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We discuss different approximations for effective low-energy interactions in multiband models for weakly
correlated electrons. In the study of Fermi-surface instabilities of the conduction band(s), the standard
approximation consists only keeping those terms in the bare interactions that couple only to the conduction
band(s), while corrections due to virtual excitations into bands away from the Fermi surface are typically neglected.

Here, using a functional renormalization group approach, we present an improved truncation for the treatment
of the effective interactions in the conduction band that keeps track of the generated three-particle interactions
(six-point term) and hence allows one to include important aspects of these virtual interband excitations. Within
a simplified two-patch treatment of the conduction band, we demonstrate that these corrections can have a rather

strong effect in parts of the phase diagram by changing the critical scales for various orderings and the phase

boundaries.
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I. INTRODUCTION

In various areas of recent condensed matter physics, it has
become clear that interaction effects in multiband systems
can lead to interesting phenomena that usually do not occur
in single-band models. An important example thereof is the
gap structure of the iron pnictide superconductors, where
calculations show that the gap structure of the superconducting
state depends significantly on the intraorbital and interorbital
interaction parameters, and on the orbital composition of the
bands that are usually mixtures of several Fe d orbitals (see,
e.g., Refs. 1-5). If this complexity was ignored, one would
obtain rather isotropic gaps around the Fermi surfaces. The
gap anisotropy arises due to orbital makeup,' i.e., due to the
additional wave-vector dependence of the orbital components
of the Bloch functions for the bands that give much more
structure even to local interactions in these multiorbital
systems.

The additional structure in the multiband interactions also
creates a stronger sensitivity to features and parameters of
the respective effective low-energy model, compared to one-
band models. This calls for a more comprehensive theoretical
study of multiorbital model systems. One important aspect
is whether the orbital composition of the bands is altered by
interaction or correlation effects beyond those already captured
in density functional theory (DFT). Another aspect is that
all these studies are performed within effective low-energy
models where many bands outside a respective energy window
have been absorbed into model parameters. The question that
shall be in the focus of this work is if there are sizable additional
corrections due to virtual excitations in the bands outside the
low-energy window in which the effective model is formulated.
In particular, we will try to estimate if these virtual excitation
effects can be more important than orbital makeup effects.

A concrete physical question that motivates such consid-
erations occurs in the high-7, cuprates. Here, a comparison
of DFT electronic structure data and experimentally measured
critical temperatures 7, for superconductivity suggests® that
lowering a so-called axial orbital in energy from above
toward the Fermi-surface-forming Cu 3d,:.,» orbital causes
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an increase of 7., although the same change makes the
Fermi surface more round and hence less favorable for
antiferromagnetic spin fluctuations. In a recent study,” we
have tried to assess if orbital makeup effects can cause such
material trends, but found only very moderate improvement
of T.. Hence, the question is if the next step in a reduction of
approximations results in additional increases of 7.

We already note at this stage that virtual-excitation correc-
tions have been identified as an important mechanism to screen
down local (Hubbard) interaction parameters. A currently
popular scheme to capture this effect is the constrained random
phase approximation (cRPA) approach,®® which sums up
the RPA series for the Coulomb interaction with at least
one intermediate line in the bubble being a high-energy
excitation. In another way, the work described here can be
understood as an attempt to partly include such contributions in
arenormalization group approach for the effective low-energy
model.

In order to detect superconducting instabilities and hence
to estimate a superconducting energy scale theoretically, one
should look for a divergence of the effective interactions at
low scales. In one-loop RG studies, this is accomplished by
integrating out the single-particle modes of the effective model
with a decreasing cutoff or RG scale (for a recent review,
see Ref. 10). In this procedure, one-loop corrections with
both internal lines in the effective low-energy window are
summed up. The initial two-particle interaction for this flow
should include the influence of the excitations outside the
low-energy window. We can try to estimate these corrections in
second-order perturbation theory, which gives rise to diagrams
with two propagator lines connecting two interaction vertices.
For these diagrams, we will have contributions with the two
internal lines both in the high-energy range, and with one
in the high-energy and the other in the low-energy window.
The latter processes can be expected to be more important,
as they usually come with the smaller energy denominator. In
the following, we will argue that systematically including these
latter contributions into the solution of the effective low-energy
problem requires either an approximate correction of the
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low-energy effective four-point vertex (two-particle interac-
tion) or to improve the truncation so as to keep the effective
six-point vertex (three-particle interaction) in the effective
low-energy model. We will compare these two schemes
quantitatively in a simplified model and demonstrate that the
virtual excitation effects can indeed change critical scales for
superconducting instabilities considerably.

II. MODEL

The basic model for this work is a two-orbital Hamiltonian
where one of the two resulting bands crosses the Fermi level,
while the other one is separated by an energy gap. We will
discuss several approximate ways to include the band away
from the Fermi surface into effective one-band models for the
band near the Fermi surface. The structure of the model we use
is borrowed from an (effective) two-orbital model derived for
high-T, cuprates, more precisely for the spo and dpo orbitals
from the local density approximation (LDA) band structure
of YBa,Cu307,'!" extended by interorbital and intraorbital
interactions of strengths U and U’:

, Ak C
" | ¥ ( k k) <fk,+,a>
kza:(fk'-ha fk,—,(r) Ck Bk fk,—,a

—i—% Z Nigolia—o + %/ Z Nio,oNi—a,0- (D
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Here, fyx 4o and n;4, = f;a,a fi.a.c denote the annihilation
operator of an electron with momentum k, orbital «, and
spin orientation o and the density of such a fermion at site
i, respectively. The noninteracting part of the Hamiltonian is

given by

Ax = AE+ (1 — u;{)ws, By=(1- uf{t)wd,
Cx = —uy Jwaws, uf = %(cosky + cosky),

AFE being the band separation and w, and w, the widths of
the s and d orbitals, respectively. Of course, other interaction
terms such as a Hund or nonlocal terms can be added, but this
does not play any role for the considerations that follow.

Our motivation for studying this model is that it serves
as a simple test case for the development of a functional
renormalization group (fRG) approach to multiband systems.
We do not aim at making predictions for a specific material
that hold on a quantitative level. Regarding YBa,Cu307, our
results should only be taken with a grain of salt. The reason
for this is twofold: First of all, a multiorbital tight-binding
model of the cuprates should include orbitals on the oxygen
atoms. The two-orbital model given above, however, does
not allow for the description of Varma currents'> and other
types of intra-unit-cell order.!* Moreover, the fRG approach
for fermions used in this work is only viable as long as the
renormalized interaction stays weak, whereas, in the cuprates,
realistic values for the bare interaction are already large
compared to the bandwidth. Also, other parameters will not
always be chosen according to ab initio calculations in the
following.

We now switch to an imaginary-time functional integral for-
malism with Grassmann fields 1/_fk7a,a and ¥y o » corresponding
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FIG. 1. (Color online) Band structure of the two-band model for
AE =19.5, w; = 11.5, and w; = 4.5 at van Hove filling. The lower
band on the right is the conduction band. The color bars on the sides
indicate the band energy. This choice of parameters underlies the RG
flow in Fig. 6.

to the operators fliot,o and fy . These fields depend on the

1 4+ 2 momentum k = (ko,k) with Matsubara frequency k.
Diagonalization of the quadratic part S@ of the action

corresponding to Eq. (1) yields bands with energies

Exi= %[Ak + By + \/(Ak — By)* + 4Cl§]’

which are shown in Fig. 1. We will work in a parameter range
where the lower of the two bands cuts the Fermi level, while
the upper band is entirely above the Fermi level. The effective
low-energy model will the refer to a model with degrees of
freedom in the functional integral that reside in the lower band
near the Fermi surface only. This simple two-band setup serves
as a minimal model for more complex situations in with many,
possibly entangled bands in both the high- and low-energy
sectors.

