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van der Waals interactions in density functional theory using Wannier functions:
Improved C6 and C3 coefficients by a different approach
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A different implementation is proposed for including van der Waals interactions in density functional theory
using the maximally localized Wannier functions. With respect to the previous DFT/vdW-WF method, the
present DFT/vdW-WF2 approach, which is based on the simpler London expression and takes into account the
intrafragment overlap of the localized Wannier functions, leads to a considerable improvement in the evaluation
of the C6 van der Waals coefficients, as shown by the application to a set of selected dimers. Preliminary results
on Ar on graphite and Ne on the Cu(111) metal surface also suggest that the C3 coefficients characterizing
molecule-surfaces van der Waals interactions are better estimated with this scheme.

DOI: 10.1103/PhysRevB.85.073101 PACS number(s): 71.15.Mb, 31.15.ap, 68.43.−h

An accurate description of ubiquitous, long-range van
der Waals (vdW) interactions is crucial for characterizing
countless phenomena, belonging to such diverse fields as
solid state and surface physics, chemistry, and biology. For
instance, vdW effects are responsible for the stabilization of
noncovalently-bonded crystals and layered structures, play
a major role in physisorption processes, and are know to
affect several biological phenomena. vdW interactions are
due to long-range correlations; in particular, the leading R−6

term is a consequence of correlated, instantaneous dipole
fluctuations. Density functional theory (DFT), thanks to its
favorable scaling properties, represents a popular, efficient,
and invaluable approach, that is also applicable to extended
systems where other ab initio schemes turn out to be too
computationally expensive. However, standard DFT schemes
only provide a local or semilocal treatment of the electronic
correlation, so that they are unable to properly reproduce
genuine vdW effects.1

The simplest way to include vdW interactions in DFT is
represented by semiempirical methods,2,3 where, typically,
an approximately derived C6/R

−6 term is multiplied by
a short-range damping function, with parameters tailored
to the specific system considered. Such an approach is
very efficient and often offers a substantial improvement
to a standard DFT method; moreover, in the most recent
implementations, it is also able to account for effects related
to changes in the atomic environment.4,5 Nonetheless its
accuracy is difficult to assess in advance, due to an intrinsic
degree of empiricism. Clearly better reliability, accuracy,
and transferability can be in principle achieved by adopting
schemes where vdW corrections are computed by exploiting
the knowledge of the electronic density distribution given by
DFT. In recent years, several approaches have been indeed
proposed (for a recent review, see, for instance, Ref. 6). In
order to circumvent the direct use of truly nonlocal DFT
functionals, which are not easy to evaluate efficiently, some of
these methods introduce suitable partitioning schemes into
separated interacting fragments, either relying on effective
atom-atom4,7,8 or electronic orbital-orbital9–12 pairwise C6/R

6

terms. Although these techniques are expected to be more
reliable and transferable than semiempirical approaches, in

practice, most of them use one or more parameters to be fitted
using some reference database.

Here we describe and apply a different implementation of
the DFT/vdW-WF method,9,10,12,13 where electronic charge
partitioning is achieved using the maximally localized Wannier
functions (MLWFs). The MLWFs are obtained from a unitary
transformation in the space of the occupied Bloch states by
minimizing the total spread functional:14

� =
∑

n

S2
n =

∑
n

(〈wn|r2|wn〉 − 〈wn|r|wn〉2). (1)

The localization properties of the MLWFs are of particular
interest for the implementation of an efficient vdW correction
scheme: In fact, the MLWFs represent a suitable basis set to
evaluate orbital-orbital vdW interaction terms. While in the
original DFT/vdW-WF method the vdW energy correction for
two separate fragments was computed using the exchange-
correlation functional proposed by Andersson et al.,15 our
version (DFT/vdW-WF2 method) is instead based on the
simpler, well-known London’s expression:16 Basically, two
interacting atoms, A and B, are approximated by coupled
harmonic oscillators, and the vdW energy is taken to be the
change of the zero-point energy of the coupled oscillations as
the atoms approach; if only a single excitation frequency is
associated to each atom, ωA, ωB , then

