization group (NRG).14

The first task we undertake is to confirm that spontaneous
breaking of Z2 does occur in model (2). We hence add to HZ2

a symmetry breaking perturbation −h σx , and calculate the
average 〈σx〉 as function of h. The results are shown in Fig. 1,
where it is evident the characteristic behavior of a symmetry
broken phase. The asymptotic value of 〈σx〉 as h → 0+ can
be considered as the zero-field order parameter. In Fig. 2, we
plot 〈σx〉2 as well the actual Kondo temperature in units of �

of the Anderson impurity model (1) on a logarithmic scale as
function of U/�. We showed that within mean field these two
quantities coincide, but in reality they do not, see Fig. 2, even
though the linear slope at large U/� is the same, and twice as
bigger as the mean field value −πU/16�, Eq. (5). This simply
means that mean field as usual overestimates the value of the
symmetry breaking order parameter, hence of TK .

The next important step is showing that gauge invariant
quantities in both models (1) and (2) are indeed the same. We
then calculate the impurity spectral function of the Anderson
impurity model and compare it with the spectral function of
the physical electron σx dσ in model (2). The two quantities
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FIG. 1. (Color online) The average value 〈σx〉 as a function of
the external symmetry breaking field h for several values of � and
U = 0.1.
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FIG. 2. (Color online) Square of the symmetry breaking order
parameter and of TK/� plot in logarithmic scale versus U/�. Note
the linear behavior at large U/�.

are found to be practically indistinguishable from each other,
see Fig. 3, thus confirming the validity of the mapping.

We previously showed that within mean-field theory, the
spectral function of the physical electron Adσ (ε) is approxi-
mated by the convolution between the spectral functions Aσ (ε)
of σx , whose mean-field expression is given in Eq. (6), and
Ad (ε) of dσ in mean field simply the spectral function of a
resonant level model of width sin2 θ �. The actual NRG Ad (ε)
is found not to differ much from the mean field result; it is still
made up of a single resonance at the chemical potential, see
Fig. 4, of width the true Kondo temperature. Instead, Aσ (ε)
is substantially different from mean field, see Fig. 4. It still
displays a δ peak at ε = 0 with weight 〈σx〉2, even though not
exactly coincident with the value extracted in the zero-field
limit, see the comment below. However, the finite energy
peaks shift at much higher energy, around the edge of the
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FIG. 3. (Color online) Spectral function of the physical impurity
electron operator σ xdσ at U = 0.1 and � = 0.01. The dots are the
values of the impurity spectral function as calculated directly by the
Anderson impurity model (1). We just plot few of these points since
the two spectral functions are just coincident.
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FIG. 4. (Color online) Left panel: spectral function of the impu-
rity operator dσ . Right panel: spectral function of the Ising operator
σ x , on a large scale, top, and zoomed close to zero energy, bottom.
The parameter that are used are U = 0.1 and � = 0.01 in units of the
conduction electron half-bandwidth.

particle-hole continuum, and get quite broadened. In addition,
a tiny linear in ε component appears at low energy, which
resembles much the particle-hole spectrum of the resonant
level since the linear behavior stops just around the Kondo
temperature. This result shows that quantum fluctuations
couple strongly the Ising spin with the electrons, providing a
very short lifetime to the Ising spin-flip excitations. Although
NRG, at least in the version we use, is not expected to be
very accurate at high energy, especially in such a case of a
sub-Ohmic bath,15 we believe that the gross features of Aσ (ε)
that we find, e.g., the very broad incoherent background peaked
at high energy, are true.
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FIG. 5. (Color online) Convolution of the spectral functions
Aσ (ε) and Ad (ε) for U = 0.1 and � = 0.01. Note the absence of
Hubbard bands, which should be appear at approximately ±U/2 =
0.05 but are hidden below the broad background peaked around the
particle-hole band edge at energy approximately ±2D = ±2.
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We observe that the spectral function Adσ (ε) of the physical
electron σxdσ , shown in Fig. 3, can be generally written as

Adσ (ε) =
∫

dω Ad (ε − ω) Aσ (ω) K(ω,ε), (8)

where the kernel K(ω,ε) amounts for all vertex corrections. In
Fig. 5, we show the simple convolution of Ad (ε) and Aσ (ω),
which, compared with the correct result in Fig. 3, could provide
a rough estimate of vertex corrections. We notice that while the
Abrikosov-Suhl resonance is reproduced quite well also by the
convolution, the Hubbard side-bands are completely masked
by the broad background of Aσ (ε), see Fig. 4. This implies that
vertex corrections play a major role at high energy, filtering
out that high-energy background and letting the Hubbard bands
emerge.

In conclusion, we have shown several amusing features of
the Z2 slave-spin representation of the particle-hole symmetric
Anderson impurity model that, unlike its slave-boson analo-
gous, can be exactly solved by NRG. Specifically, we have
shown that in this language, the Kondo effect corresponds to

spontaneous breaking of a local discrete Z2 symmetry that
does survive quantum fluctuations.

We end by mentioning that, as a byproduct, our result
suggests that the zero-temperature paramagnetic metal phase
of the half-filled Hubbard model, in the limit of infinite
lattice-coordination,10 can be regarded within the Z2 slave-spin
representation8,9 as a phase where a local Z2 gauge symmetry
is spontaneously broken. Conversely, the zero-temperature
Mott metal-to-insulator transition would correspond to the
restoration of the Z2 symmetry. We note that this result does
not violate Elitzur’s theorem,16 because of the infinite lattice-
coordination limit.17 However, we expect that the local Z2

gauge symmetry should be recovered at any finite temperature,
since a sub-Ohmic dissipative two-level system is known to
delocalize at any finite temperature.12
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