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In proximity to an s-wave superconductor, a one- or two-dimensional, electron- or hole-doped semiconductor
with a sizable spin-orbit coupling and a Zeeman splitting can support a topological superconducting (TS) state.
The semiconductor TS state has Majorana fermions as localized zero-energy excitations at order parameter defects
such as vortices and sample edges. Here we examine the effects of quenched disorder from the semiconductor
surface on the stability of the TS state in both electron- and hole-doped semiconductors. By considering the
interplay of broken time-reversal symmetry (due to Zeeman splitting) and disorder we derive an expression for
the disorder suppression of the superconducting quasiparticle gap in the TS state. We conclude that the effects of
disorder can be minimized by increasing the ratio of the spin-orbit energy with the Zeeman splitting. By giving
explicit numbers we show that a stable TS state is possible in both electron- and hole-doped semiconductors
for experimentally realistic values of parameters. We discuss possible suitable semiconductor materials which
should be the leading candidates for the Majorana search in solid state systems.
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I. INTRODUCTION

In a recent paper1 it has been shown that a 2D spin-orbit-
coupled electron-doped semiconductor, in proximity to a bulk
s-wave superconductor and an externally induced Zeeman
splitting, can support a topological superconducting phase
with Majorana fermion modes at vortex cores and sample
edges, i.e., at order parameter defect locations. It has also been
realized from dimensional reduction that the edge Majorana
modes in a sample with rectangular geometry (of width W )
turn into localized end Majorana modes in the corresponding
1D geometry (W → 0) and, further, in 1D the excitation gap
above the Majorana modes (minigap) should scale as the
induced superconducting gap � [thus avoiding the problem
of a tiny minigap, �2/εF ∼ 0.1 mK, as in 2D (px + ipy)-
wave superconductors]. The end Majorana modes in the 1D
geometry should be experimentally visible in local zero-bias
tunneling experiments. These results, numerically confirmed
soon thereafter,2 have appeared with analytical and numerical
details for both 1D and 2D semiconductors in Ref. 3. It has
also been pointed out4,5 that the required Zeeman splitting in
1D can be induced by a magnetic field parallel to the adjacent
superconductor (thus avoiding the problem of orbital effects6),
and the non-Abelian character of the end Majorana modes can
be probed by Josephson experiments. Very recently it has been
shown that the generic Luttinger Hamiltonian applicable to
the hole-doped nanowires also supports end Majorana modes7

in a manner similar to its electron-doped counterpart. The 1D
electron- or hole-doped wires in the TS state can be arranged in
a quasi-1D network geometry8 to test non-Abelian statistics8

and perform topological quantum computation (TQC)9,10 in
the Bravyi-Kitaev (BK) scheme.11 In principle, TQC in the BK
scheme is also possible with the 2D semiconductor TS states
using Majorana fermion interferometry12 analogous to that in
the ν = 5/2 fractional quantum Hall (FQH) states,13 chiral

p-wave superconductors,14 and TS states on the surface of
topological insulators.15,16 Efforts to realize a semiconductor
TS state with Majorana fermions in proximity to s-wave
superconductors are currently underway in many laborato-
ries worldwide, concentrating on both 1D semiconducting
nanowires and 2D semiconductor heterostructures in close
proximity to a regular bulk s-wave superconductor (e.g.,
Al, Nb).

In view of the ongoing experimental efforts on semicon-
ductor TS states, it is important to understand the effects of
disorder from the semiconductor surface on the realizability
of the TS state. (In recent works17 it has been established that
the disorder residing in the adjacent bulk superconductor has
negligible effect on the semiconductor TS state, and therefore
in this paper we will ignore the effects of disorder from the bulk
superconductor.) This is an especially important question18–20

because the TS states in semiconductors explicitly break
the time reversal (TR) symmetry and it is known that the
superconducting quasiparticle gap in such systems, unlike that
in TR-invariant superconductors,21 is suppressed by disorder.
Below we will measure the extent of TR breaking in the
semiconductor TS state (in both 1D and 2D) by the ratio
r = VZ/(αkF ), where VZ is the Zeeman energy in the TS
state and αkF gives the typical spin-orbit energy scale (with α

as the Rashba spin-orbit coupling constant). We will show that
the disorder suppression of the superconducting quasiparticle
gap from its clean value increases with increasing values of
r . Nonetheless, by giving explicit numbers we show that a
reasonable TS state quasiparticle gap can be experimentally
achievable in both electron- and hole-doped systems even in
the presence of realistic disorder. For electron-doped wires we
find that with a mobility of ∼100 000 cm2/V-s a measurable
robust TS state gap of 50–100 mK is achievable. We also find
that for hole-doped wires with a significantly larger spin-orbit
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energy ESO ∼ 30 meV,22,23 a larger gap of 0.8 K is achievable
for a mobility of ∼100 cm2/V-s.

In what follows, by �s we denote the quasiparticle gap (pair
potential) in the (proximity-inducing) bulk superconductor.
For the semiconductor (2D or 1D), α is the Rashba spin-orbit
coupling constant, m∗ is the effective mass (of electrons or
holes), VZ is the Zeeman splitting required for the TS state, �0

is the proximity-induced pair potential, � is the quasiparticle
gap at the Fermi surface, kF is the Fermi momentum (h̄ = e =
kB = 1), and 1/τsm is the effective intrinsic semiconductor
disorder scattering rate. In the semiconductor, the combination
of the Zeeman splitting and the spin-orbit coupling results in
a Fermi-surface quasiparticle gap �, which differs from the
proximity-induced pair potential �0, and thus we have three
distinct superconducting gaps �s , �, and �0 to consider in
this problem.

In Sec. II we first give our starting Hamiltonian for
the semiconductor which includes a proximity-induced pair
potential, an externally applied Zeeman splitting, and a
disorder potential. We then calculate the dependence of the
disordered TS state quasiparticle gap on the semiconductor
disorder scattering rate 1/τsm [Eq. (18)].

In Sec. III, we review the two systems that we will apply our
results to, namely, electron- and hole-doped semiconductors.
In Sec. IV, we use the results of Secs. II and III to give explicit
realistic values for the various parameters for a stable TS state
in electron-doped semiconductors.

This is followed by the case of hole-doped semiconductors,
where again using explicit values of the parameters we show
that a stable TS state is possible. We find that the TS state gap
in the hole-doped case can be much larger and more robust
to disorder effects than in its electron-doped counterpart due
to larger values of α and m∗. We conclude in Sec. V with a
summary and an outlook with a detailed qualitative discussion
on why the key problem of choosing the optimal materials
combination for realization of the TS state is experimentally
important.