ELondon
vdW = − 3e4

2m2

ZAZB

ωAωB(ωA + ωB)

1

R6
AB

, (2)

where ZA,B is the total charge of A and B, and RAB is the
distance between the two atoms (e and m are the electronic
charge and mass, respectively). Now adopting a simple
classical theory of the atomic polarizability, the polarizability
of an electronic shell of charge eZi and mass mZi , tied to a
heavy undeformable ion, can be written as

αi � Zie
2

mω2
i

. (3)

Then, given the direct relation between polarizability and
atomic volume,17 we assume that αi ∼ γ S3

i , where γ is
a proportionality constant, so that the atomic volume is
expressed in terms of the MLWF spread Si . Rewriting Eq. (2)
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in terms of the quantities defined above, one obtains an
explicit expression (much simpler than the multidimensional
integrals involved in the Andersson functional15) for the C6

vdW coefficient:

CAB
6 = 3

2

√
ZAZBS3

AS3
Bγ 3/2

(√
ZBS

3/2
A + √

ZAS
3/2
B

) . (4)

The constant γ can then be set up by imposing that the exact
value for the H atom polarizability (αH = 4.5 a.u.) is obtained
(of course, in the H case, one knows the exact analytical spread,
Si = SH = √

3 a.u.). Note that by expressing the “atomic”
volume as a function of Si , we actually implicitly switch from
an atom-atom to an orbital-orbital approach.

In order to achieve better accuracy, one must properly deal
with intrafragment MLWF overlap. (Note that we refer here to
charge overlap, not to be confused with the wave-function
overlap, which, by construction, is zero for two different
MLWFs.) In fact, the DFT/vdW-WF method is strictly valid for
nonoverlapping fragments only; while the overlap between the
MLWFs relative to separated fragments is usually negligible
for all the fragment separation distances of interest, the same is
not true for the MLWFs belonging to the same fragment, which
are often characterized by a significant overlap. This overlap
affects the effective orbital volume, the polarizability, and the
excitation frequency [see Eq. (3)], thus leading to a quantitative
effect on the value of the C6 coefficient. We take into account
the effective change in volume due to intrafragment MLWF
overlap by introducing a suitable reduction factor ξ obtained by
interpolating between the limiting cases of fully overlapping
and nonoverlapping MLWFs. In particular, since in the present
DFT/vdW-WF2 method the i‘-th MLWF is approximated
with a homogeneous charged sphere of radius Si , then the
overlap among neighboring MLWFs can be evaluated as the
geometrical overlap among neighboring spheres. To derive
the correct volume reweighting factor for dealing with overlap
effects, we first consider the limiting case of two pairs (one
for each fragment) of completely overlapping MLWFs, which
would be, for instance, applicable to two interacting He atoms
if each MLWF just describes the density distribution of a single
electron; then we can evaluate a single C6 coefficient using
Eq. (4) with ZA,B = 2, so that

CAB
6 = 3

2

√
2S3

AS3
Bγ 3/2

(
S

3/2
A + S

3/2
B

) . (5)

Alternatively, the same expression can be obtained by
considering the sum of four identical pairwise contributions
(with Z = 1), by introducing a modification of the effective
volume in such a way to take the overlap into account and make
the global interfragment C6 coefficient equivalent to that in Eq.
(5). This is clearly accomplished by replacing S3

i in Eq. (4) with
ξS3

i , where ξ = 1/2. This procedure can be easily generalized
to multiple overlaps by weighting the overlapping volume with
the factor n−1, where n is the number of overlapping MLWFs.
Finally, by extending the approach to partial overlaps, we
define the free volume of a set of MLWFs belonging to a given
fragment (in practice three-dimensional integrals are evaluated

by numerical sums introducing a suitable mesh in real space)
as

Vfree =
∫

dr wfree(r) � �r
∑

l

wfree(rl), (6)

where wfree(rl) is equal to 1 if |rl − ri | < Si for at least one of
the fragment MLWFs, and is 0 otherwise.