The equation for the unitary transformation from orbitals
Y to bands yx labeled by o = = reads as

ka,a,zr = Oldek,ot,a + Ck Xk, —a,0 >

N
di = 7“(/4k — B + \/(Ak — B +4C}), Q)
¢ = NxCy,

where Ny normalizes the transformation to a unitary one. The
inverse of this transformation gives the orbital amplitudes ady
and ¢ for the band fields ... If we express the local
interactions that are quartic in the fermion fields in terms
of the band fields using Eq. (2), we obtain four factors of
di,q,0 OF Ci a0 multiplying the interaction parameters U and
U’. This collection of prefactors was dubbed orbital makeup'
and obviously leads to some wave-vector dependence even of
local interactions when they are expressed in band language. In
Appendix A, we parametrize the interaction in the band picture
in an efficient way, and later we will also discuss the impact of
this orbital makeup on the critical scales for superconducting
instabilities.

III. EFFECTIVE LOW-ENERGY ACTION

Now, we proceed toward an effective one-band action for
the band near the Fermi level. This means we want to integrate
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out the upper band Ey  away from the Fermi level. In order
to be concise, we use the matrix notation

q_SMﬂ = Z Z &k,a,aMk,a.cr;k’,a’,a’nk’,zx’,a’

k,a,0 k',a',0’

for the free part and other field bilinears of the action.
Consider now the generating functional W of the connected
Green’s functions

Wli,n] = —In [/DX e—s[x,x]eﬁxﬂu}

with source fields . We are interested in the low-energy
properties of the system. Before taking derivatives with respect
to the source fields, their upper-band components can thus be
set to zero. In the band language, the fields and the quadratic
part S@ of the action can be decomposed into lower and upper
band parts

SPlx.x1=xDx = X, D+x, +x_D_x_,
with

X=X++x-, D=D,+D_.

Therefore, the covariance splitting formula'# applies, which
gives rise to the following form of the one-band effective action
Setr for the lower band:

Sett[X—x-1= X_D_x_ +VIx-.x-1,
3)

— a 7 _(Wrs -
e V- x-1 — /Dx+e X4Dixy =S [X++x7,><++x7],

which leads to
W[ﬁ—’ﬂ—] — —1In [fDX_ eSeffl)_(—,X—lele+)_(77i| .

The effective interaction V' contains a functional integral
over the upper band part of the fields with measure Dy
and corresponds to the generating functional of amputated
connected Green’s functions, as used in the Polchinski
renormalization group scheme'” (for a comprehensive reviews
of the various generating functionals in our context, see,
e.g., Refs. 16-18). This means that the parameters of the
effective low-energy action are given by these amputated
connected Green’s functions. In the special case of Eq. (3),
however, only the upper band has been integrated out. Thus,
in the diagrammatic expansion of the expansion coefficients
in the fields x_ and x_, the propagators on internal lines
are restricted to the upper band, whereas external legs live
on the lower one. Before we evaluate S, we recall that the
amputated connected Green’s functions can be recovered from
one-particle irreducible (1PI) diagrams by drawing all tree
diagrams with 1PI vertices. In our case, the internal lines of
these tree diagrams are high-energy propagators.

For assessing the low-energy properties of the two-band
model, the general strategy is as follows. In a first step, we
calculate S.s. Since the Fermi surface does not intersect with
the upper band, the diagrams that appear in Eq. (3) need not be
regularized and therefore the lower-band effective action can
be evaluated perturbatively for sufficiently small values of the
bare interaction. In a second step, the effective action of the
lower band is treated by a method of choice, which is in our
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case the fRG.'? Then, S imposes an initial condition on the
RG flow.

For our main focus, determining the energy scale for Cooper
instabilities, the effective interaction of the low-energy model
is the object of prime interest. The simplest truncation of the
effective action would then be to drop all terms of order higher
than four. Then, the four-point term in the effective action
S é?f) can be computed in perturbation theory in the interactions
involving high-energy modes. In lowest order, i.e., zeroth order
in the interactions with high-energy modes or first order in the
bare interactions irrespective of energy scales, Sé?t? is just the
bare interaction of the fields in the lower band, decorated with
orbital makeup. This is the standard that has been used, e.g., in
all studies of unconventional pairing in the iron pnictides, or
is used implicitly when the one-band Hubbard model is used
as a model for the high-T, cuprates. We will later denote this
truncation as approximation level 1. Solving the low-energy
theory diagrammatically captures (possibly singular) diagrams
with both internal lines in the low-energy window.

In the next order for ng? ,1.e., second order in the bare high-
energy interactions, we get various diagrams. On one hand,
there are self-energy Hartree- and Fock-type contributions on
the external legs. Further, there are one-loop corrections with
both lines in the high-energy sector. As mentioned, these are
nonsingular one-loop terms, as all internal lines are away from
the Fermi level. Let us call the scheme that keeps these terms
approximation 1'. If we now again solve the low-energy theory
diagrammatically, we will capture one-loop corrections for the
effective interaction that have both propagator lines either in
the high-energy range and that are already included in Sé?f) ,and
corrections with both lines in the low-energy sector, coming
from the perturbation expansion in ng? . What is not included
are “mixed” diagrams with one internal line in the high-energy
range and one line in the low-energy window. Looking
at the energy denominators of these lines, these excluded
mixed contributions should be potentially more important than
those with two internal high-energy propagators captured at
approximation level 1'.

We could now go on and include further order in the bare
interactions as corrections to nglf) . It is, however, clear that
in these higher-order diagrams all internal lines will be high-
energy propagators. Hence, these corrections do not include
the missing mixed diagrams, and thus we do not pursue these
corrections any further here. In principle, they can be summed
up using RG schemes, as described in Ref. 19.

The next useful extension would be to go along another
path and to improve the truncation of the effective action.
Hence, we now keep the six-point term in the effective action.
In the tree-diagram expansion of Seg, the sixth-order term
is generated in second order in the 1PI four-point vertices
of the high-energy theory. Here, we will replace them by
the lowest order, i.e., by the bare interactions, as shown
in Fig. 2. This means that possible renormalizations of the
two-particle interactions by additional high-energy processes
are deliberately excluded. As argued above, these corrections
with additional high-energy propagators should, however, be
smaller due to the energy separation of the bands. This we will
call approximation level 2. Furthermore, we should potentially
drop self-energy corrections in order to avoid double counting

064520-3



STEFAN A. MAIER AND CARSTEN HONERKAMP

_ /
N

K= N T
~ /.\ .\

FIG. 2. Four- and six-point vertex of Sy for the effective one-
band model as considered at approximation level 2. Small filled
vertices correspond to the bare interaction S, whereas the vertices
of Setr on the left-hand sides are denoted by empty circles. Solid lines
represent the lower band and dashed lines the upper band. There are
no propagators attached to the external legs. Self-energy effects will
be neglected.

of contributions, i.e., to the self-energy that is already included
the DFT-based derivation in our two-orbital Hamiltonian. In
this approximation, the quadratic part and the bare four-point
couplings remain unrenormalized, whereas a six-point term
depicted in Fig. 2 is generated. For the effective action, we get

Setrl - x-1 = (8P + SO x-1+ S x-x-1.
1
SilR-x-1 = —5¢ [ dE FO®X-(ET-ET-E)
X x-(54)x-(&s5)x~(86)

& = (k;,0;) being a shorthand notation for the quantum
numbers of the fields. For the precise form of the six-point
coupling function F©, we refer to Eq. (B1). Now, in a
perturbative expansion for the low-energy theory, we will
receive contributions where two legs of the six-point coupling
will be folded together by a low-energy propagator line. As
the six-point term came about by joining two legs of two
four-point interactions by a high-energy propagator line, this
will effectively bring in those missing diagrams with two
internal propagators, one of which is a high-energy mode,
and the other a low-energy mode.