II. BdG HAMILTONIAN WITH DISORDER

The BdG Hamiltonian in real space for spin-1/2 electrons
with spin-singlet pairing potential is written as

HBdG =
(

Hsm − εF,sm �0

�0 εF,sm − σyH
∗
smσy

)
, (1)

where �0 is a real, constant, s-wave spin-singlet pairing
potential in the semiconductor which is proximity induced
from an adjacent superconductor, Hsm ≡ Hsm(r,σ ; r ′σ ′) is
the noninteracting part of the semiconductor Hamiltonian with
disorder, and εF,sm is the chemical potential. Here σx,y,z are the
Pauli matrices. For a disordered semiconductor, with spatially
localized (i.e., short-ranged) spin-independent disorder,Hsm

can be written as

Hsm(r,σ ; r ′σ ′) = Hsm,clean(r,σ ; r ′σ ′) + V (r)δ(r − r ′)δσσ ′,

(2)

where V (r) is the local potential induced by disorder.
In the limit of weak disorder and weak pairing where both

V (r) and �0 are smaller than the interband spacing of the

spin-orbit bands in the semiconductor, it is convenient to work
in the basis of Bloch eigenstates |n,k〉 of Hsm,clean(rσ ; r ′σ ′).
In particular, in the case where a single band, say n, crosses the
Fermi surface (which is necessary for realizing a topological
superconducting state24,25), we can calculate the low-energy
spectrum of the Hamiltonian from an effective Hamiltonian
which is obtained by taking matrix elements of the BdG
Hamiltonian in Eq. (1) with respect to the Nambu spinors

|n,k〉Nambu =
( |n,k〉

	|n, −k〉
)

, (3)

where 	 = iσyK with K being the complex conjugation
operator. In this approximation, the translationally invariant
part of the BdG Hamiltonian has the form

H0(k,k′) =
(

εk − εF,sm �k

−�∗
−k −(ε−k − εF,sm)

)
δ(k − k′), (4)

where we have suppressed the band index n, since we are
restricted to a single band and the term Hsm,clean(rσ ; r ′σ ′) has
been replaced by its eigenvalue εk in the relevant band. In the
electron-doped case, εk includes effects on the dispersion of
the parameters VZ and α [see Eq. (21)] while in the hole-doped
case, it additionally contains information about the Luttinger
parameters [see Eq. (29)]. We note that, in spite of its apparent
complexity involving the superconducting proximity effect,
spin-orbit coupling, Zeeman splitting, and disorder, we are
still dealing here with an effective exactly solvable one-particle
quantum problem.

For weak superconducting pairing and disorder scattering,
the TS quasiparticle gap is determined by the energies and
wave functions near the Fermi energy εF,sm. In particular, we
will approximate the dispersion around the Fermi energy by
εk ≈ εF,sm + vF (|k| − kF ), where vF is the Fermi velocity.
Moreover, since the relevant states are near the Fermi wave
vector (i.e., |k| ≈ kF ), we will assume that matrix elements
such as 〈k|k1〉 depend only on the directions of the momenta k
and k1. To calculate the matrix elements of |k〉, we will assume
that the Bloch eigenstates have a simple decomposition as

〈r; σ |k〉 ≡ uk(r; σ ) = eik·ruk(σ ). (5)

This assumption is valid as long as all perturbations involve
momentum transfers that are smaller than a Bloch vector.
For electrons σ is simply the electron spin. When applied to
holes σ would represent the 4-component pseudospin degree
of freedom associated with the Luttinger model.7

In this paper we will consider both 1D and 2D systems,
and these cases will turn out to be closely related. In the
two-dimensional case, we will restrict ourselves to rotationally
symmetric systems with circularly symmetric Fermi surfaces
where k = (kF cos θk,kF sin θk). Using the azimuthal symme-
try of the Bloch Hamiltonian corresponding to Hsm,clean, we
can define a Hermitian matrix Rz, which generates z-axis
rotations so that

||k|,θk〉 = ei(Rz−λ)(θk)||k|,0〉, (6)

where λ is chosen so that ||k|,θk〉 is a single-valued function of
θk. Since Kramers’ theorem requires Rz to have half-integer
eigenvalues λ = 1/2. For one-dimensional systems, such as
electron- or hole-doped semiconducting nanowires, we will
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consider systems with inversion symmetric Fermi points ±kF .
In this case, the relevant states at the Fermi level are |±kF 〉.
The 2D systems with Rashba spin-orbit coupling will turn out
to have results that are solely dependent on the wave functions
only at |kF ,θk = 0,π〉, which are identical in form to the states
|±kF 〉 relevant for the 1D case. Therefore, these two cases are
closely related and for results such as the quasiparticle gap in
Eqs. (17) and (18), we will only state the result for the 1D case
and imply a similar result in 2D, which can be derived easily.

The superconducting pairing potential �k in the projected
Hamiltonian in Eq. (4) is the matrix element of �0 in Eq. (1)
between states near the Fermi level, which is written as

�k = �0〈k|	|−k〉. (7)

Using Eq. (6) in the rotationally symmetric 2D case, �k

simplifies to

�k = �0〈k|	|−k〉 = �0〈0|e−i(Rz−λ)θk	ei(Rz−λ)θk |π〉
= e2iλθk�0〈0|	|π〉 = �0〈0|	|π〉eiθk , (8)

where θk is the angle of the wave vector k in the kx-ky plane.
Here we have assumed that Rz, which transforms kF → −kF ,
is odd under time-reversal symmetry. The TS quasiparticle gap
for the Hamiltonian Eq. (4), in the absence of disorder [i.e.,
V (r) = 0], is given by

� = |�k|. (9)

The disorder scattering, induced by the potential V (r) in
Eq. (2), can be projected into states near the Fermi energy in a
similar way as

V (k,k′) =
(

v(k,k′) 0

0 −v∗(−k, −k′)

)
, (10)

where v(k,k′) = 〈k|V (r)|k′〉. For spatially uncorrelated white
noise disorder [i.e., 〈V (r)V (r ′)〉 = v2δ(r − r ′)], and using the
simple form for the Bloch functions Eq. (5), the disorder
propagator 〈v(k1,k2)v(v3,k4)〉 can be written as

