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Suppression of the melting line in a weakly disordered flux-line system
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An analytic formula describing the suppression of the equilibrium melting line by quenched point pinning
disorder is compared to data from ac susceptibility and magnetization measurements in the mixed phase of
the layered dichalcogenide low-Tc superconductor 2H -NbSe2. This material exhibits a sharp peak effect in the
critical current jc close to the upper critical field Hc2(T ). Arguing that the disorder-suppressed melting line in this
system is to be identified with the locus of peak positions of the critical current as magnetic field and temperature
are varied, we demonstrate that this formula provides a remarkably accurate fit to the experimental data over
three orders of magnitude in magnetic field.
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I. INTRODUCTION

The translational order of the Abrikosov flux-line lattice
is disrupted both by thermal fluctuations and by quenched
disorder.1–4 Thermal fluctuations drive a first-order flux-lattice
melting transition in pure systems, while quenched disor-
der destabilizes translational long-range order even at zero
temperature.5,6 A delicate balance between elastic restoring
forces and the twin disordering effects of thermal fluctuations
and random pinning thus determines flux-line structure and
phase behavior in the mixed phase of type-II superconductors
with quenched disorder.3

Translational correlations cannot be truly long-ranged in
a crystal with quenched disorder.6 Qualitatively different
states may, however, be identified through the nature of the
decay of such correlations.1–3 In the Bragg glass (BrG), a
quasilattice phase believed to be stable at weak disorder and
low temperatures, such correlations decay asymptotically as
power laws.7,8 Upon increasing either the effective disorder
strength or the amplitude of thermal fluctuations, the Bragg
glass transforms into a phase in which such correlations decay
exponentially. The disordered liquid (DL) is one such stable
state obtained at large temperatures T . Another disordered
state is obtained in field H scans out of the Bragg glass
at low T .3 Such a disordered state has glassy attributes,
including divergent time scales for structural relaxation and
relatively short-ranged correlations. It may represent a new
thermodynamic phase, the vortex glass phase, distinct from
the equilibrium disordered liquid.2,9,10

At large H , the DL phase appears to transform continuously
into the glass when T is reduced. At low and intermediate
values of H , it appears to freeze discontinuously. This
freezing in the intermediate interaction-dominated regime has
traditionally been understood as occurring directly into the

Bragg glass.11,12 Such a view is, however, at odds with a large
body of data in which anomalies associated with the freezing
transition, such as a discontinuity in the magnetization, often
appear well separated from another structural transition that
occurs at lower temperatures, particularly for more disordered
samples.13–15 An attractive way to reconcile a large number
of experimental observations on both high-Tc and low-Tc

materials is via the proposal that two transition lines always
separate the BrG phase from the DL phase, with a sliver
of disordered glassy phase intervening. This possibility is
illustrated in Fig. 1,13–15 with the intermediate glassy phase
termed as a “multidomain glass” (MG). The phase diagram of
Fig. 1 has been argued elsewhere to be a generic phase diagram
for the mixed phase with quenched point pinning.15 Among its
distinctive features is the identification of a smooth connection
between high-field and low-field glassy phases, a proposed
equivalence of the peak effect as seen in temperature scans
as T → Tc and the “fishtail” effect seen in field scans at low
temperatures, as well as a specific prediction for vortex-line
structure in the intermediate glassy phase.13–15

In Fig. 1, the Bragg glass melts into the disordered liquid
phase on increasing T via an intermediate glassy phase.13–15