We note in passing that the constrained RPA used for
computing effective Hubbard interaction parameters®® can be
understood as an infinite order resummation of the mixed
diagrams included at approximation level 2. Resummation
at level 1, i.e., without any internal lines in the low-energy
sector, would presumably result in much less reduction of
the onsite repulsion. On the other hand, we note that just
keeping the six-point term still does not capture the full cRPA
series, as pure powers of mixed loops (i.e., bubbles with one
high-energy and one low-energy line) included in the cRPA are
not contained in the RPA series generated at our approximation
level 2. This can be seen from constructing bubble sums with
the elements of Fig. 2 by contracting low-energy lines. There
is a mixed diagram in second order in the bare interactions,
but in third or fourth order, we have to add a pure low-energy
loop between two mixed loops. So, some orders in the mixed
diagrams are still missing, but including the six-point term goes
in the right direction. On the other hand, in contrast with the
cRPA, our approximation does not neglect vertex corrections
or particle-particle diagrams. The goal of this paper is to show
the effects of these corrections to the simpler truncation. The
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question of how the cRPA series is understood in terms of
the effective action will be discussed in another forthcoming
publication.

IV. FRG TREATMENT

We are now in a position to proceed with the second step of
solving the low-energy model, which we will do by a fRG flow.
This will clarify the differences between the various levels of
approximations.

A. 1PI functional RG scheme with smooth frequency cutoff

We now introduce an infrared (IR) cutoff on the lower band
by replacing D_ by D_R)Tl, where R, denotes a regulator
function. In this paper, we choose

k2

A _ & 0
Ry(E.£) =0 — &) ;s

This particular choice of the regulator, introduced by
Husemann and Salmhofer,?® does not completely suppress
contributions from the Fermi surface at nonzero X and therefore
allows one to take a possible ferromagnetic instability into
account. Moreover, a pure frequency cutoff with R, = 0 at
ko = 0 circumvents Fermi-surface-renormalization issues,'?
since the full propagator reads as

G=R,[Q+XIR,],

¥ being the self-energy. So, self-energy effects may be
neglected without ignoring the most relevant terms.

Starting from an exact flow equation for the generating
functional I'_ of the one-particle-irreducible (1PI) vertex
functions related to W[#_,n_] by a Legendre transformation
in the lower-band fields, one obtains an infinite hierarchy of
differential equations for the 1PI vertices.!*!* The subscript of
I'_ reminds us that only degrees of freedom in the lower band
are integrated out, while the higher bands have been absorbed
in the initial conditions. The first three of the RG equations for
the vertices generated by I'_ are expressed in a diagrammatic
language in Fig. 3. At this point, we note that there is no
simple relation between I'_ and the Legendre transform I" of
WI[#,n]. In the former case, information about correlations
in the upper band is lost and the one-particle irreducibility
only holds regarding propagators on the lower band. In the
latter, namely, the full multiband case, the band index however
appears as an additional quantum number that is summed over
on the internal lines of 1PI diagrams.

In order to make progress, the hierarchy of flow equations
needs to be truncated at some point. In the conventional trun-
cation scheme, one neglects the six-point vertex completely.'*
In the so-called Katanin scheme,?! six-point contributions that
are generated during the RG flow are fed back into the flow
equation for the four-point vertex. Both established truncation
schemes, however, are not suited for a nonvanishing initial
six-point vertex. So, its impact on the flow poses a conceptually
new problem.
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FIG. 3. Flow equations for the self-energy, the four-point and
six-point vertices, all one-particle-irreducible. A dot represents a
derivative with respect to the cutoff. Lines with a slash correspond
to the single-scale propagator S = G — GXG. For more details, see,
e.g., Ref. 10.

B. Improved truncation with one-loop six-point feedback

Let us now return to the initial interactions of the low-energy
problem in the conduction band that are given by the effective
interactions after the high-energy modes in the upper band
have been integrated out. As argued above, dropping all
effective interactions higher than the four-point (two-particle)
term ignores possibly important contributions. Keeping the
six-point term in arbitrary order in the bare interactions or even
keeping higher terms are hard tasks. A simpler, improved trun-
cation scheme going beyond approximation level 1 consists in
neglecting eight-point and higher interactions and assuming
that the six-point vertex does not flow in the weak-coupling
regime. Then, the six-point vertex would just be given by
the product of two 1PI four-point vertices, connected by a
high-energy propagator as depicted in the diagram in the lower
part of Fig. 2. If the six-point vertex is then fed back into the
four-point flow equation for the low-energy theory, the missing
diagrams appear on the right-hand side with one high-energy
and one single-scale low-energy line as shown in Fig. 4. In this
truncation, two-loop contributions are neglected. Note that in
Ref. 22 also, two-loop terms have been considered. However,
this has only been done for the case of an initially vanishing
six-point vertex and purely local bare interactions.

Before solving the flow equation in this truncation, let
us look briefly at the feedback term consisting of the first
two diagrams in Fig. 4. Their precise form shall be given
in Appendix B. The fact that the diagrams with self-energy
insertions in Fig. 4 get disconnected when the line on the upper
band is cut should not lead to confusion. Since we are dealing
with an effective lower-band action, one-particle irreducibility
only holds regarding lines on the lower band. If self-energy
effects are neglected, the extra term in the flow equation for
the four-point vertex is just identical to the scale derivative
of the sum of second-order diagrams in the bare interaction
that have one internal line, one on the upper band and another
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FIG. 4. Effective flow equation in the low-energy problem for
the one-particle-irreducible four-point vertex including the feedback
term reexpressed in terms of the bare couplings. The dashed line
stands for propagators in the upper band.

on the lower one. In the infrared, they stay regular but will
be larger compared to second-order diagrams with all internal
lines on the upper band provided that the band separation
is sufficiently large. We therefore neglect those upper-band
diagrams and restrict the terms in the effective interactions to
the tree level in the high-energy modes.

In the following, we shall distinguish three levels of
approximation:

(1) Ignoring the six-point vertex completely. In this ap-
proximation, the only multiband effects are the signatures
of orbital makeup. We consider this conventional truncation
for comparison in order to distinguish orbital makeup from
six-point effects.

(2) Including the feedback term in one-loop fRG and using
the flow equation (Fig. 4).

(3) Adding the mixed-band diagrams in the limit A — 0

to the initial condition for the flow of the low-energy model.
This approximation should yield reliable results if the mixed
diagrams are already close to their infrared value at scales
at which the lower-band diagrams only have induced a small
renormalization of the initial couplings.
Approximation levels 1 and 2 were already introduced in
Sec. III, and level 3 is a simplification of level 2 that is
easier to handle numerically. In the following, we will compare
the fRG flows in the low-energy models resulting from these
approximations.

If one recalls that the LDA-derived dispersion of the un-
derlying two-orbital model already contains interaction effects
on a certain level, the band-flip self-energy insertion diagram
(second term on the right-hand side in the diagrammatic
equation in Fig. 4) should potentially be neglected in order
to avoid double counting. Its impact is however not important,
as will be commented on at the end of Sec. V B.

C. Two-patch approximation

In order to make the resulting numerical calculations more
feasible, and as we are mainly interested in getting a first
picture of the effects due to the higher truncation, we now
employ the so-called two-patch approximation that has been
used in the context of the one-band Hubbard model?*** or iron
pnictides.?