〈v(k1,k2)v(v3,k4)〉 = v2〈k1|k2〉〈k3|k4〉. (11)

The disorder strength v2 is related to the mean-scattering time
(i.e., momentum relaxation time)

τsm = 1

πv2N (0)
, (12)

which in turn can be determined experimentally from mobility
measurements using the equation

μsm ≈ eτsm

m∗ , (13)

where m∗ is the transport effective mass and N (0) is the density
of states at the Fermi surface. Note that we have dropped a
matrix-element factor in determining the scattering time in
Eq. (12). This is partly to account for multiband effects that
we are not directly accounting for in this paper. Since we are
using mobility only as a qualitative estimator of the scattering,
the combination of Eqs. (12) and (13) provide a good estimate
of the disorder scattering v2. Although Eqs. (12) and (13)
strictly apply only in the case of white noise disorder arising
from short-ranged impurity scattering, we assume that they
remain valid for long-range disorder as well in the presence

of random charged impurity scattering since carrier screening
of the impurity potential should render the Coulomb disorder
into an effective short-range disorder. In addition, our use of
τsm to operationally characterize the semiconductor disorder
should be qualitatively valid for any kind of impurity potential.
While we have made a single Fermi surface approximation in
Eq. (4), this is more for the sake of simplicity. In the next
paragraph, we will comment on how our results generalize to
the multiple Fermi surface case, as for example in the case of
multiband occupancy in the semiconductor nanowire where
the Fermi level could lie in some high subband rather than the
ground 1D subband.17

The topological superconducting quasiparticle gap in the
presence of a disorder potential may be determined by
calculating the disorder-averaged Green’s function within
the Born approximation.26 The disorder-averaged Green’s
function can be calculated from the self-energy  using the
Dyson equation

G−1(k,ω) = G−1
0 (k,ω) − (k,ω), (14)

where the Green’s function for the clean system is given by

G−1
0 (k,ω) = [ω − H0(k)]

= ω − (εk − εF,sm)τz − �kτ+ − �∗
kτ−. (15)

The self-energy (k,ω) is approximated within the self-
consistent Born approximation26 as

αβ(k,k′) =
∫

dk1〈Vαλ(k,k1)Vδβ(k1,k)〉Gλδ(k1)δ(k − k′),

(16)

where 〈Vαλ(k,k1)Vδβ(k1,k)〉 is the disorder propagator from
Eqs. (10) and (11), α,β,λ,δ are Nambu indices, and for brevity
of notation we have dropped the ω dependence of  and
G in this equation. The self-energy within the first-order
Born approximation is obtained by replacing G by G0 in
Eq. (16). The disorder calculation for the case of multiple
Fermi-surfaces follows in an analogous way. Since momentum
is a good quantum number in Eq. (14), Eq. (14) does not couple
the multiple Fermi surfaces and therefore can be solved for
each Fermi surface separately. The self-energy term Eq. (16) in
principle has contributions from all Fermi surfaces. However,
it is dominated by the contribution from the Fermi surface with
the smallest gap. Therefore, our calculation, which focuses on
the Fermi surface with the smallest gap, is expected to yield
qualitatively correct results.

Solving the Dyson equations in the first-order Born approx-
imation in the 1D and 2D cases, as discussed in Appendix A,
we obtain the disorder-averaged TS quasiparticle gap

Eg = �

[
1 − 1

21/3
(πτsm�)−2/3|〈kF | −kF 〉|4/3

]
. (17)

Note that the disorder renormalization of the gap vanishes
in the time-reversal symmetric limit since in that case |k〉
and |−k〉 are Kramers pairs and 〈kF | −kF 〉 = 0. The result
Eq. (17) gives the reduction in the quasiparticle gap due to
weak disorder within the first-order Born approximation.

The Dyson equations, Eqs. (14) and (16), can in fact
be solved for arbitrary disorder strengths within the self-
consistent Born approximation as explained in Appendix B.
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The resulting TS state quasiparticle gap in the presence of
disorder is found to be

Eg = �
√

1 − 3x + 3x2 − 3x3, (18)

where x = (πτsm�)−2/3|〈kF | −kF 〉|4/3. Note that the gap Eg

within the first-order Born approximation in Eq. (17) is
not simply obtained by taking the limit of small x in the
self-consistent Born result Eq. (18). This is because the Born
approximation is a series expansion in terms of the Green’s
function, which has a pole at ω ∼ Eg , so that the expansion
parameter in the series expansion diverges (at any value of x)
at the relevant point and one cannot expect the lowest order
approximation to match the self-consistent result. Despite
this technical point, the first-order and self-consistent Born
approximation results, Eqs. (17) and (18), are qualitatively
similar at small values of the parameter x.

The above equation is valid as long as the expression under
the square root is positive. In fact, the quasiparticle gap Eg

closes for sufficiently strong disorder (or sufficiently small
�τsm) so that, by solving for Eg = 0 in Eq. (18), the disorder
scattering time is found to satisfy the lower bound

τsm >
3.4

π
h̄�−1|〈kF | −kF 〉|2, (19)

above which the TS state quasiparticle gap Eg > 0. In this
paper, we will also assume that τsm > 1/ε̃F,sm (ε̃F,sm is the
Fermi energy with respect to the bottom of the topmost filled
band) need not be strictly enforced because of the existence of
multiple bands in the actual experimental system, which will
evade the localization problem.

From Eqs. (13) and (19), we find that the TS state gap
induced on the Fermi surface survives as long as the mobility
of the system exceeds the threshold

μsm > 3.4
eh̄

πm∗�
|〈kF | −kF 〉|2. (20)

This suggests that the mobility threshold can be decreased
by decreasing the Kramers pair overlap |〈kF | −kF 〉|, which,
as we show in Eq. (27), can be achieved by reducing the
Zeeman potential. We will apply all these results to electron-
and hole-doped semiconductors in the following two sections.

III. PROXIMITY-COUPLED ELECTRON- AND
HOLE-DOPED SEMICONDUCTORS

In this section we review the two recently proposed systems,
electron- and hole-doped semiconductors, to which we will
apply our results derived in the previous section.

A. Electron-doped semiconductors

For 2D electron-doped semiconductors with Rashba and
Zeeman couplings, Hsm,clean in Eq. (2) can be written as

Hsm,clean(k) = k2

2m∗ + α(k × σ ) · ẑ + VZσy − εF,sm, (21)

where m∗ is the effective mass of the electrons, α is the Rashba
spin-orbit coupling constant, and VZ is the Zeeman splitting.