The corresponding effective volume is instead given by

Veff =
∫

dr weff(r) � �r
∑

l

weff(rl) , (7)

where the new weighting function is defined as weff(rl) =
wfree(rl) · nw(rl)−1, with nw(rl) that is equal to the number of
MLWFs contemporarily satisfying the relation |rl − ri | < Si .
Therefore, the nonoverlapping portions of the spheres (in
practice, the corresponding mesh points) will be associated
to a weight factor 1, those belonging to two spheres to a
1/2 factor, and, in general, those belonging to n spheres
to a 1/n factor. The average ratio between the effective
volume and the free volume (Veff/Vfree) is then assigned to
the factor ξ , appearing in Eq. (8). Although in principle the
correction factor ξ must be evaluated for each MLWF and the
calculations must be repeated at different fragment-fragment
separations, our tests show that, in practice, if the fragments
are rather homogeneous all the ξ factors are very similar, and
if the spreads of the MLWFs do not change significantly in
the range of the interfragment distances of interest, the ξ ’s
remain essentially constant; clearly, exploiting this behavior
leads to a significant reduction in the computational cost of
accounting for the intrafragment overlap. We therefore arrive
at the following expression for the C6 coefficient:

CAB
6 = 3

2

√
ZAZBξAS3

AξBS3
Bγ 3/2

(√
ZBξAS

3/2
A + √

ZAξBS
3/2
B

) , (8)

where ξA,B represents the ratio between the effective and the
free volume associated to the A-th and B-th MLWF. The need
for a proper treatment of overlap effects has been also recently
pointed out by Andrinopoulos et al.,12 however they applied a
correction only to very closely centered WFCs.

Finally, the vdW interaction energy is computed as

EvdW = −
∑
i<j

f (Rij )
C

ij

6

R6
ij

, (9)

where f (Rij ) is a short-range damping function, which is
introduced not only to avoid the unphysical divergence of
the vdW correction at small fragment separations, but also
to eliminate double countings of correlation effects (in fact
standard DFT approaches are able to describe short-range
correlations); it is defined as

f (Rij ) = 1

1 + e−a(Rij /Rs−1) . (10)

The parameter Rs represents the sum of the vdW radii Rs =
RvdW

i + RvdW
j , with (by adopting the same criterion chosen

above for the γ parameter)

RvdW
i = RvdW

H

Si√
3
, (11)
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where RvdW
H is the literature18 (1.20 Å) vdW radius of the H

atom, and, following Grimme et al.,2 a � 20 (the results are
almost independent on the particular value of this parameter).
Although this damping function introduces a certain degree of
empiricism in the method, we stress that a is the only ad-hoc
parameter present in our approach, while all the others are only
determined by the basic information given by the MLWFs,
namely from first-principles calculations.

Calculations were performed using the CPMD code19 and
taking, as the reference DFT GGA functional, both the PBE20

and revPBE21 flavor: PBE is chosen because it represents
one of the most popular GGA functionals for standard DFT
simulations of condensed-matter systems, while revPBE,
which usually gives results close to those obtained by a pure
Hartree-Fock approach, has been used both in our previous
DFT/vdW-WF calculations and also in other vdW-corrected
DFT studies.2,22

As already pointed out elsewhere,13,22,23 vdW-corrected
PBE calculations show a general tendency toward overbinding
(attributed to an overestimate of the long-range part of the
exchange contribution), while instead vdW-corrected revPBE
typically gives better estimates for the binding energies. We
stress that the computational cost of the DFT/vdW-WF2
method, although slightly increased with respect to that of the
previous DFT/vdW-WF scheme, still represents a negligible
additional cost if compared to that of a standard DFT
calculation, thus satisfying the basic efficiency requirement.