Just like the one-band Hubbard model, the dispersion of
the lower band of our model Hamiltonian in Eq. (1) has saddle
points at k = A = (0,r) and B = (7r,0). If the system is now
considered at van Hove filling, A and B lie on the Fermi
surface. At zero temperature, the low-energy properties then
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FIG. 5. (Color online) The four running couplings g, to g4 of
the two-patch approximation for the conduction band. The blue lines
represent the Fermi surface.

S 2

are dominated by contributions of a small vicinity around these
saddle points. We therefore restrict the internal momenta in
the lower band diagrams to two small patches around A and
B. In the following, we neglect self-energy effects and the
frequency dependence of the coupling functions. In the one-
loop diagrams, the momentum integral then only enters in the
bare susceptibilities

Pppl) = Z/
po VP
ou) =Y [
po VP

For zero temperature, the Matsubara sum is evaluated analyti-
cally for /[y = 0 and the two-patch approximation restricts the
transfer momenta I to 0 or 7 = (7r,7). In our truncation, the
fRG analysis can now be restricted to four running couplings
depicted in Fig. 5, namely,

dpG-(p)G_(l — p),

atch

dpG_(p)G_(+ p).

atch

g1 = V_(A,B,B) = V_(B,A,A),
¢ = V_(A,B,A) = V_(B,A,B),
g3 = V_(A,A,B) = V_(B,B,A),
g1 = V_(A,A,A) = V_(B,B,B),

which drastically reduces the computational cost of the RG
flow. At approximation level 1, the initial conditions for these
couplings are obtained from transforming the intraorbital and
interorbital interactions from the bare Hamiltonian into the
band representation. The corresponding equations are given in
Appendix A, Eq. (A2).

As for the mixed-band diagrams, however, also regions
away from the Fermi surface contribute significantly. There-
fore, the loop integrals in the mixed-band diagrams are to be
taken over the whole Brillouin zone. In the case of the one-band
Hubbard model, the cutoff can be chosen such that the resulting
loop integrals can be evaluated analytically and do not depend
on the patch size.2 However, that cutoff scheme is only viable
in a small neighborhood around the saddle points, whereas the
cutoff needs to be defined on the entire Brillouin zone in order
to consider the six-point feedback. To the authors’ knowledge,
only momentum-shell cutoff schemes have been used for the
two-patch model, while a frequency cutoff is used in this paper.

The flow equations in the two-patch approximation read as

g1 = 8V_(A,B,B)+d(g] + &3) + 2d>(g> — g1)84

—ds (g1 + 83), €
& =08V_(A,B,A) +dig2(g1 — g2) + 2dr8284 — 2d381 82,
)

83 =08V _(A,A,B) — 2dogzgs +2d183(2¢1 — g2), (6)
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g4 = 8V_(A,A,A) — do(g3 + g3)
+dy (g3 +28182 — 281 + £3). %)

where the dot denotes a derivative with respect to A. The six-
point feedback leads to correction terms § V_ that do not occur
in two-patch studies of one-band systems. They are given in
Appendix B. The integration over the patches in the loops

dy = Dpp(0), dy = Dpu(R),
dy = q>ph(0)a dz = _q)pp(ﬁ:)

are performed numerically using an adaptive routine.”” The
different levels of approximation introduced in Sec. IV B now
imply the following:

(1) Neglecting § V_ and initializing the g;’s by the respective
values of the coupling function V_ at A = oo.

(2) Keeping §V_ and initializing the g;’s by the respective
values of V_.

(3) Neglecting § V_ and initializing the g;’s by the respective

valuesof V_ + AV_,where AV_ = — fooo dA §V_ denotes the
sum of all second-order mixed-band diagrams.
In all the examples considered in this paper, we observe an
abrupt flow to strong coupling at some critical scale A;. In the
two-patch approximation, the flow equations of the couplings
to external source fields for s- and d-wave superconductivity
(assc and aysc, respectively), antiferromagnetism (war), and
ferromagnetism (o) take the simple forms

assc = —2do (g3 + g4) agsc,
dgsc = —2do (g4 — g3) dasc,

aap = +2d; (g1 + g3) aar,
arm = +2d; (g2 + g4) apm.

These couplings also appear in the expressions for the
corresponding susceptibilities and determine which ordering
tendency grows fastest at the critical scale, i.e., is the leading
instability at Acpi.

V. NUMERICAL RESULTS

We now solve the two-patch model at the three approxima-
tion levels described before for the parameters given in Table I
at van Hove filling. We first discuss the approximation level 1,
i.e., without six-point feedback and then continue to describe
the changes in the higher approximation levels.

A. Flows without six-point term: Impact of orbital makeup and
competition of FM and dSC instabilities

In this section, we discuss the impact of orbital makeup
when the six-point feedback is neglected. Let us first consider

TABLE L. Different parameter sets for the dispersion analyzed in
this paper. The lower-band filling factor [;,dk ©[—E_(k)]/(47?) is
denoted by njo,, and the maximal hybridization matrix element by
Cmax = MaxXy Cg.

AE wy w; Niow Cimax t q, Fig.
19.5 11.5 4.5 0415 0383 257 0.264 6
6.5 11.38 2351 0.192 0503 3.61 0492 7
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FIG. 6. (Color online) Flow in the low-energy model for AE = 19.5, wy = 11.5, w, = 4.5,U = 0.03 x 47wy, U' = 0(a)and U’ = 0.3U
(b) at approximation level 1. The two-patch couplings are depicted as solid (g;), dashed (g,), dashed-dotted (g3), and dotted lines (g4). The
band-flip self-energy term in the feedback has not been taken into account.

the case of vanishing interorbital interaction U’ = 0. In that
case, according to Eq. (A2), all four couplings take on
the same value Ugy at the beginning of the flow. Since
d} + ¢} = 1, these couplings are smaller than the intraorbital
coupling U. Moreover, upon an expansion of the lower-band
dispersion around the saddle points, the lower-band dispersion
is equivalent to the dispersion of the one-band ¢-#' Hubbard
model up to second order with effective parameters ¢ and ¢/
for next-nearest and next-to-nearest-neighbor hopping. So, for
U’ = 0 and approximation level 1, where the upper band does
not enter, we are back to the one-band ¢-t' model in a two-patch
approximation, albeit with a reduced U and employing a
smooth frequency cutoff unlike the the momentum-shell cutoff
in previous studies of this model.

First, we characterize the nature of the flow in the absence
of a six-point term. Characteristic curves for the flow of
the couplings g; for this approximation level 1 can be
seen in Figs. 6 and 7. For zero next-to-nearest-neighbor
hopping, the Fermi surface is perfectly nested, giving rise to
antiferromagnetism as the leading instability. If ¢’ is small but
nonzero, the most important loops in the flow equations (4)—(7)

91
0.25 F 0 ]
93
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0+ ]
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At

FIG. 7. (Color online) Flow without band-flip self-energy term
for AE = 6.5, wy = 11.38, wy, = 23.51, U = 0.03 x 4n’wy, U' =
0.3U at approximation level 1. Line styles as in Fig. 6.

are dy and d,. Therefore, d, and d3 can be neglected at first.
In this approximation, g4 is decreased by dy while the d;
term in Eq. (6) prevents g3 from being renormalized to zero.
This allows for a sign change of g4 after which the growth
of dy drives the system to a d-wave superconducting dSC
instability corresponding to a strong-coupling fixed point with
g4 — —oo and g1,g2,83 — +oo. This instability is in full
agreement with the findings of previous two-patch studies.?
If we now increase t’, the particle-hole diagrams with small
wave-vector transfer become more important, i.e., the d, terms
can not be neglected any more. In particular, the last term in
Eq. (7) hampers the sign change of g4, which now occurs
at a lower scale, leading to a lower critical scale. Moreover,
g» is now renormalized to zero instead of diverging to +oco.
Thus, we have an altered strong-coupling fixed point, but
still with g3 — +o00, g4 — —o0 corresponding to a d-wave
pairing instability. This distinction was absent in traditional
two-patch studies?>?* in which the small-wave-vector-transfer
particle-hole channel was disadvantaged by the choice of
the cutoff function. Katanin and Kampf have included such
contributions in a momentum-shell approach.”?® They find
a similar strong-coupling fixed point with nondiverging g,
which however corresponds to an antiferromagnetic instability.
In N-patch flows we will have a smooth crossover from the
fixed point with g, — oo to the one with g, — 0.