This glassy regime broadens both at large H as well as very
small H , reflecting the increased importance of disorder both at
high fields, where the multidomain glass phase is encountered,
and at low fields, where a reentrant disordered state has been
predicted and indeed seen.16 The intervening sliver of disor-
dered phase has been identified with the peak-effect regime, the
narrow region close to Hc2 in (H,T ) space in which the critical
current jc increases anomalously in a variety of low- and
high-Tc superconductors.17–22 Susceptibility measurements on
a variety of low-Tc materials indicate that the phenomenon of
the peak effect itself exhibits a generic two-step character, in
agreement with the proposed phase diagram. In this picture,
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FIG. 1. (Color online) Generic phase diagram for type-II super-
conductors with point pinning disorder. The Bragg glass is depicted as
melting directly into a multidomain glass phase and only then into the
disordered liquid upon increasing the temperature. The Hpl(T ) (where
pl stands for plastic flow) and Hp lines, associated with the onset and
the maximum of the peak-effect anomaly in the ac susceptibility
or critical current, are identified with the transitions between the
Bragg glass and the multidomain glass and the multidomain glass
and the disordered liquid, respectively. The boundary between the
Bragg glass and multidomain glass phase is reentrant,5,16 although
the regime of reentrance appears to be very small in experiments (it is
exaggerated for clarity). The regime of the intermediate vortex glass
phase is also exaggerated vis-à-vis the experiments, where it appears
as a very narrow sliver in the phase diagram, concomitant with other
anomalies, signaling a sequence of equilibrium phase transitions.13

the first phase boundary encountered when cooling from the
disordered liquid state is the remnant of the thermal melting
line in the pure system, renormalized suitably by disorder. This
phase boundary is then identified with the loci of peaks in jc

in (H,T ) space.
Significantly, this proposal also motivates a new interpreta-

tion of the classic problem of the peak effect: the peak effect
is simply a result of the disordered, high-jc vortex glass phase
intervening between two relatively low-jc phases, the Bragg
glass phase and the equilibrium disordered liquid. In this
picture, the “hardening” of the vortex system as a consequence
of the transition into the multidomain glass phase (rather
than the smooth “softening” envisaged in Pippard’s original
scenario23 or a possibly sharp crossover from collective to
individual pinning24–26) is the underlying cause of the peak
effect.14 Such an increase in critical currents in polydomain
structures has indeed been seen in recent simulations.27 A
recent study of this intermediate phase is reported in Ref. 28,
while earlier work examined this regime using scanning ac Hall
microscopy, proposing the possibility of “coexistence” within
the peak-effect regime as an explanation for the anomalies
seen within this regime.29

While translational correlations in the BrG phase are of
power-law character, those in the DL phase are short ranged,
with typical scales of order a few interline spacings. We
have argued elsewhere that the most appropriate description
of structure in the intermediate disordered phase is in terms
of a disordered arrangement of ordered domains, as in a
MG phase.13–15 Using formulas appropriate to the collective
pinning regime, a conjecture for typical domain sizes, and

experimentally obtained values of jc in very weakly disordered
samples of 2H -NbSe2 indicate Rd/a ∼ 106, with a being the
mean-intervortex spacing, suggesting that the domain sizes
in the MG phase of systems with low levels of pinning can
be far larger than the correlation length at freezing in the
pure system.13,14 Such a picture rationalizes the association
of magnetization discontinuities with the transition out of the
DL phase. Further, it suggests that examining the instability of
the DL phase to a phase with solidlike structural correlations
may be a good starting point for the calculation of the DL-MG
phase boundary.

II. METHODOLOGY

This paper compares a generalized version of the pre-
dictions of a simple semianalytic theory of the DL-MG
phase transition, proposed in Ref. 14, with results from ac
susceptibility and magnetization measurements on the low-
Tc dichalcogenide superconductor 2H -NbSe2. This material,
with Tc � 7.1 K, shows a remarkably sharp peak-effect signal
in an interval within about 10% of Hc2(T ). Structure in
the peak-effect regime in 2H -NbSe2 has been conclusively
demonstrated to be domain-like, validating the approach
here;30 for related simulations, see Ref. 27.

