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Cluster-based superconducting tunneling networks
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A two-dimensional tunneling network consisting of nanoclusters placed on a surface is studied. It is shown
that such a network is capable of transferring a large supercurrent at high temperatures. For a realistic set of
parameters the damping is quite small, and the smallness is due to strong renormalization of the capacitance of a
cluster. The critical field also turns out to be large.
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I. INTRODUCTION

This paper is concerned with nanocluster-based super-
conducting tunneling networks. In our previous paper1 we
described the Josephson tunneling between two nanoclusters.
The present paper is a continuation of this study.1 Specifically,
we focus on a two-dimensional (2D) tunneling network formed
by superconducting clusters. Recent progress in “soft landing,”
that is, in deposition of metallic nanoclusters on a special
substrate without disturbing structure of the former (see, e.g.,
Ref. 2), makes the idea of such a network realistic. As was
demonstrated in our papers3,4 and recent publications,5,6 the
presence of electronic energy shells in the nanoclusters leads
to the appearance of a high-temperature superconducting state.

The main question that will be addressed here is whether the
network is capable of transferring a supercurrent, or whether
this current will be damped out. We consider two major factors
which may impact the current’s amplitude: first, the statistical
distribution of current density and then the impact of quantum
fluctuations. It will be demonstrated that the tunneling network
is capable of transferring a supercurrent with high current
density and at high temperatures. In addition, we evaluate the
impact of an external magnetic field on the network.

II. STATISTICAL DISTRIBUTION

Consider a 2D tunneling network. Let us assume that the
distribution of the critical current jc has the Gaussian form:

w̃ = (πδ)−1/2 exp
[−(

j 0
c − jc

)2/
δ
)]

. (1)

Here j 0
c is the average value of the critical current, and

δ/2 = 〈(j 0
c − jc)2〉. Therefore, the probability W (jc � j̃ ) for

one pair of clusters to have the critical current larger than some
value j̃ is given by the expression

W (jc � j̃ ) = (πδ)−1/2
∫ ∞

j̃

dĨ exp
[−(

j 0
c − Ĩ

)2/
δ
]
. (2)

Therefore, one can write the following expression for the
probability Wn for the chain containing n junctions to have the
value of the critical current jc � j̃ :

Wn(jc � j̃ ) = Wn. (3)

W is described by Eq. (2). Then one can calculate the
distribution function wn = −∂WN/∂j̃ , which has a form:

wn = (n/(πδ)1/2) exp(−F )

F =
{
τ 2
j̃

− (n − 1) ln

[
(πδ)−1

∫ ∞

j̃

dj exp
(−τ 2

j

)] }
; (4)

τj = (
j 0
c − j

)
δ−(1/2).

The average value of the critical current for the chain
containing n junctions is

〈j 〉n =
∫ ∞

0
djjwn, (5)

where wn is described by Eq. (4). The value of 〈j 〉n can be
calculated by the method of descent. Correspondingly, one can
determine τjextr. , which is the solution of the equation

2κ = (n − 1)π−1/2

× exp(−κ2)

[
0.5 + π−1/2

∫ κ

0
dy exp(−y2)

]−1

, (6)

where κ ≡ τjextr. = (j 0
c − jextr)/δ1/2. For example, for n = 2,

one can find from Eqs. (5) and (6) that 〈j 〉3 = j 0
c −(δ/2π )1/2,

that is, an increase in a number of junctions leads to a decrease
in the value of the average critical current. For n � 1, Eq. (6)
can be reduced to the form:

κ ≈ ln1/2(n/2π1/2κ). (6′)

One can see that the dependence on n is described by slow
logarithmic law. A superconducting current can persist up to
a very large value Nmax ≈ 2π1/2τ0 exp(τ 2

0 ); τ 0 = (j 0
c /δ1/2).

Indeed, nmax is very large even for the broadening τ−1
0 ≈

0.1.

III. CURRENT THROUGH THE NETWORK

Quantum fluctuations are a major factor leading to the
damping of the Josephson current. We have studied the effect
of Coulomb blockade for the case of a single junction.1 Here
we focus on the network containing similar superconducting
nanoclusters. As we know, the impact of quantum fluctuations
is greatly affected by the value of capacitance. This feature has
been studied in Ref. 7 and also by Larkin and one of the authors
in Ref. 8. It turns out, and this is the fundamental quantum
feature, especially important for nano-based networks, that
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it is necessary to take into account the renormalization of
the capacitance relative to its intrinsic (“bare”) value c.
According to Refs. 7 and 8, the renormalized value C is equal
to

C = c + Zc; Zc = 3eh̄jc

16ε2
0

, (7)

where c, jc, and ε0 are the capacitance, the density of the
current, and the energy-pairing gap for an isolated junction
(see below), respectively.