If the dispersion is varied further by increasing ¢', d, grows
even more strongly. Then, it eventually prevents a sign change
of g4 and therefore excludes d-wave superconductivity. Then,
the flow corresponds to a FM instability. Since the d, terms
in Egs. (4) and (5) depend linearly on g4, its sign change
to negative values occurring in the d-wave regime prohibited
ferromagnetism, which reflects the mutual exclusion of the
FM and dSC instabilities. Along the separatrix between these
two regimes, all four running couplings flow to zero. This
suggests that the critical scale drops to zero from both sides,
which implies the existence of a quantum critical line between
the two phases. In an N-patch study, however, the situation is
more involved and both instabilities may occur simultaneously.
Unfortunately, the region around the separatrix is unaccessible
in our calculations due to an excessive number of function
calls required for numerical integration of the loops. In Fig. 8,
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FIG. 8. (Color online) Phase diagram of the #-#' Hubbard model
in two-patch approximation, approximation level 1, with g, = —¢'/t.
Points that correspond to the same value of U.y are connected
by a line. The region around the separatrix between the dSC and
FM instabilities is inaccessible in our approach since the numerical
integration of the loops gets too cumbersome.

we plot the phase diagram of this model obtained with
approximation level 1. In the d-wave regime, a reduction of
the interaction strength to U leads to a lower critical scale.

Let us now turn to the case of nonvanishing interorbital
coupling, where we have g; = g4 > g» = g3 at the initial
scale. From Table II, we find that this detuning leads to a
lower critical scale in the dSC regime, as the interorbital
interaction suppresses gz — g4 in the initial condition while
g3 + g4 remains unchanged.

Before we analyze the d-wave regime in further detail,
we briefly have a look at the band structure for parameters
given for YBa,Cu3O; in Ref. 11. For such a system, however,
van Hove filling is not close to the experimental situation,
since it corresponds to a filling factor of about 0.19. The
result should therefore not be taken as a realistic prediction
for this material. In Fig. 7, we observe that feedback the flow
approaches a FM fixed point at level 1. This also holds for the
other approximation levels.

B. Inclusion of the six-point term

We now turn our attention to the six-point feedback for the
band structure underlying the flows in Figs. 9 and 10, employ-
ing the improved approximation levels 2 and 3 introduced in
Sec. IV B. Note that the model parameters will be varied in
order to clarify the differences between these approximations
and may not always correspond to an experimentally realistic
situation.

We observe a flow to a dSC strong-coupling fixed point
over a wide parameter range for all approximation levels

TABLE II. Critical scale A and leading instability for different
levels of approximation.

Level 1 Level 2

Flg )"crit.l/t }‘fcrit,Z/t )\cril,_’a/l

6(a) 4.73 x 1078 dSC 1.28 x 1073 dSC 1.32x 1075 dSC
6(b) 3.83x107% dSC 8.69 x 107% dSC 8.93 x 107% dSC
7 376 x 10° FM 3.58 x 10° FM 3.58 x 10> FM

Level 3

PHYSICAL REVIEW B 85, 064520 (2012)

considered. This pairing instability occurs irrespective of
the presence of interorbital interactions. The critical scale,
however, is enhanced by the six-point feedback. Some numbers
can be inferred from Table II and also Fig. 11, the enhancement
can easily be a factor of 2, at least in this parameter range
of small instability scales. We observe that A only differs
weakly between the approximation levels 2 and 3. Figures 9
and 10 illustrate that first the mixed-band diagrams flow to
a value close to their infrared limit before the lower-band
diagrams start to grow significantly. (All other ratios of the
couplings that are not shown in Figs. 9 and 10 behave indeed
likewise.) This separation of scales is enhanced or might be
even induced by a two-patch approximation. It ensures that the
two-loop correction term discussed in Appendix C remains
negligible and also holds in the ferromagnetic case and for
Fig. 11.

The question now is whether the six-point feedback on the
critical scale can be related to characteristic properties of the
band structure such as band curvatures. For this purpose, we
consider AV_ terms in the initial condition of approximation
level 3 for small hybridization ¢ as in the case of Fig. 9. If for
simplicity U’ is then sent to zero, the bare coupling functions
V_ and V3 [Egs. (A2) and (A3)] read in leading order in the
hybridization

V_(ki ko k3) ~ U [ ] i,

1

Va(ki,kp,k3) ~ —Ucy, dy,di,dy,.

This corresponds to taking only the onsite interaction in the
d orbital into account. Since U’ = 0, the self-energy insertion
contributions to all four running couplings take on the same
value and the direct particle-hole diagrams (B4) vanish. In
the diagrams in Eq. (B2), the hybridization ¢, appears only
inside the integrand, whereas the external legs of momentum
k have a factor di, which in contrast to ¢ is invariant under
a spatial rotation by m/2. This implies that the particle-
particle contributions to AV_(A,A,B) and AV_(A,A,A) are
of equal size, whereas the crossed particle-hole diagrams give
different contributions. The latter can be seen as follows:
After calculating the Matsubara sum for A = 0, the integral
in Eq. (B3) reads as

/ dq ¢ qdg[Ex(@+D) — E_(@] 'O[-E_(@], (8
BZ

with the Heaviside function ®(x). For AV_(A,A,A), which
renormalizes g4, we have 1 = 0 and for AV_(A,A, B), which
renormalizes g3, the transfer momentum is 1 = . Since both
bands have a curvature with the same sign in our model and
since E is always positive, the denominator in the integrand
of Eq. (8) should take on smaller values for 1 = 0 than for
I = & on a large phase-space region centered around q = 0.
One might therefore expect a suppression of g3 — g4. This
argument, however, ignores the momentum dependence of
the orbital weight completely. While being zero along the
diagonals of the BZ, the hybridization matrix elements cq
have their maximal value close to the saddle points of the lower
band. This weakens the effect of the band curvature on g3 — g4,
in particular if the hybridization shows plateaulike structures
centered around the van Hove points as for the parameters
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FIG. 9. (Color online) Flows in the low-energy model for AE = 19.5, w, = 11.5, wy, = 4.5, U = 0.03 x 4mw%wy, U’ = 0 at the different
approximation levels. The interaction has been projected to the g./g3-g4/g3 plane, while the z direction corresponds to the scale. The
impulse-type vertical lines have been added for clearness and have no physical meaning. The initial flow for high scales is shown on the
left-hand side. Here, one can see that approximation level 2 with six-point feedback has the same initial condition for the g;’s as level 1, but
approaches quickly level 3 in the early flow. On the right-hand side, the continuation of the flow at lower scales is depicted. Levels 2 and 3 are
basically equivalent and have a higher critical scale than level 1. The ratio g,/gs flows to zero, corresponding to the second d-wave pairing
fixed point discussed in Sec. V A. The band-flip self-energy term in the feedback has not been taken into account.