We find that a relatively simple analytic formula provides a
remarkably accurate parametrization of the MG-DL transition
line, the Hp line in the phase diagram of Fig. 1, provided,
as argued extensively elsewhere, the loci of the peak in jc is
identified with this transition. This fit is shown in Fig. 2, using
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FIG. 2. (Color online) Experimental data (filled circles) showing
the locus of points associated with the peak of the peak-effect
anomaly, as obtained from ac susceptibility measurements. The
solid line passing through these point corresponds to the theoretical
prediction in Eq. (5) for the disorder-induced suppression of the
phase boundary between the multidomain glass and the disordered
liquid. The parameter values used in the fit are C = 104, m = 10.0,
Tc = 7.09, and α = 1.33, assuming XY -type critical behavior. The
dashed line represents a theoretical fit that corresponds to the
pure-system behavior, in which we set m = 0.
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FIG. 3. Real part of the ac susceptibility of a NbSe2 crystal
measured at three representative fields applied parallel to the c axis.
The data are measured using an ac field amplitude of 1 Oe and 10 Hz
frequency.

data from ac susceptibility measurements. Figure 3 exhibits
representative data (see below) for the ac susceptibility, while
magnetization-based measurements of the critical current are
shown in Fig. 4 at one value of the temperature. As can be seen
from Fig. 2, the fit to the data is of exceptional quality.

The approach of Ref. 14, described briefly below for com-
pleteness, draws from an early replica theory of correlations in
disordered fluids and a replica generalization of the density
functional theory of freezing as applied originally to the
pancake vortex system in Bi2Sr2CaCu2O8−x (BSCCO).31,32

Such density functional theories have been shown to provide
a quantitatively accurate picture of the freezing transition in
the pure system, including such details as the physics of
the anomalous slope of the melting line in these systems
and a rationalization of asymmetric hysteresis across the
flux-lattice melting transition, as induced by the presence of
free surfaces.31,33,34

Replica methods are generalized to disordered fluids
through the model problem of a system of point particles
interacting via a two-body interaction and an explicit one-body
disorder term Vd (r).32 Here Vd (r) represents a quenched, ran-
dom, one-body potential, drawn from a Gaussian distribution

FIG. 4. Critical current of the 2H -NbSe2 sample as a function
of applied field as obtained from dc magnetization measurements,
illustrating the peak effect in this material, at a temperature of
T = 5.8 K.

of zero mean and short-ranged correlations: [Vd (r)Vd (r′)] =
K(|r − r′|), with [· · ·] denoting an average over the disorder.

Two point correlation functions, within replica theory, carry
two replica indices, denoted by the Greek letters α and β. Thus,
the pair correlation functions hαβ(r) and the related direct
correlation functions Cαβ(r) characterize the replicated system
at the level of two-particle correlations. Assuming replica
symmetry, as appropriate to the equilibrated disordered fluid,
we define the replica off-diagonal (α �= β) and replica diago-
nal (α = β) correlation functions, writing Cαβ = C(1)δαβ +
C(2)(1 − δαβ) and hαβ = h(1)δαβ + h(2)(1 − δαβ). Physically,
the function h(1) describes the disorder-averaged equal-time
(equilibrium) correlation of fluctuations of the local density,
whereas h(2) represents the disorder-averaged correlation of
disorder-induced deviations of the time-averaged local density
from its average value ρ�. Direct simulation tests of the
predictions of the theoretical framework for these correlation
functions are reported in Ref. 35.

The density functional theory of freezing takes such
correlations as input to a mean-field determination of when the
fluid, with density ρ�, becomes first unstable to the formation
of a static density inhomogeneity. Applying replica analysis
leads to a density functional that qualitatively resembles the
density functional of a pure system, but with renormalized
correlations:32

��

kBT
=

∫
dr

[
ρ(r) ln

ρ(r)

ρ�

− δρ(r)

]

− 1

2

∫
dr

∫
dr′[C(1)(|r − r′|) − C(2)(|r − r′|)]

× [ρ(r) − ρ�][ρ(r′) − ρ�] + · · · . (1)

Assuming ρα(r) = ρ(r) for all α, the properties of the density
functional are governed by an effective direct correlation func-
tion given by Ceff(|r − r′|) = C(1)(|r − r′|) − C(2)(|r − r′|). In
this description, disorder enters through (i) the suppression of
C(1)(|r − r′|) and (ii) the nontrivial character of C(2)(|r − r′|).