For a one-dimensional nanowire along the y axis, the above
Hamiltonian reduces to

Hsm,clean(k) = k2

2m∗ + αkσx + VZσy − εF,sm. (22)

For a chemical potential |εF,sm| < VZ , the above Rashba
spin-orbit-coupled Hamiltonian has a single band at the Fermi
level with an eigenstate described by the spinor

|kF 〉 = 1√
2
[
V 2

Z + α2k2
F + VZ

√
V 2

Z + α2k2
F

]

×
(

αkF

−
√

V 2
Z + α2k2

F − VZ

)
. (23)

Now, using Eq. (9), the superconducting quasiparticle gap in
the clean electron-doped case is given by

� ∼ αkF√
V 2

Z + α2k2
F

�0. (24)

The proximity-induced pairing potential in the semiconductor,
�0, can be related to the pairing potential in the bulk
superconductor �s by the relation27

�0 = �s

λ

λ + �s

, (25)

where

λ = π |t |2ρSC(EF ). (26)

Here t represents the tunneling matrix element between the
semiconductor and the superconductor, ρSC(EF ) is the normal
state density of states of the superconductor, and λ gives the
rate at which electrons from the semiconductor tunnel into
the superconductor.27 We note that for weak tunneling �0 ∼
λ, and for strong tunneling �0 ∼ �s . The superconducting
proximity effect in electron-doped InAs/superconducting Al
interfaces has been already been observed to lead to �0 ∼
�s ∼ 2 K,28 so that one can infer that the transparency
parameter λ � �s . The Kramer-pair overlap 〈kF | −kF 〉, which
determines the effect of disorder scattering via Eq. (18), is then
given by

〈kF | −kF 〉 = VZ√
V 2

Z + α2k2
F

, (27)

which in the limit VZ/αkF 
 1 becomes 〈kF | −kF 〉 ∼
VZ/αkF .

B. Hole-doped semiconductors

Recently, it has also been proposed7 that hole-doped
nanowires, because of the possibly stronger spin-orbit
coupling22,23 and larger effective mass of holes, might be
a better candidate for creating topological superconductors
and Majorana fermions. The hole bands of a group III-V
semiconductor such as InAs or GaAs are composed of
p orbitals, which have orbital angular momentum L = 1.
Because of strong spin-orbit coupling and cubic symmetry
of these semiconductors, the description of the states near the
top of the valence band at k = 0 must be written in terms of
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spin-3/2 total angular momentum matrices J = L + S. The
total spin-1/2 manifold of states forms a split-off band, which
is separated by a large energy and therefore can be ignored.
The resulting three-dimensional Hamiltonian is known as the
four-band Luttinger model,29 which is written as

H3D = 1

2m0

[(
λ1 + 5

4
λ2

)
p2 − 2λ2

∑
α=x,y,z

p2
αJ 2

α

]

− λ3
1

2m0

∑
α �=β=x,y,z

pαpβJαJβ, (28)

where p = −i∇ and γ1,2,3 are effective Luttinger parameters.
The effective mass m0 for the holes is negative so that the
curvature of the valence bands are inverted with respect to
the conduction bands. We will consider a nanowire formed
by confining the bulk hole-doped semiconductor confined
strongly along the x and z directions, so that the confinement
energy scale ∼1/2m0L

2
y is large compared to all energy scales

we will be interested in. Therefore one can project the three-
dimensional Hamiltonian H3D into the lowest confinement
band of the nanowire by replacing px,z → 〈px,z〉 = 0, p2

x,z →
〈p2

x,z〉 = π2/L2
z and adding a Rashba spin-orbit coupling

proportional to α23,31,32 and a Zeeman term proportional to
VZ to account for electric-field-induced inversion symmetry
breaking and magnetic-field-induced time-reversal symmetry
breaking, respectively. The resulting Hamiltonian for a hole-
doped nanowire along y with a Rashba coupling (for the
lengths in the transverse directions Lz = Lx) is given by7

Hsm,clean(k) = −
(

λ1

2
+ 5λ2

4
− λ2J

2
y

)
k2 − αkJx

+ 2β2√
3

(
15

4
− J 2

y

)
+ VZJy − εF,sm, (29)

where β2 = π2λ2

√
3/2L2

z . The Hamiltonian at k = 0 com-
mutes with J 2

y . Moreover, the states with J 2
y = 1/4 form

the highest energy states in the valence band. These states
also have the lower effective mass of the two manifolds
J 2

y = 1/4, 9/4 of states. Note that this is opposite to the
two-dimensional case, where the heavy hole is closer to the
band edge. Thus the light-hole states with Jy = ±1/2 form
the set of states closest to the band edge and we can restrict to
this two-dimensional subspace Jy = ±1/2, where we identify
Jy = σy = ±1/2 as a pseudospin variable. In this subspace,
Jx ∼ σx and Jz ∼ σz, so that the Hamiltonian for the two upper
bands effectively becomes

Hsm,clean(k) = −
(

λ1

2
+ λ2

)
k2 − αkσx + VZσy + εF,sm.

(30)

The hole Hamiltonian Eq. (30), in the specific isotropic limit
we consider, is identical (up to sign) to the one-dimensional
electron-doped Rashba Hamiltonian in Eq. (22) and therefore
one can expect most of the physics discussed in the previous
subsection for the electron-doped nanowire in this limit to
translate to the hole-doped case, except for the different
effective mass and Rashba spin-orbit coupling. While the
band structure of the hole-doped wire is quite similar to the
electron-doped case, it is not obvious from this discussion

that the s-wave proximity effect has the same form in the
σ spin space. In principle, the proximity-induced effective
superconducting pairing potential �0 at an interface between
the semiconductor and the superconductor can be calculated
by projecting the anomalous self-energy SC induced by
proximity to the superconductor,27 into the low-energy space
of states |σy = ±1/2〉. Since these states form a Kramers
pair, one can see that time-reversal symmetry only allows
a conventional spin-singlet pairing in the σy = ±1/2 space.
Furthermore, the subspace of states in the |σy = ±1/2〉 basis
may be expanded in terms of the original spin eigenstates
|mS = ± 1

2 〉 and |Lx,y,z = 0〉 (which are related to the orbital
angular momentum eigenstates |mL = 0, ±1〉 by a unitary
transformation) as∣∣∣∣σy = +1