underlying the flow in Fig. 9. At these points, however, the
fourfold rotation symmetry of the dispersion gives rise to
identical denominators of the loop integrand in Eq. (8) for
1 = 0 and 1 = #. Hence, the effect of band curvatures that one
might expect ignoring orbital makeup effects should play a
minor role in such a case. In contrast, the phase-space weight
imposed by the orbital makeup may lead to an enhancement
of g3 — g4, even for weak hybridization as in the case of
Fig. 9. For larger values of the hybridization, the situation
is yet more involved, as terms with opposite signs compete.
So far, we have discussed the contributions of AV_to g3 — g4
at approximation level 3. We have found that they are quite
sensitive to the orbital makeup. The question now is how
they affect the critical scale: On average, AV_ suppresses the
couplings g;, while the difference g3 — g4 may be enhanced or
lowered depending on the orbital makeup. In general, smaller
initial values of the couplings give rise to lower critical scales,
while a larger value of the d-wave coupling g3 — g4 promotes
a sign change of g4 at higher scales. So for enhanced d-wave
coupling, we have to deal with two counteracting tendencies
and it is not clear a priori which one prevails, whereas a
suppression of A iS to be expected if g3 — g4 is lowered.
In Fig. 10, they lead to a surprisingly large enhancement of

10°
102
A/t 10!
10°
10 !
10 2

0.98

Aerit- Indeed, g3 — g4 gets larger when the six-point feedback
is taken into account, but if we neglect contributions from
d, and ds in the flow equations (4)—(7), the critical scale is
virtually the same as in the conventional truncation. Moreover,
its value is increased by orders of magnitude without the d
and ds terms. This points out the importance of those terms and
their interplay with the six-point feedback for the dispersion
underlying Fig. 9.

In Fig. 10, g3 — g4 is suppressed by AV_. Without the d,
and d3 terms, this would only change the critical scale by
values below the level of accuracy, while A is significantly
enhanced if those terms are taken into account. As for the
flow to a ferromagnetic instability in Fig. 7, we find that the
six-point term is of minor importance for the corresponding
parameters.

Finally, we investigate the impact of the band separation
AE on the critical scale as depicted in Fig. 11. Lower values of
AE correspond to a larger ratio —t’/t and therefore to a lower
critical scale in the dSC regime. We observe that for band
separations smaller than 19.5 units, the six-point feedback
substantially enhances the critical scale. In particular, when
the critical scale gets small due to the competition with the
FM channel, the six-point term can change the result by an

FIG. 10. (Color online) Same as in Fig. 9, but for U’ = 0.3U.
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FIG. 11. (Color online) Critical scale Ay for wy; = 11.5, w, =
4.5, U =0.03 x 47%wy, U’ = 0.3U as a function of AE, in the
dSC regime. Circles correspond to approximation level 1, diamonds
to level 2, and crosses to level 3. Green and black markers represent
values obtained with and without band-flip self-energies, respectively.

order of magnitude. This indicates that these corrections may
play a role in situations with competing ordering tendencies.
Deep in the d-wave regime, or also on the FM side, the impact
of the six-point term is only of quantitative nature. Since the
behavior at small dSC critical scales mainly stems from the
interplay of the six-point feedback and the d, loop, it should
result from the increasing contribution of d, that we have to
encounter when A E is lowered. The inclusion of the band-flip
self-energy term only leads to slight changes of the critical
scale and does not affect our result on a qualitative level.

VI. CONCLUSIONS

In summary, we have proposed a fRG scheme for multiband
systems that takes virtual excitations outside a low-energy
window into account. This approach in a way extends the
usual RG approach of accessing the low-energy physics of a
given system, where the effective action is truncated after the
four-point interaction. The conventional treatment completely
neglects virtual excitations involving both high- and low-
energy modes once one has switched to the low-energy theory.
Our approach, in contrast, considers them up to second order
in perturbation theory within a frame with a larger energy scale
around such a low-energy window. On the formal level, this is
achieved by a one-loop fRG treatment of an effective action for
the low-energy modes, which is truncated after (i.e., keeps) the
three-particle interactions generated by the high-energy modes
(six-point term). Of course, the low-energy theory could also
be solved using a different method than fRG, and also here the
six-point term of the effective interactions may play a role.

In the RG flow in the low-energy window, the six-point
vertex gives rise to mixed one-loop diagrams with one low-
energy and one high-energy leg. Actually, a part of these
diagrams is summed up in the cRPA framework currently
used in ab initio calculations.®® The correlation functions of
high-energy modes are no longer kept track of in our scheme.
This drastically reduces the required numerical resources
compared to a “full” fRG approach with an extended energy
window.

We have numerically investigated the impact of the mixed
diagrams that are absent in the conventional approach for a
simple two-band model within the two-patch approximation.

PHYSICAL REVIEW B 85, 064520 (2012)

Leaving a large part of the Fermi surface unaccounted, this
approximation is mainly chosen for reasons of technical sim-
plicity. On the other hand, the two-patch treatment may appear
questionable if virtual excitations in the upper band away from
the Fermi level are considered since renormalization effects at
intermediate scales are discarded. However, the impact of the
rest of the Fermi surface has been investigated for the one-band
Hubbard model within N-patch schemes'® and recently, within
a channel decomposition.’’ The leading tendencies in the
parameter region of interest are well captured in the two-patch
treatment. So, our results may indicate well how the virtual
high-energy excitation affects the RG flow, also if the full
Fermi surface was considered. A thorough fRG study of
multiband models that takes into account the off-Fermi-surface
bands perturbatively would require a multipatch scheme that
goes beyond Fermi-surface projection of the interactions. The
authors are currently implementing such a scheme.

In this work, we have used a multiplicative frequency
cutoff,29 which allows for a second dSC and a FM fixed point
that can not be found in two-patch studies using a traditional
momentum-shell cutoff. This is due to the particle-hole
diagrams with vanishing momentum transfer that contribute to
the flow at nonzero scales if a multiplicative frequency cutoff is
used. The regularization scheme of momentum-shell type put
forward in Ref. 26 also accounts for these diagrams and gives
results that are qualitatively similar to ours at approximation
level 1. However, it can not be extended to a region outside the
patches and is therefore not viable at approximation level 2.

In the two-patch treatment, the approximation levels we
call 2 and 3 merely coincide, that is, the six-point term can
be described by adding the mixed diagrams to the bare values
of the couplings in the initial conditions of the flow. This
represents a technically appealing approximation that can be
implemented more easily compared to keeping a flowing six-
point term. It should hold in cases where the mixed diagrams
are renormalized at scales at which the low-energy diagrams
only flow weakly. Close to a separatrix in the flow between
dSC and FM ordering, even slight changes in the parameters of
the bare action, i.e., the initial conditions of the flow, can result
in a drastic change of the critical scale. In the two-patch model,
this can be understood by the small number of fixed points with
distinct physical properties, which can be mutually exclusive.
In an N-patch approach, this should in principle no longer
hold since there could be a larger number of fixed points that
decay into (partly overlapping) classes sharing similar physical
properties. Yet, the flows for the full Fermi surface still clearly
show a close competition and a possible quantum critical point
between dSC and FM instabilities. Indeed, the sensitivity with
respect to the initial conditions is strongly reflected in our
study of different approximation levels to the effective theory.
We find that the six-point feedback can enhance the critical
scale by orders of magnitude in the dSC regime, provided
that the particle-hole bubble with zero transfer momentum
diverges strongly enough in the infrared, i.e., there is a strong
competition between dSC and FM tendencies. Away from this
critical region and on the FM side, the impact of the six-point
term is reduced.