The interreplica interaction βK(ρ,nd) appropriate to
vortex lines and pancake vortices is obtained assuming
the principal source of disorder to be atomic scale pin-
ning centers.36 A model calculation yields βV (2)(ρ,nd) =
−βK(ρ,nd) � −	′ exp(−ρ2/ξ 2)δn,0, where βV (2)(ρ,nd) =
βV αβ(ρ,nd), with α �= β. For 2H -NbSe2, ξ � 70 Å is the
coherence length in the ab plane, and 	′/	2 ≈ 10−5–10−8 for
point pinning of strength dr2

0 H 2
c /8π . Here d is the interlayer

spacing for a layered superconductor (d = ξ for an isotropic
superconductor), r0 ∼ ξ , 	 = βd�2

0/4πλ2, with λ ∼ 700Å,
and β = 1/kBT . Defect densities of the order of 1017–
1020/cm3 are assumed in this estimate, with the larger number
believed appropriate for layered superconductors such as
BSCCO as well as the Cr-doped 2H -NbSe2 compound, which
has a comparable Tc and superconducting properties.32,37

(Direct measures of point pinning defect densities in 2H -
NbSe2 do not appear to be available, although they may be
estimated from Ref. 38). The precise prefactor is unimportant
here, as we will use only the dependence of 	′ on the field and
temperature in our discussion, i.e., 	′ ∼ 	2 ∼ 1/T 2.

Further progress requires a calculation of the correlation
functions C(1)(r) and C(2)(r). A replica generalization of the
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Ornstein-Zernike equations coupling C(1)(r) and C(2)(r) to
h(1))(r) and h(2)(r) can be derived: these equations must be
supplemented, as usual, with appropriate closure schemes,
such as the hypernetted chain (HNC) or Percus-Yevick (PY)
schemes.32,39

In mean-field theory, the freezing transition of the pure
system occurs when the density functional supports periodic
solutions with a free energy lower than that of the uniform
fluid.40 We now specialize to the flux-line lattice, where
properties of the freezing transition are controlled by a
two-dimensional Ceff(q⊥,qz = 0), the Fourier transform of
Ceff(r⊥,z). Setting qz to zero simply corresponds to con-
sidering arrays of pancake vortices in perfect registry or,
equivalently, straight vortex lines representing the crystal.31

The Hansen-Verlet criterion for the freezing of a two-
dimensional liquid39,41 indicates that freezing occurs when the
structure factor S(q) = 1/[1 − ρCeff(q)], evaluated at qm, i.e.,
S(qm), attains a value of about 5, a value roughly independent
of the nature of the interaction potential. A full density
functional calculation yields the same quasiuniversality, a
direct consequence of the fact that correlations, not micro-
scopic potentials, are the principal determinants of freezing.40

Since C(2)(qm) � 0 and C(1)(qm) is always reduced (although
weakly) in the presence of disorder, the equilibrium melting
line is always suppressed by quenched disorder.

We use the following ideas: (i) The diagonal direct
correlation function C(1)(q) is weakly affected by disorder
and can thus be approximated by its value in the absence
of disorder. (ii) The off-diagonal direct correlation function
C(2)(q) varies strongly with disorder and with H. (iii) C(2)(q)
is well approximated at q = qm = 2π/a by its value at q = 0.
Since the Hansen-Verlet condition is satisfied along the melting
line, the following holds:

ρ�C
eff = ρ�[C(1)(qm) − C(2)(qm)] � 0.8. (2)

The off-diagonal correlation function C(2) decays sharply in
in real space; in Fourier space, therefore, its value at q =
qm is close to its value at q = 0. The validity of such an
approximation has been tested in Ref. 35. Thus,

C(2)(r) � −βV (2)(r). (3)

The prefactor scales with temperature as 	2, implying that
ρ�C

(2)(qm) ∼ B
T 2 . Note that C(2)(qm) increases as B is in-

creased or as T is decreased, as is intuitively reasonable.
We observe that C(1)(qm) increases with a decrease in

T ; reducing T increases correlations. The variation in C(1)

is expected to be smooth within the equilibrium disordered
liquid. Thus

C(1)(qm; T − �T,B) = C(1)(qm; T ,B) + q(B,T )�T, (4)

where q(B,T ) (q > 0) is a smooth function of B and T close to
the melting line. To first order in C(2), (B,T ) can be replaced by
(Bm,Tm) and C(1)(qm; Bm,Tm) by its value at freezing for the
pure system: ρC(1)(qm; Bm,Tm) � 0.8. We may also neglect
the B and T dependence of q, i.e., q(Bm,Tm) � q, with q

being a constant; at melting, this dependence should be small
provided a 	 λ.