2

〉
≡

∣∣∣∣Jy = 1

2

〉
= 1√

3

[∣∣∣∣Lx = 0,Sy = −1

2

〉

+ i

∣∣∣∣Lz = 0,Sy = −1

2

〉
−

∣∣∣∣Ly = 0,Sy = 1

2

〉]
,

(31)∣∣∣∣σy = −1

2

〉
≡

∣∣∣∣Jy = −1

2

〉

= 1√
3

[∣∣∣∣Lx = 0,Sy = 1

2

〉
− i

∣∣∣∣Lz = 0,Sy = 1

2

〉

−
∣∣∣∣Ly = 0,Sy = −1

2

〉]
. (32)

To calculate �0, which is related to the matrix element
〈σy = +1|SC |σy = −1〉 of a spatially smoothly varying
(on the orbital scale) proximity-induced self-energy SC ,
one can ignore the matrix elements involving the orbital
|Lx = 0〉,|Lz = 0〉 for SC interfaces normal to the ẑ axis.
This leads to the effective barrier transparency parameter λ

in Eq. (25) to be reduced by a factor of 3. The corresponding
pairing potential �0 from Eq. (25) is not significantly affected
and remains the same between electrons and holes provided a
moderately transparent barrier with λ > �s can be achieved.
Therefore, more generally, one can expect a proximity effect
where the transparency factor of the Sm/SC interface, λ, is
suppressed by at most a factor of order 1, with a value for the
pairing potential �0 ∼ �s , even for holes.

To summarize, while the hole-doped nanowires have
fundamentally different microscopic Hamiltonians consisting
of a triplet of orbitals with p symmetry, for nanowires it is
possible to work in the limit of symmetric confinement along
the two directions transverse to the wire, where we have
shown that the effective Hamiltonian and proximity effect
are identical in form to the electron-doped wire case. Of
course, the parameters in the Hamiltonian are expected to be
quite different and in particular the effective mass and Rashba
spin-orbit coupling are expected to be much larger.22,23 At the
same time, the corresponding mobility for the semiconductors
that can be achieved are found to be significantly lower,36

indicating much stronger disorder for hole-doped systems.
Thus, the hole systems have the advantage (disadvantage)
of stronger SO coupling (larger disorder), and whether the
net prospect for realizing the non-Abelian Majorana mode
is greater in hole-based systems (than in the electron-based
systems) or not will depend entirely on which of these
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two effects wins over in realistic samples. Another possible
advantage of the hole systems is the higher value of the Landé
g factor which necessitates weaker magnetic field values in
achieving the condition for topological superconductivity. One
should, however, realize that very little actual experimental
work exists in hole-based semiconductor nanowires. However,
it is encouraging that the superconducting proximity effects
in both electron- and hole-based semiconductors have been
observed in experiments.28,30 Therefore, we do believe that
the hole-based systems (e.g., InAs, InSb, SiGe, and perhaps
even GaAs) should be included in the experimental search
for the Majorana mode in semiconductor-superconductor
heterostructures.

IV. TS STATE QUASIPARTICLE GAP IN THE
PRESENCE OF DISORDER

The clean-limit quasiparticle gap � in the topological
superconducting state can be obtained for the Rashba spin-
orbit-coupled Hamiltonian Eq. (21) using Eqs. (24) and (25)
as

� = λ�s

λ + �s

αkF√
V 2

Z + α2k2
F

. (33)

This expression suggests that to obtain a large gap, �, in the
semiconductor one should restrict oneself to the limit where
αkF � VZ . Moreover, to remain in the requisite odd subband
(confinement bands) limit it is also necessary to choose a
chemical potential εF,sm in the gap (at k = 0) induced by the
Zeeman splitting VZ .3 This restricts kF ≈ m∗α

2 in the highest
filled subband. In this limit one can approximate αkF ≈ ESO =
2m∗α2, which we call the spin-orbit energy ESO. This spin-
orbit energy ESO is a crucial energy scale in the problem which
is to be compared with the other independent energy scales
such as VZ , �s , and 1/τsm. Therefore, from Eq. (30), to obtain
a large quasiparticle gap at the Fermi surface the system must
be restricted to the regime

VZ � ES0. (34)

The semiconductor system is in the topological state if and
only if the Pfaffian invariant of the relevant BdG Hamiltonian
is negative,33 which is equivalent to the topological condition

Ṽ 2
Z > �̃2

0 + ε̃2
F,sm, (35)

where ṼZ = VZ/(1 + λ/�s), �̃0 = �0, and ε̃F,sm =
εF,sm/(1 + λ/�s) are the renormalized parameters in the
effective Hamiltonian of the proximity-coupled semiconductor
after the superconductor has been integrated out.3,27 Thus,
using Eqs. (25) and (35), the topological condition in terms of
the bare parameters can be written as

V 2
Z > λ2 + ε2

F,sm. (36)

Equations (36) and (34), together with Eq. (18) [or Eq. (20)],
define the optimal constraints on the material considerations
for the realization of the TS phase in the semiconductor.

In what follows, we assume that the system is reason-
ably deep in the topological superconducting phase (i.e.,
VZ > 2λ,2εF,sm) so the smallest gap occurs near the Fermi
wave vector |k| ∼ kF instead of near |k| ∼ 0.3 Therefore in

attempting to optimize the quasiparticle gap one notices from
Eqs. (34) and (36) a hierarchy of energy scales

ESO > VZ > 2λ > 2� > 2Eg. (37)

The first two inequalities from the left are constraints between
the external parameters ESO,VZ , and λ, out of which VZ

and λ must be tuned to satisfy the above inequality. The
other external parameter is the disorder scattering rate in the
semiconductor, τ−1

sm , which must be reduced to satisfy � >

(πτsm)−1
√

1 + E2
SO/V 2

Z . The two inequalities on the right-hand
side of Eq. (37) are between the derived quantities � and
Eg , which are completely determined once ESO,VZ,λ,τsm are
given, so that the conditions 2λ > 2� and 2� > 2Eg follow
as direct consequences of Eqs. (33) and (18), respectively.
Therefore, the disordered TS state quasiparticle gap, Eg , is
constrained by the spin-orbit energy scale ESO, which must be
as large as possible in the problem.