Currently, it is unclear if these differences will persist
or get weakened if a multipatch scheme is used, and if the
six-point feedback may still play an important role at least
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on a quantitative level in such a flow. Very recent results
on two- and three-band models aiming at different trends in
cuprate systems using related approximations gave a slight
enhancement up to 15% due to the bands away from the Fermi
level.” Regarding the iron pnictide superconductors, there are
several very interesting questions that arise from this study.
There it might be useful to carefully study other observables
than just the critical scale. For example, most RPA and fRG
studies indicate that the orbital character of the bands induces
a pronounced anisotropy of the sign-changing s-wave gap
function around the various Fermi pockets. Of course, for the
predictive power of these calculations, it is necessary to check
how these anisotropies are affected by the higher-order terms in
the effective interactions. Then, depending on the parameters
of the multiband model, there is the possibility of a competition
of other superconducting states with the anisotropic s-wave
state. Again, in such situations, additional effects may play a
decisive role, and may either increase or decrease the degree
of competition.

In summary, we have provided tractable approximations
for improved effective interactions within the conduction
band of a multiband problem and performed a case study
in which the correction terms play a visible role. The next
steps should include more extended applications in multiband
models for correlated electron systems in order to understand
the importance of these corrections in a comprehensive way.
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APPENDIX A: PARAMETRIZATION OF
THE INTERACTION

We will now parametrize the interaction in a way similar
to Ref. 14. The quartic part of the action is therefore cast in a
suitable form

U - _
S(4) - Z Z (Ea - DG)Skahot.m Il/kz,a,azll/k3,a,a3w1c4,a,a4
a,{ki,oi}
’
+ T Z Sal,—az(EaEa - DaDa)‘sk
{ai ki,oi}

X '&kl 01,07 &kz,az,ag Wkg,ag,ag wk4,0t4,0‘4 5

where Dy = 84,.0,00,.05» Eo = 86,.0300,.0,» and where & =
8(ky + ko — k3 — k4) ensures energy and momentum conser-
vation.

Upon the orbital-to-band transformation, the § function
in the momenta gets multiplied by a product of form
factors dj, and/or c;. We now rewrite S® in terms of the
fields x:

1
SOUKx] = 7 D F(X1, X0, X5, X)X (X)X (X2)
{Xi}

X x(X3)x(X4)

and decompose the interaction according to the band indices
of the external legs. This yields

F(X1,X2,X3,X4) = Ax, x,Axs,x,[F+(61,82,83,64) 8 11+ + F-(61,62,63.64) 8 ——— + Fir s (61,62.63.64) Sor. 1+
+ F——>+(€17€27§37§4) 806,++—— + 4Fi—>:t(§1a§2»§3»§4) 506,+——+ + 2F+—>:|:(€17§27€3 7%‘4) 8!!,—+++
+2F_1(81,82,863.64) 6 ——— +2F2 1 (61,62,83.84) So, 14— +2F 1 _(51,62,863,64) 00— ],

where &; denotes (k;,0;) and X; = («;,&) and where the
two-point antisymmetrization operator .4 has been defined as
Aap fa,b) = [f(a,b) — f(b,a)]/2. In the orbital picture, the
interaction is invariant under a band-index flip. Since the trace
of the matrix of the orbital-to-band transformation Eq. (2)
vanishes, this property also holds in the band language, giving
rise to the following identities:

Fy(61,62,83.84) = F_(§1,62,63,64),
Fi (81,62,63,60) = F_ 1(61,62,63,64),
Fi1(81,62,63.84) = Fis1(52,61,64,63),
F_1(81,62,63.84) = Fi s 2(51,62,63,64),
Fi (51,62,63.84) = Fous 1 (51,62,63.54) .

Hermiticity of the Hamiltonian in the band language requires
that the band-conserving terms F_, F., F1_, . must obey

Fx(£1,6,83,84) = Fx(64,83,60,8)). (A1)

For the non-band-conserving terms, it leads to the following
relations:

F(81,62.63.64) : = Fi s _(61,62,63,64)
= F* (£4,863,62.61),
F3(81,62,63.84) : = F_+(61,62,53,64)
= Fi_ _(£,863.,6.8).

The anticommuting nature of the Grassmann fields is reflected
by the following antisymmetry constraint:

Fx(81,62,63.64) = —Fx(82,61,63,64)
—Fx(§1,62,64,63)
for X = 4, —,2. According to Ref. 14, these U(1) vertices
can be parametrized as
Fx(61,62,83,84) = Sk [Eg Vx(ka,k1,k3) — Dg Vx (ki,k2,k3)],

where Vy(ky,k2,k3) = Vx(ko,ki,ks — ki — k). For vertices
with three legs on one band and one on the other, however,
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one of the symmetry constraints is violated and we only have
F3(61,62,63,64) = —F3(61,62,64,63), which allows as well for
the parametrization

F3(81,62,83,84) = 81 [Eq Va(ki, ko ka) — Dy V3(ki,ka,k3)].

In contrast to the vertices Vy considered before, there is no
symmetry constraint for V3. Finally, there are no antisymmetry
relations for F_, 1, which gives rise to the parametrization

FioilE1,60.65.60) = 8 [Eo ViELL (K1 ko )

— Do V2L (k1 k2 )1,
with the symmetry constraint reflecting the behavior under
a band-index flip. VA2 (k1.ka.k3) = V22 (ky ky ks — ky —

ky). We now give explicit expressions for the coupling
functions

V_(ki.ka,ks) = U (1’[ di, + ]‘[ck,)

=+ U,(dkl Ckzck3dk4 + ¢y, d/Qdk3 Ck4)1 (A2)

Vakyka,k3) = U (di,di,CrChy + €k, Chydiydiy)
_ U,(dkl Ckzdk3ck4 =+ Ckldkgck3dk4)5
VP L ki ko k) = U (di, i, Crydiy + Cry iy i cr,)

+U' (]_[dk,. + nck,») ,

Vj(:i)i(khkz,kﬂ = U (dk, cr, i di, + i, diydisc,)
- U’(cklckzd/gdk4 + dkldkzck3ck4),
Va(ki.ka.k3) = U (di, i,y Chy — € iy iy, )
+ U’ (dy, diydis Cry — €k, ChoChydiy) . (A3)

So, the bare interaction can be expressed in terms of five
independent functions of three 1 + 2-momenta by exploiting
its symmetries.

APPENDIX B: FLOW EQUATIONS

In this Appendix, the flow equations used in this paper shall
be given explicitly. We neglect self-energy effects and put the
six-point vertex to be constant during the flow. Therefore, only
the four-point flow equation matters. If the six-point function
is ignored, the right-hand side of this equation is given by
Eq. (88) in Ref. 14 with V_ as an initial condition for V. In
this form, the flow equation can be used to discuss the impact
of orbital makeup. Proceeding further, we take into account
the feedback term

1
As1.62.86.8) = —3 / dn SO, m)FO(n1,61,62,m2,83,£4),
A4(§1,62,53,84) = Sk Eq8V_(ko,ki1,k3) — Do V_(ky,kz,k3)],

S denoting the single scale propagator § = G — GXG with
self-energy X. In the following, we assume the coupling
functions V_ and V3 to be real as is the case for the model
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analyzed in this work. Up to second order in the bare
interaction, the six-point coupling function is given by

FOE .. &) = =9 Ag, &, 6. A0, 5, f dn G4 (n1,m2)
x F3(n1,62,64.85) F3(n2,86,53.61), (B1)

where G denotes the upper-band propagator and where the
three-point antisymmetrization operator

1
Aap.eflab,c) = N Z Py flr(a),7(b),7(c)]

is given by the difference of the sums of cyclic (P, = 1) and
anticyclic (P, = —1) permutations 7. These antisymmetriza-
tion operators give rise to self-energy insertion and one-loop
diagrams A4 = Agg + Ajeop. The former contain the band-flip
self-energy

21(61,6) =688 — &) / dni dna F3(81,11,12,62) S(n1,m2)

and read as

Ase(81,62,83.64) = /drn dng G+ (n3,714)
x [Ag e, F3(13.62.83.64) T (14.61)
+ Ae, &, F3(14.63.62.61) T2(13.64) .