An approximate expression for the suppression of the
melting line from its value for the pure case (Bm,Tm) =
[Bm(T ),T ] now follows: �Tm ∼ Bm(T )

T 2 = mBm(T )
T 2 , with m being

a constant, related to a temperature derivative of the direct
correlation function. Here �Tm is the shift in the melting
temperature induced by the disorder. This relation predicts
a larger suppression of the melting line at higher fields and
lower temperatures.

The above result parametrizes the suppression of the
melting line by quenched disorder. This result can be combined
with results from a calculation of the melting line in the
pure system to obtain a simple analytic formula for the
MG-DL phase boundary.14 At low fields, a simple Lindemann
parameter-based calculation of this phase boundary appears
to be reasonably accurate and yields Bm(T ) = C(T − Tc)α ,
where Tc is the critical temperature and C is a constant appro-
priate to the pure system.1 The exponent α is characteristic of
the fluctuation regime; α = 2 describes the mean-field case,
whereas α = 1.33 is appropriate to the fluctuation-dominated
X-Y regime. This then yields the central prediction for the
phase boundary Bdis

m (T ) separating disordered liquid from
multidomain glass,14

Bdis
m (T ) = C

(
T − m(T − Tc)α

T 2
− Tc

)α

. (5)

In general, we could use any formula here that best models
the melting line in the pure system, as inferred, for example,
from fits close to Tc. Note that the suppression of the pure
melting line by disorder is very weak if m is small. This
suppression becomes progressively large as m is increased or,
alternatively, at a lower temperature (larger H ) for given m. It
might appear that the final formula [Eq. (5)], with α,C, and m

as potential unknowns, contains a fairly large number of fitting
parameters. However, note that, as T → Tc, the suppression
term becomes irrelevant. Thus, two of the three parameters
are fixed vis-à-vis the pure system or, equivalently, by an
independent fit close to Tc; only a single free parameter is
required to fit the suppression of the melting line by disorder,
provided an independent fit to the pure-system melting line
close to Hc2 is available.

III. RESULTS

We now describe the details of our experiments. The
peak effect in our 2H -NbSe2 single crystals (Tc � 7.1 K),
made as described in Ref. 42, is tracked by ac susceptibility
and dc magnetization measurements. The experimental data
presented are obtained using a Quantum Design supercon-
ducting quantum interference device (SQUID) magnetometer
with the magnetic field applied parallel to the c axis of
the sample. The ac susceptibility data are measured using a
10-Hz ac field of amplitude 1 G. The temperature accuracy
is 10 mK. Susceptibility measurements are carried out by
varying temperature at different magnetic fields ranging from
50 to 10 000 Oe. Critical currents are inferred from field-
dependent magnetization hysteresis measurements at different
temperatures above 2.5 K. The peak effect manifests itself
in a susceptibility measurement through a dip in the real
part of the ac susceptibility χ1; the minimum value of this
quantity corresponds to the maximum value of the critical
current. This is further confirmed by measuring the isothermal
magnetization hysteresis loops measured via the technique
presented in Refs. 43 and 44, which overcomes the effect
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of field inhomogeneity on the measured magnetic moment.
The location of features such as the peak is practically
independent of the measurement frequency. The dc technique,
a zero-frequency measurement, gives the same peak position
in the (H,T ) plane as the ac susceptibility measurement. The
location of the peak in Jc obtained from the dc magnetization
hysteresis measurement at 5.8 K, for instance, coincides with
its position as obtained from susceptibility vs temperature
measurements at a field of 8800 G.