In the presence of disorder, one can use Eq. (18) together
with Eq. (27) to show that for VZ � ESO, the disorder-
renormalized TS state quasiparticle gap is given by

Eg = �
√

1 − 3x + 3x2 − 3x3, (38)

where x = (πτsm�)−2/3(VZ/
√
V 2

Z + E2
SO)4/3. The mobility

threshold, which is the minimum mobility required to realize a
nonzero TS state gap Eg in the presence of disorder, is obtained
by using Eqs. (20) and (27) to be

μsm > 6.8
eh̄VZ(�s + VZ/2)

πm∗�sESO

√
V 2

Z + E2
SO

, (39)

which vanishes in the limit VZ → 0. Note that we have
reintroduced the h̄ = 1 to make the expression dimensionally
consistent. Since μsm increases with �, which in turn increases
with λ, for deriving Eq. (39), we have assumed the λ is chosen
to reach its maximum value λ = VZ/2, above which the system
can no longer be considered to be deep in the topological phase
[see Eq. (37)]. In fact, we will assume that VZ has been tuned
to be VZ = 2λ for the rest of the paper.

Of course, from Eq. (36), there is a threshold value for VZ

only above which the TS state itself is realized. Therefore, VZ

cannot be taken as zero in Eq. (38) to maximize the disordered
TS state gap Eg . In Eq. (38), to deduce the optimum Eg ,
we use the right-hand side of Eq. (33) to substitute for �

and, for a robust topological state, we take λ = VZ/2. The
right-hand side of Eq. (38) is then a function of VZ , τsm

(or μsm ∼ eτsm/m∗), �s , and ESO. Among these �s (the
gap in the adjacent superconductor) and ESO (the spin-orbit
coupling energy in the semiconductor) are known experimental
quantities. Therefore Eq. (38) defines a formula for Eg in terms
of VZ parametrically related by μsm. For given values of μsm,
we maximize Eg with respect to VZ and plot these maximized
values of Eg as a function of μsm for electron- and hole-doped
semiconductors in Figs. 1 and 2, respectively. These plots are
the central results of this paper.

From Fig. 1 it is clear that for electron-doped wires with
a mobility of 100 000 cm2/V-s,35 which has been achieved
for wires with a diameter 60 nm, a measurable robust TS
state gap of 50–100 mK is achievable. As is also clear
from Fig. 2, for hole-doped wires with a significantly larger

064512-6



EXPERIMENTAL AND MATERIALS CONSIDERATIONS FOR . . . PHYSICAL REVIEW B 85, 064512 (2012)

FIG. 1. (Color online) (a) Calculated disordered TS state quasi-
particle gap Eg as a function of semiconductor mobility μsm for
electron-doped wires with ESO = 2m∗α2 = 2 K (Ref. 34) and ESO =
4 K allowing for future electric-field-enhanced spin-orbit coupling
(Ref. 37). (b) The values of VZ = 2λ realizing Eg in panel (a) plotted
with μsm. The gaps in the adjacent bulk superconductor are taken
to be �s = 2 K corresponding to Al and �s = 4 K corresponding
to Nb.

spin-orbit energy ESO ∼ 30 meV, a larger gap of 0.8 K is
achievable for a mobility of 100 cm2/V-s.36 It should be noted
that in general the holes have much lower mobilities than
electrons in the same semiconductor material even after taking
into account their large effective mass difference.

V. SUMMARY AND CONCLUSION

In this paper we have addressed the effects of disorder from
the semiconductor surface on the stability of the topological
superconducting state on 1D and 2D electron- and hole-
doped semiconductors proximity coupled to bulk 3D s-wave
superconductors. In recent works17 it has been shown that
the effects of disorder from the adjacent bulk superconductor
on the TS state is minimal, so we have ignored this effect.
However, since the TS state in the semiconductor explicitly
breaks the time-reversal symmetry (due to an external Zeeman

FIG. 2. (Color online) (a) Calculated disordered TS state quasi-
particle gap Eg as a function of semiconductor mobility μsm for
hole-doped wires with ESO = 300 K (Refs. 22 and 23). (b) The values
of VZ = 2λ realizing Eg in panel (a) plotted with μsm. The gaps in the
adjacent bulk superconductor are taken to be �s = 2 K corresponding
to Al and �s = 4 K corresponding to Nb.

splitting), even the disorder from the semiconductor surface
itself has an effect on the stability of the TS state and
will close the BCS-like superconducting quasiparticle gap at
the semiconductor Fermi surface for low enough mobility.
We have shown that the disordered TS state quasiparticle
gap Eg is suppressed with increasing values of the ratio r

between the Zeeman splitting VZ and the spin-orbit energy
scale ESO = 2m∗α2, r = VZ/ESO. The dimensionless quantity
r measures the extent of the TR symmetry breaking in
the semiconductor to produce the TS state and Majorana
fermions.

Our main results are plotted in Figs. 1 and 2.
They display the achievable disorder-renormalized TS
state gap Eg as a function of the semiconductor mo-
bility μsm in both electron- and hole-doped semicon-
ductor wires. From Fig. 1 we find that for electron-
doped wires with a mobility of 100 000 cm2/V-s,35

which has been achieved for wires with a diameter 60 nm,
a measurable robust TS state gap of 50–100 mK is achievable.
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From Fig. 2 we find that for hole-doped wires with a
significantly larger spin-orbit energy ESO ∼ 30 meV, a larger
gap of 0.8 K is achievable for a mobility of 100 cm2/

V-s.36 Thus, despite the fact that the semiconductor TS state
breaks the time-reversal symmetry, realizing a robust TS state
is possible in both electron- and hole-doped systems even
in the presence of realistic disorder on the surface of the
semiconductor.

Before concluding, it may be useful to provide a qualitative
discussion and a general perspective on the issue of optimal
materials for the realization of the predicted TS phase and
Majorana modes in semiconductor-superconductor sandwich
structures. The first point to emphasize is that there are far too
many independent physical parameters entering the problem
for theory to be particularly useful in this context. At least
six independent material parameters play a role here: α, kF ,
VZ , εF,sm, �s , t [which determines λ in Eq. (26)]. In addition,
disorder, which plays a crucial role by the nonexistence of
Anderson’s theorem in the time-reversal invariance broken
(i.e., VZ �= 0) situation, is itself characterized by several
independent physical mechanisms: disorder in the adjacent
bulk superconductor, long-ranged disorder in the semicon-
ductor, disorder-induced fluctuations in t , interface disorder,
puddles, and so on. A physical system characterized by such
a large (>10) set of independent parameters, all of which
are important in determining the fate of the TS state, is not
an easy optimization problem to deal with theoretically. In
particular, it may turn out to be more practical to simply carry
out experiments on available systems (e.g., InAs or InSb on Al
or Nb) than to trust precise theoretical quantitative predictions
with respect to the optimal materials choice.