This expression can again be parametrized as

Ase(§1,62,63,64) = 0k[Eq Vse(ko,ki,k3) — Dg Vsg(ky,k2,k3)],

where Vsg obeys the same symmetry constraints as V_. This
gives rise to

Vse(ki ka,k3) = Va(ky,ka,ks) S (ky)
+ Vs(ka.ki ki + ko — k3)E1 (ko)
+ Vatky + ko — k3,k3,k)Ei (ki + ko — k3)
+ Vs(ks.ky + ko — k3. k1) Ex(k3)

with
Sitk) = G+(k)/dq S(@)[Vs(k,q.k) — 2V3(k,q,9)].

The one-loop part comprises particle-particle, crossed, and
direct particle-hole diagrams:

Atoop(§1,52,63,64) = Sk[Es Vieop(ka,ki,k3)
— Dy Vigop(k1,ka,k3)],
Vieop(kt,k2,k3) = Rpplki,ka,k3) + Rpner(kr,ka,k3)
+ Rph,alkr,ka,k3). (B2)

Since V3 obeys no symmetry constraint, the particle-particle
contribution

Ropler enska) = — / dq @) G+ — Vsl — q.q.k)

X V3(l - ‘qu’l - k%) + V3(l - qvq’kz)
x Va(l — q.q,k3)]i=k,+4,
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consists of two terms that otherwise would coincide. The
crossed particle-hole terms

Rpher(ki,ka,k3) = — /dq S(@) G+ + V3 +g.k1,q)
x V3l + q,ky — Lq>|l=k3—k1
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- /dq S(q) G+ q)V3(l + q.ka,q)
x Va(l + q,k3,9) 1=k, —k; (B3)

behave likewise. The direct particle-hole diagrams read
as

Rph,alky ko, k3) = — /dq S(q) G+ [-2V3(l + q,k1,k1 + DV3( + q,k3,k2) + V3(l + q.k1,k1 + DV + q,k3,9)

+ V3l + q.,k1,q) V3l + q.k3.k2) li=i,—k, — qu S(q) G+ + PI-2V3( + q,k2,k3)V3(L + q.ky — L,ky)

+ V3(l + qkaskl - l)V3(l + Cl,k37Q) + V3(l + qkasq)V3(l + QJCI

Note that for vanishing interorbital interaction U’ = 0, the
direct particle-hole diagrams vanish due to Vi(ki,k,k3) =
Va(ki, ko ki + ky — k3).

APPENDIX C: TWO-LOOP CORRECTIONS

Here, we give an argument as to why not going beyond level
2,1i.e., why dropping the renormalization of the six-point vertex
itself, may suffice. If one had not done so, a correction term
would have to be added to the constant three-particle vertex
as in Fig. 12(a). By integrating and then iterating the flow
equation for the six-point vertex, this renormalization-induced
term can be expressed as a sum of diagrams containing the
four-point and constant six-point vertices only up to arbitrary
order. Note that the constant part of the six-point vertex is of
second order in the four-point couplings. In leading, i.e., third
order, we obtain two one-loop terms depicted in Fig. 12(b).
One of these diagrams includes only four-point vertices and
would as well be present in the absence of an initial six-point
term, while the other one contains this initial three-particle
interaction. When the right-hand side of Fig. 12(b) is now
fed back into the flow equation for the four-point vertex,
diagrams with overlapping and nonoverlapping loops arise.
If we had started our fRG analysis directly from the full action
(8P 4 S®)[5,x] instead of the effective low-energy action
Sefr and kept the band indices as variables attached to the legs

aaiiveahly 5
&%/’\\

FIG. 12. (a) Full (scale-dependent) vertex (hatched circle) written
as a sum of its initial value (empty circle) and a renormalization-
induced correction term (hatched square). (b) Leading-order result
for the correction term.

— Lk =ik, - (B4)

of the vertices, the overlapping ones would be neglected in the
Katanin truncation. So, they shall be dropped in the present
treatment as well.

We then end up with the correction terms depicted in
Fig. 13. The first and the third one can be merged with the
one-loop terms in Fig. 4, leading to a Katanin substitution
S — G both in the low-energy term as in the one-loop
feedback. Since we neglect self-energy effects in our numerics,
this substitution will not change our results for the six-point
feedback.

The second diagram in Fig. 13, however, requires more care.
We now proceed with giving upper estimates for the remaining
correction term and the one-loop feedback and low-energy
terms in Fig. 4. If the frequency dependence of the coupling
functions is dropped, all Matsubara sums can be evaluated
analytically giving rise to the following rules for an estimate.

(i) The four-point coupling functions V3 and V_ at scale A
are replaced by their maximal value g3 and g_, respectively.

(i) Mixed loops including a scale derivative are replaced
by a factor 47%(e; 1)~!, where €, denotes the minimal energy
of the high-energy bands. The band-flip self-energy diagrams
behave likewise.

(iii) Lower-band loops with and without a scale derivative
are replaced by 472172 and 4721~ respectively.
At all scales, the correction term Fig. 13 should be small
compared to the the low-energy term, which implies

4n2g§ K g_€4. (C1)

Note that the orbital makeup reduces the value of the bare
coupling functions and may therefore finally allow for the

FIG. 13. Leading corrections to flow equation in Fig. 4. Diagrams
with overlapping loops have been neglected.
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omission of the correction term. At scales at which the one-
loop feedback term flows, the one-loop feedback should prevail
against two-loop corrections, i.e., 4w2g_ < A. Together with
the condition Eq. (C1), this requires the cutoff A to be much
larger than g3 /€. Atlower scales A < g2 €. /g3, however, the
mixed one-loop diagrams eventually saturate and the feedback
term becomes negligible compared to the low-energy loop
term that may finally drive the flow to a strong-coupling
fixed point. The crossover region between these two regimes
should be small, as long as the inequality (C1) holds. So a
one-loop fRG approach should suffice to qualitatively discuss
the impact of the six-point term on the critical scale for d-wave
superconductivity, for example.

Finally, we feel that a comment on the relation of the
flows of " and I'_ is in order. If self-energy effects are
neglected completely, the four-point vertex of I'_ is equal
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to the four-point vertex of I" with all external legs on the
low-energy bands since they both must lead to the same
four-point correlation functions for the low-energy modes. If
one now considers the flow of I for an energy shell cutoff
in the usual truncation and in addition forces all four-point
vertices with at least one leg on the high-energy bands not to
flow, the one-loop feedback in the flow of I'_ is recovered.
In the RG flow of I', the most relevant correction term to
this approximation consists of the diagram with the internal
lines on the low-energy bands and three external legs on the
low and one on the high-energy bands. If this correction is
fed back into the flow of the vertex with all external legs on
the lower bands, the feedback correction term is equivalent
to the second diagram in Fig. 13 in leading order. As soon
as self-energy effects are taken into account, however, this
correspondence breaks down.
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