In Table I, we report the C6 coefficients computed for a set
of 18 dimolecular systems, where vdW interactions represent
the dominant (or at least a significant) contribution, using our

TABLE I. C6 coefficients (in meV Å6), using the reference
DFT revPBE functional (PBE in parenthesis) computed with the
DFT/vdW-WF2 method, compared with those obtained by the
previous DFT/vdW-WF scheme (Ref. 9), and with reference values.
Reference C6 coefficients were obtained by Meath and coworkers
(Refs. 28–36) from experimental dipole oscillator strength data.

DFT/vdW-WF DFT/vdW-WF2 Ref.

H-H 7.50(8.0) 7.17(7.48) 6.38
He-He 0.57(0.62) 1.48(1.47) 1.45
Ne-Ne 4.35(4.73) 10.4(8.9) 6.35
Ne-Ar 24.9(16.9) 26.4(22.9) 19.5
Ar-Ar 92.5(93.2) 65.8(66.1) 64.3
Kr-Kr 214.0(227.0) 124.0(124.0) 131.0
Xe-Xe 618.0(621.0) 261.0(262.0) 285.9
N2-N2 87.4(89.3) 81.2(80.5) 73.3
CO-CO 85.6(86.7) 84.8(85.1) 81.5
NH3-NH3 67.1(88.4) 63.5(77.6) 89.03
H2O-H2O 35.2(35.6) 38.9(37.3) 45.29
C2H6-C2H6 308.0(315.0) 298.0(300.0) 381.9
CH4-CH4 103.0(119.0) 98.2(111.0) 129.7
C6H6-C6H6 2930.0(2900) 1710.0(1710) 1722.7
C6H6-Ar 490.0(495.0) 333.0(334.0) 330.1
C6H6-H2O 323.0(325.0) 252.0(256.0) 277.4
CO2-CO2 187.0(191.0) 162.0(158.0) 158.5
NH3-CO 78.5(88.6) 75.5(80.4) 90.2

MRE 14.1(16.6)% 0.3(−0.3)%
MARE 35.4(32.8)% 14.6(10.8)%

DFT/vdW-WF2 method to be compared to reference data. As
can be seen, in most of the systems the C6 coefficient value
is reduced and the overall performance is much improved
with respect to the previous DFT/vdW-WF approach:9 in
fact the mean relative error (MRE) is decreased from 14.1
to 0.3%, and from 16.6 to −0.3% with revPBE and PBE,
respectively, while the corresponding reductions in the mean
absolute relative error (MARE) are from 35.4 to 14.6%
with revPBE and from 32.8 to 10.8% with PBE. The effect
is particularly apparent in rare-gas dimers and dimolecular
complexes containing benzene, which are systems where the
correction factor ξ is important due to a significant overlap
among MLWFs belonging to the same fragment. Clearly, one
expects that this correction will also be important in large
molecules and extended systems, characterized by relatively
delocalized electronic charge distributions, corresponding to
large MLWF spreads. Our errors on C6 estimates appear to
be slightly larger than those of Tkatchenko-Scheffler7 and
Grimme.4 Nevertheless, the independence from reference
data sets and fitted parameters, together with the fact that
our scheme does not rely on an “atomic” picture, make
our method a robust and flexible tool, also extendable to
systems in which atomic partitioning schemes might break
down, such as in metals. Note that the typical decrease of
the C6 coefficient values obtained by the DFT/vdW-WF2
method does not necessarily lead to a reduction of the vdW
energy contribution; this is clearly due to the effect of the
adopted damping function, which determines the interplay
between the C6/R

−6 vdW correction and standard DFT energy
contributions.