With these important caveats in mind, we can, nonetheless,
make some general qualitative statements, quite apart from
the more precise quantitative statements made in the main
body of this work. In the clean case, where disorder is not an
issue (i.e., extreme high-mobility semiconductor systems), it
is obvious that the semiconductor spin-orbit coupling should
be as large as possible. This continues to be the case even in
the presence of disorder, making ESO(≈αkF ) to be the key
physical parameter, which should be made as large as possible
(including enhancement by external gates if feasible37) with
no constraints. Similarly, disorder is always harmful to the TS
state, and therefore 1/τsm should be made as small as possible
by working with the highest mobility materials. Although
having a spin-orbit coupling strength as large as possible is
obviously helpful to the realization of the TS phase, this may
have the detrimental effect of enhancing impurity-induced
scattering between the spin-split bands, thus reducing the
mobility,38 and therefore some optimization may be necessary
even with respect to spin-orbit coupling and mobility in order
to satisfy the general requirement of having both the highest
possible spin-orbit coupling and mobility.

The same is to a limited degree true of the superconducting
gap �s (or equivalently Tc) in the bulk supercnoductor, but
this advantage is considerably nullified by the fact that the
proximity effect is determined primarily by the parameter λ

[see Eq. (25)], and this parameter should be made as large as
possible, even at the cost of having a lower �s in the bulk
superconductor (e.g., Al may be preferable over Nb if λAl >

λNb). We note that having an arbitrarily large proximity gap

�0 in the semiconductor may not necessarily help unless ESO

can also be simultaneously increased (e.g., by an external gate)
since ESO > VZ > 2λ > 2� > 2Eg is a necessary condition
for the existence of the TS phase. Similarly, having a very small
VZ does not help since VZ > 2� determines the condition for
a robust topological phase, and having a small VZ necessarily
requires having a much smaller �, which severely restricts
the temperature range where the experiments investigating the
topological phase can occur since T < � is necessary. For the
same reason a small ESO, e.g., GaAs, with correspondingly
smaller VZ and � would not work either since the operational
temperature would then be too small.

As for disorder, our discussion in this work has considered
the semiconductor disorder to be short ranged, which is
consistent with interface disorder (or roughness) scattering
which is known to be important in semiconductor nanowires.
Carrier screening should render long-range Coulomb disorder
arising from random charged impurities in the semiconductor
into effective short-ranged disorder, making our model of
rather general validity. The fact that we model disorder through
an effective relaxation time τsm defined through the measured
carrier mobility makes the model robust with respect to
different types of disorder in the semiconductor, but we note
that for long-ranged Coulomb disorder τ−1

sm is really only a
lower bound on the effective disorder. (Disorder arising from
impurities in the superconductor does not affect the TS phase
at all; see Ref. 17 for details.)

A simple dimensional argument, which has been authen-
ticated by a renormalization group calculation,39 suggests
�τsm > 1, i.e., τ−1

sm < �, as the bound on the effective
scattering rate for the topological gap � to survive disorder
in a spinless chiral p-wave superconductor characterized
only by these two parameters (unlike our problem which is
characterized by many physical parameters). We note that
our microscopic Born approximation calculation [Eq. (19)] is
consistent with this case deep in the TS phase for VZ ∼ ESO.
For ESO  VZ , the effect of disorder scattering is suppressed
so that the topological gap survives disorder for a broader
range of parameters �τsm > (VZ/ESO)2. Unfortunately for the
semiconductor-superconductor sandwich structures of interest
to us, �τsm > (VZ/ESO)2 only provides a necessary condition
since � cannot be made arbitrarily large unless ESO, i.e., the
spin-orbit coupling, is itself arbitrarily large. The sufficient
conditions for the gapped topological state to exist in the
semiconductor sandwich structures are given by Eqs. (33)
and (34), which require “large” VZ making it necessary to
have even larger ESO. Thus, the existence of the TS phase
in the realistic semiconductor sandwich structures depends
on the seamless and multiparameter materials optimization of
spin-orbit coupling, spin splitting, superconducting gap, and
disorder in an interdependent manner.

We conclude with the observation that the single most im-
portant ingredient for the TS state to emerge in semiconductor-
superconductor sandwich structures is to have a large spin-
orbit coupling and high mobility. For electrons both InAs
and InSb satisfy the necessary requirements if the mobility
can be enhanced around 105 cm2/V-s. For holes the spin
orbit coupling being very large, much lower mobilities
(∼102 cm2/V-s) should work. These considerations imply that
holes should be looked into experimentally for the realization

064512-8



EXPERIMENTAL AND MATERIALS CONSIDERATIONS FOR . . . PHYSICAL REVIEW B 85, 064512 (2012)

of the TS phase. In addition, having several (odd number
of) subbands40 occupied in the nanowire should help since it
reduces disorder through screening and enhances the effective
values of ESO. We emphasize that the existence of the TS state
depends delicately on the competition among superconducting
proximity effect, spin-orbit coupling, spin splitting, and
chemical potential. (Disorder scattering always suppresses the
TS state.) As such, any materials optimization must carefully
choose among these physical parameters while at the same
time maintaining the highest possible mobility (i.e., smallest
possible disorder scattering). The experimental search for the
Majorana mode should thus concentrate on semiconductor
systems of the highest mobility and the strongest SO coupling
using the appropriate superconductors which produce the
best quality interface between the superconductor and the
semiconductor.
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APPENDIX A: DYSON EQUATIONS AND
DISORDER-AVERAGED GREEN’s FUNCTION

In this Appendix, we start by first simplifying the Dyson
equations Eqs. (14) and (16) and then solve the equations for
the first-order Born approximation case. The self-consistent
Born approximation is solved in Appendix B. Substituting
Eqs. (10) and (11) into Eq. (16), the self-energy  is written
as

(k) = v2
∫

dk1

[
|〈k|k1〉|2 (1 + τz)

2
G(k1)

(1 + τz)

2

+ |〈−k|−k1〉|2 (1 − τz)

2
G(k1)

(1 − τz)

2

−〈k|k1〉〈−k|−k1〉 (1 + τz)

2
G(k1)

(1 − τz)

2

−〈k|k1〉∗〈−k|−k1〉∗ (1 − τz)

2
G(k1)

(1 + τz)

2

]
.