The current jc was evaluated in our previous paper.1 For
the “magic” (or near “magic”) cluster, its geometry is close
to being spherical. Then the expression for the current has a
form:1

jc = eh̄3

2m2
T

∑
νν1

∑
ωn

|Tν,ν1 |2
|
L||
R|[

ω2
n + (

εL
ν

)2][
ω2

n + (
εR
ν1

)2] . (8)

Here ωn = (2n + 1)πT (we employ the thermodynamic
Green’s functions formalism, see, e.g., Ref. 9); 
 = 
(ωn)
is the pairing-order parameter; εi

p = [(ξ i
p)2 + |
|2]1/2,ξ i

p =
Ei

p − μ is the electronic energy (in the absence of pairing;
i = {L,R},p = {ν,ν1}) referred to the chemical potential
ν, ν1 are the quantum numbers (see Table I); Tvv1 is the
tunneling matrix element, which has a form (see, e.g.,
Ref. 1):

|Tν,ν1 |2 =
∣∣∣∣
∫

s

d 	S[
f

∗
ν1

(∂fν/∂	r) − fν

(
∂f

∗
ν1

/∂	r)]
∣∣∣∣
2

×
( ∫

d	r|fν |2
)−1( ∫

d	r∣∣fν1

∣∣2
)−1

; (9)

and fν and f
∗
ν1

are the eigenfunctions of the Hamiltonian Ĥ =
−(h̄2/2m)∂2/∂r2 + Vi(r) − μ for the left and right electrodes
(clusters), respectively (see Ref. 1). For r > a they have a
form:

fν = ηYm
l Kl+1/2(pr)/(pr)1/2(r > a). (10)

Here Ym
l ,Jl+1/2, and Kl+1/2 are spherical and Bessel

functions; p = (2mδUo)1/2,δUo = δU − EH ; EH = EHOS

is the energy of highest occupied shell; δU is the height
of the barrier; and a is the cluster radius. Expression
(10) can be used also as a first approximation for slightly
deformed clusters. The constant η can be determined with
use of the usual boundary conditions at r = a and is

TABLE I. List of notations.

jc Critical current
c; C Capacitance for an isolated cluster (c) and its

renormalized value (C) for the network
L; R Left (L) and right (R) electrodes (clusters)
ν; ν1 Quantum numbers for the left (ν ≡ νL) and

right (ν1 ≡ νR) clusters
δU0 Height of the barrier
EH Energy of highest occupied shell (EH ≡ EHOS)
l Orbital momentum
a; d Cluster radius (a) and the distance between the

centers of neighboring clusters (d)
S Action

equal to

η = −(EH /δUo)Jl−1/2(κa)[Kl−1/2(pa)

+ (l + 1)Kl+1/2(pa)/(pa)]−1, (11)

κ = (2mEH )1/2; the notations can be seen in Table I. With the
use of Eqs. (8)–(11), we obtain the following expression for
the critical current:

jc = eh̄3

m2
.
EH

δUo

(p2a6)−1T
∑
ωn

∑
L,L1

|
(ωn)|2Rωn;LRωn;L1 (12)

Rωn;L = (2l + 1)z0(l)K2
l+1/2(pd/2)

(
ω2

n + ε2
L

)−1
[Kl−1/2(pa)

+ (l + 1)(pa)−1Kl+1/2(pa)]−2, (12′)

where d is the distance between neighboring clusters, and z0

are zeros of the Bessel function.
Note that the discrete nature of the spectrum leads to the

possibility of resonant tunneling; this special case was also
studied in Ref. 1. However, here we focus on the more general
case of nonresonant tunneling.

To study the issue of damping, we employ the method
developed by Larkin, Schmid, and one of the authors.10 They
considered a 2D-ordered network of Josephson junctions. The
damping is caused by motion of defects (vortices), and in the
quantum picture such motion corresponds to barrier tunneling.
Then the problem is reduced to the calculation of the effective
action, since the damping 
 ∝ exp(−S), and the action S is
determined by the expression10

S = 4.5[(h̄2/8e3)jc Zc]1/2, (13)

where jc is the current amplitude determined by Eq. (12), and
Zc is the change (renormalization) in the capacitance [Eq. (7)].