As a result, our DFT/vdW-WF2 scheme in general predicts
slightly shorter equilibrium distances, in better agreement
with reference data than DFT/vdW-WF: Calculations based
on the revPBE functional show a drastic decrease of errors
on distances (MARE 11.0% with DFT/vdW-WF versus 6.9%
with DFT/vdW-WF2, MRE 3.1% with DFT/vdW-WF versus
−0.3% with DFT/vdW-WF2), while instead the accuracy
of the binding energies is similar to that obtained by the
DFT/vdW-WF approach (MARE 18.0% with DFT/vdW-WF
versus 18.8% with DFT/vdW-WF2, MRE −12.6% with
DFT/vdW-WF versus −10.7% with DFT/vdW-WF2). MARE
of binding energies appear somewhat larger than those of
Tkatchenko-Scheffler7 (of the order of 10%). Binding energy
estimates, however, are very sensitive to the form of the
damping function and could probably be improved by an
optimal choice of this function. We also point out that a much
more accurate estimate of the C6 coefficients allows for a better
description of the vdW interactions even for interfragment
distances far from the equilibrium values, which is of particular
relevance both for the applications to large systems and for
molecular dynamics simulations.

In order to test the applicability of the present DFT/vdW-
WF2 method for extended systems, which represent the most
interesting application field because high-quality chemistry
methods are too computationally demanding, we considered
both the adsorption of a single Ar atom on graphite and of
a Ne atom on the Cu(111) metal surface, which represent
two typical physisorption processes. In the case of Ar on
graphite, calculations have been performed using the same
approach followed in Ref. 23, while for Ne on Cu(111)
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TABLE II. C3 coefficients (in meV Å3), using the reference DFT
revPBE functional computed with the DFT/vdW-WF2 method, com-
pared with those obtained by the previous DFT/vdW-WF scheme,9

and with reference values.37

DFT/vdW-WF DFT/vdW-WF2 Ref.

Ar-graphite 18318 2057 1210
Ne-Cu(111) 1226 589 488

we have used the Quantum-ESPRESSO24 ab initio package
(MLWFs have been generated as a post-processing calculation
using the WanT package25): we modeled the substrate using
a periodically-repeated hexagonal supercell, with a (

√
3 ×√

3)R30◦ structure and a surface slab made of 15 Cu atoms
distributed over five layers; the Brillouin zone has been
sampled using a 6 × 6 × 1 k-point mesh.

By fitting the adatom binding energy as a function of
its distance from the substrate z [as it is usually done26

the fit has been performed by optimizing the parameters of

the function Ae−Bz − C3/(z − z0)3], one can easily estimate
the C3 coefficients that characterize the adatom-surface vdW
interactions. As can be seen in Table II, although the agreement
with reference C3 data is not yet perfect (obtaining accurate C3

coefficients represents a notoriously difficult problem; see, for
instance, Ref. 27), nonetheless the DFT/vdW-WF2 method
gives a dramatic improvement with respect to the previous
DFT/vdW-WF scheme.

In conclusion, we have described and applied a different
implementation of our vdW-correction method based on
the maximally localized Wannier functions: the DFT/vdW-
WF2 approach is based on the London expression and
takes into account the MLWF intrafragment overlap. The
application to selected dimers and also to Ar on graphite
and Ne on the Cu(111) metal surface show a substantial
improvement in the long-range vdW-coefficient (C6 and
C3) estimates. Work is in progress to achieve a similar
level of improvement in equilibrium distances and bind-
ing energies: This would probably require the introduction
of more sophisticated, DFT-functional dependent, damping
functions.

*ambroset@pd.infn.it
1See, for instance, W. Kohn, Y. Meir, and D. E. Makarov, Phys. Rev.
Lett. 80, 4153 (1998).

2S. Grimme, J. Antony, T. Schwabe, and C. Mück-Lichtenfeld, Org.
Biomol. Chem. 5, 741 (2007).

3F. Ortmann, F. Bechstedt, and W. G. Schmidt, Phys. Rev. B 73,
205101 (2006).

4S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.
132, 154104 (2010).

5S. Steinmann and C. Corminboeuf, Chimia 65, 240 (2011).
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30F. Mäder, W. Kutzelnigg, Chem. Phys. 42, 95 (1979); A. Courty,
M. Mons, I. Dimicoli, F. Piuzzi, M.-P. Gaigeot, V. Brenner, P. de
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