Typical plots of χ1 vs T at applied fields of 6000, 2000,
and 200 Oe are displayed in Fig. 3. Figure 4 shows critical
currents as inferred from magnetization measurements as the
field is varied. The peak effect in magnetization measurements
is obtained through the broadening of the magnetization
hysteresis loops. The locus of the peak field vs temperature
H (T ) is independent of the technique used. In both cases a
sharp peak is observed.

Figure 2 contains the main result of this paper, exhibiting
points for the locus of peak positions (Hp,Tp) in H -T space,
as obtained from susceptibility measurements. A fit to the
freezing line for the multidomain glass state, Eq. (5), is shown
in the same plot, with the fitting parameters C = 104, m =
10.0, Tc = 7.09, and α = 1.33 (assuming XY exponents). The
dashed line is a fit to the case where m = 0, as is conventionally
assumed in Lindemann-parameter approaches to the melting
transition. Observe the almost perfect agreement, over three
decades or more in magnetic field.16 As we argue above,
the suppression of the pure melting line can be parametrized
by a single number, related to the suppression of the direct
correlation function in the vicinity of the ordering wave vector.
Thus, our approach to parameterizing this phase boundary,
apart from the agreement with experiment that we demonstrate,
is also economical in terms of being a single-parameter
fit.

IV. CONCLUSIONS

The peak-effect regime, defined as occurring between the
onset Tpl(H ) and the peak Tp(H ) of the peak effect, has
been investigated extensively, including recently in Ref. 45,
which provides evidence for an unusual memory of the driving
frequency in plastic flow. This observation is consistent with
the general belief that the peak-effect regime is dominated by
metastable states which can be remarkably sensitive to some
perturbations while remaining largely indifferent to others.17

Our work here deals with the outer limit of such states, the Tp

line, which marks the peak of the peak-effect measurement.
While complex, time-dependent relaxation and prominent
history dependence are seen within the peak-effect regime,

it is generally agreed that the state at larger temperatures, i.e.,
above the Tp line, can be well characterized as a disordered
fluid with some weak residual irreversibility but lacking any
significant history dependence. Thus, we would expect our
calculation of the phase boundary to be a robust one vis-à-vis
experiments. The question of why the peak-effect regime is
so anomalous is, of course, a profoundly interesting one.
Some evidence that driven states of interacting particles, in
the vicinity of a first-order structural transition, can exhibit a
hierarchy of metastable states, large noise enhancements, and
memory effects in specific regimes is provided in the context
of a simple model system in Ref. 46, which also addresses
the possible connection to the physics of the peak-effect
regime.

In conclusion, we stress the main features of our analysis
and our central result. We compute the suppression of the
melting phase boundary in the pure system by quenched
disorder. In contrast to approaches based on Lindemann-
parameter-based measures of the instability of the Bragg glass
phase, we determine the instability of the liquid to a static
density wave. This instability, within the density functional
formalism, arises as a consequence of correlations that build
up in the liquid phase; the method applied here parametrizes
the effects of disorder in reducing such correlations. In general,
it is to be expected that theoretical methods that study the
instability toward freezing of a fluid phase should be better
equipped to capture the physics of the MG-DL line than
methods that study the instability of a solid phase using a
Lindemann criterion or its variants.

Our central result, an expression for the disorder-suppressed
phase boundary in the H -T plane across which the disordered
liquid becomes unstable to a state that at least locally resembles
a crystal, provides a remarkably accurate fit to the experimental
data on the classic low-Tc superconductor 2H -NbSe2. The
physical picture we outline is consistent with a general link
between the loci of peak-effect phenomena, reflecting the onset
of complex dynamics of a driven vortex system and underlying
equilibrium order-disorder transitions as mirrored in the static
phase diagram of Fig. 1.13–15 More work to test the validity
of the theoretical prediction of Bdis

m (T ) against data from a
variety of superconducting materials as well as to investigate
the proposed universality of the phase diagram of Fig. 1 would
be very useful.
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