(A1)

In principle, the disorder-averaged scattering potential
〈Vαλ(k,k1)Vδβ(k1,k)〉 involves integrals of four Bloch
eigenstates 〈r,σ |k〉 = uk(r; σ ) of the form v2

∫
d r∑

σ,σ ′ u
∗
k′ (r; σ )uk(r; σ )u∗

k(r; σ ′)uk′(r; σ ′) where the sum over
σ implies that the disorder is spatially local spin-independent
disorder. Having several subbands occupied in the 1D
nanowire, as has recently been proposed,17,40 should help
the situation considerably, both by expanding the regime of
stability of the TS phase and by screening out the disorder due
to higher carrier density. Substituting the wave function into
the matrix elements, we get

〈|k|,θk||k′|,θk′ 〉 ≈ 〈kF ,θk|kF ,θk′ 〉
= 〈0|ei(Rz−λ)(θk−θk′ )|0〉
= f (θk − θk′ ). (A2)

Substituting the matrix elements into the disorder-induced self-
energy we find that

(k,ω) = v2
∫

dk1

[
|f (θk − θk1 )|2 [G(k1) + τzG(k1)τz]

2

− f (θk − θk1 )2 (1 + τz)

2
G(k1)

(1 − τz)

2

− f (θk − θk1 )∗2 (1 − τz)

2
G(k1)

(1 + τz)

2

]
. (A3)

To solve Dyson’s equations, it is convenient to define the
functions a0,z,+,−(k,ω) by the relation

G−1(k,ω) = a0(k,ω) + az(k,ω)τz

+ a+(k,ω)τ+ + a−(k,ω)τ−. (A4)

Substituting this into the Dyson equations [Eq. (14)] together
with the expression for the self-energy [Eq. (A3)] in the lowest
order Born approximation we get

a0(k,ω) = ω − f0(πτsm)−1
∫

dε′ ω

ω2 − (ε′ − εF,sm)2 − |�|2 ,

az(k,ω) = (ε − εF,sm) + f0(πτsm)−1

×
∫

dε′ (ε′ − εF,sm)

ω2 − (ε′ − εF,sm)2 − |�|2 , (A5)

a+(k,ω) = �eiθk − f1(πτsm)−1

×
∫

dε′ �eiθk

ω2 − (ε′ − εF,sm)2 − |�|2 ,

where f0 = ∫
dθ
2π

|f (θ )|2, f1 = ∫
dθ
2π

f (θ )2eiθ . The integrals in
Eq. (A6) can be written analytically as

a0 = ω + f0(πτsm)−1ζω, (A6)

a+ = [� + f1(πτsm)−1ζ�]eiθk , (A7)

where

ζ =
∫

dε
1

ε2 + �2 − ω2
= π√

�2 − ω2
, (A8)

and az(k,ω) = (εk − εF,sm) remains unrenormalized.
The lowest-frequency pole in the disorder-averaged Green’s

function G(k,ω) given by Eq. (A4), which corresponds to
the quasiparticle gap, occurs when εk − εF,sm = az = 0 and
a0 = |a+|. The disorder-averaged quasiparticle gap ω can then
be obtained by solving

ω

[
1 + f0√

�2 − ω2

]
= �

[
1 + f1√

�2 − ω2

]
. (A9)

For sufficiently weak disorder τ−1
sm 
 �, the quasiparticle

gap ω ∼ �, so that we can expand in the reduction of the
quasiparticle gap x = � − ω to lowest order and obtain the
quasiparticle gap reduction to be

x ∼ �

21/3

(
(πτsm)−1

�

)2/3

(f0 − f1)2/3 . (A10)

This leads to the pole of the disordered-averaged Green’s
function G which is also the TS state quasiparticle gap in
Eq. (17)

ω = �

[
1 − 1

21/3
(πτsm�)−2/3 |〈kF | −kF 〉|4/3

]
. (A11)
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APPENDIX B: ANALYTIC SOLUTION OF THE SELF-CONSISTENT BORN APPROXIMATION

In this Appendix we provide an exact solution for the quasiparticle gap within the self-consistent Born approximation. To do
this, we start with the self-consistent version of Eq. (A6),

a0(k,ω) = ω − f0(πτsm)−1
∫

dε′ a0(k,ω)

a0(k,ω)2 − [ε′ − az(k,ω)]2 − |a+(k,ω)|2 ,

az(k,ω) = (ε − εF,sm) + f0(πτsm)−1
∫

dε′ (ε′ − εF,sm)

a0(k,ω)2 − [ε′ − az(k,ω)]2 − |a+(k,ω)|2 , (B1)

a+(k,ω) = �eiθk − f1(πτsm)−1
∫

dε′ a+(k,ω)

a0(k,ω)2 − [ε′ − az(k,ω)]2 − |a+(k,ω)|2 .

Performing the ε′ integral in the second equation we immediately obtain az(k,ω) = 0. Performing the ε′ integral in the other two
equations

a0 = ω + a
a0√

a2+ − a2
0

, (B2)

a+ = � + b
a+√

a2+ − a2
0

, (B3)

where the square root is chosen so that the real part of
√
a2

+ − a2
0 , a = πf0(πτsm)−1 and b = πf1(πτsm)−1. Writing y =

√
a2

+ − a2
0 ,

the pair of equations can be combined to a single equation for y:

1 = �2

(y − b)2
− ω2

(y − a)2
. (B4)

At ω ∼ 0, the equation has four real roots y ∼ a and y ∼ b ± �. The quasiparticle gap is defined by the value of ω above which
the Green’s function G(ω) has a finite imaginary part. This corresponds to the value of ω where two of the real roots of y merge
into a pair of complex roots, so that Eq. (B4) has two real and two complex roots. Using the properties of quartic polynomial
equations, the transition point between four real roots and two real roots is signaled by the vanishing of the discriminant of the
quartic polynomial. Solving for the frequency ω where the discriminant vanishes leads to the solution

ω = �
√

1 − 3g2/3(f0 − f1)2/3 + 3g4/3(f0 − f1)4/3 − 3g2(f0 − f1)2, (B5)

where g = 1/π�τsm. In the 2D Rashba and 1D superconducting case, we get the solution of the TS state quasiparticle gap in
Eq. (18)

ω = �[1 − 3(πτsm�)−2/3|〈kF | −kF 〉|4/3 + 3(πτsm�)−4/3|〈kF | −kF 〉|8/3 − 3(πτsm�)−2|〈kF | −kF 〉|4]1/2. (B6)
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