The modified (renormalized) capacitance and, conse-
quently, the action, depend also on the value of the pairing
energy gap [see Eqs. (7) and (13)]. The evaluation of this
parameter was described by us in Refs. 3 and 4.The pairing en-
ergy gap is determined as the root of the equation ε = 
(−iε),

(ω) is the order parameter: 
(ω) = B�̃[1 + D(ω/�̃)2]−1.
The constants B and D could be calculated for any cluster (see
Ref. 4).

Based on Eqs. (7), (12), and (13), one can calculate the ac-
tion for specific cluster-based network. Consider, for example,
the network containing the clusters with the following realistic
set of parameters (see Table I; this specific case was described
in our papers1,4):

lH = 7, lL = 4, n = 168, a ∼= 6Ȧ, �̃ ∼= 25 meV,

B ∼= 0.45; D ∼= 6 • 10−2;

these parameters are also close to those for an Al56 cluster. We
assume also that δU0 = 0.75 eV, d = 15A. The straightforward
calculation, based on Eqs. (7), (12), and (13), leads to the
following value for the action: S ∼= 10. If δU0

∼= 1 eV, we
obtain S ∼= 5. The general functional dependence 
(δU0) will
be described elsewhere.

One can see that S � 1; the damping 
 ∼ exp(−S) is
small. Therefore, the network can transfer rather large current
without any noticeable damping. For example, for the previous
case considered the current density jc ≈ 109 amp/sm2.
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Note that we consider here the nonresonant channel. If it
possible to build the network transferring the current through
the resonant channel (see Ref. 1), then the value of the current
could be increased by ∼102–103.

IV. 2D CLUSTER-BASED NETWORK IN AN EXTERNAL
MAGNETIC FIELD

Consider the in-plane cluster-based tunneling network in
an external magnetic field which is perpendicular to the plane.
The problem is similar to that described in Ref. 11 (see also
Ref. 12). Let us start with the Maxwell equation, which can be
written in the form12:


 	A = −(4π/ch̄)jcδ(z)[r−1 − (2eA/c)]	eθ . (14)

Here 	A is the vector potential (the gauge is

div 	A = 0); 	eθ = (− sin ϕ, cos ϕ). (14′)

Using the Fourier transformation we obtain, after some
calculation, the following expression for the current density:

	j = (λeftjc/r)
∫ ∞

◦
dqJ◦(qr)(1 + λeffq)−2	eθ . (15)

Here J0(x) is the Bessel function, λ−1
eff. = 4πejc/h̄c2.

Equation (14) allows us to obtain the following expressions
(cf., Ref. 12):

j̄ (r � λeff) = (jc/r)	eθ ; 	j (r � λeff) = (λeffjc/r2)	eθ . (16)

For example, for the specific case with d = 14, δU0 =
1 eV, we obtain λeff ≈ 7 • 10−4 cm. Then one can determine
the value of the characteristic magnetic field H1, which
corresponds to the overlap of single vortices. It is determined
by the relation H1 = �0/λeff

2 (�0 is the flux quantum) and is
rather small: H1 ≈ 0.4 G. The most important quantity is the
critical field, which is defined by the relation H2 = �0/d2 and
corresponds to the pinning phenomena. Unlike H1, the value
of H2 is very strong: H2 ≈ 5.102T. As a whole, because of

such a broad interval between H1 and H2, one should expect a
rather weak dependence of the current on magnetic field.

V. DISCUSSION

The analysis carried out by the authors in Ref. 1 and
in the present paper demonstrates that a supercurrent can
be transferred through a tunneling network formed out of
superconducting nanoclusters. Such transfer implies that the
clusters are organized on a surface. Since the presence of shell
structure in the electronic energy spectrum is a key factor for
the pairing, it is important for the surface—cluster interaction
does not perturb the cluster’s geometry and, correspondingly,
its energy spectrum. This is a serious and well-known
challenge (the so-called “soft landing” problem), but recent
progress with the use of, for example, C60-based substrates2

makes it realistic to envision such tunneling networks.
One should mention also the possibility of building a 3D

network; such an idea was proposed in Ref. 13. This picture is
based on a 3D crystal with Josephson current flowing between
the cluster units. A possible example of such a system is the
crystal formed from ligand-stabilized Ga84 clusters.14 These
are different from the systems analyzed in Refs. 3 and 4, which
are capable of upholding pairing up to high Tc. The crystal
studied in Ref. 14 displayed Tc

∼= 8K , which is still much
higher than that for bulk Ga(∼=1.1K). The authors suggested
that this was due to the mechanism.13

In summary, development of cluster-based network de-
scribed in Ref. 1 and in the present paper is an interesting and
promising direction. Using these, one will be able to observe
macroscopic supercurrents with large current densities and at
high temperatures.
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