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Reconstructing the bulk Fermi surface and superconducting gap properties
from neutron scattering experiments
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We develop an analytical tool to extract bulk electronic properties of unconventional superconductors from
inelastic neutron scattering spectra. We show that the upward and downward branches of the spin excitation
spectra have distinct origins, with the upper branch representing a gapped spin-wave dispersion and the lower
branch associated with Bogoliubov quasiparticle scattering on the Fermi surface. Combined, they produce an
“hourglass” dispersion with 45◦ rotation of the spectrum, as found experimentally. The downward dispersion can
be inverted to reveal the Fermi momentum dispersion of the single-particle spectrum as well as the corresponding
superconducting (SC) gap function, analogously to the quasiparticle interference effect in scanning tunneling
microscopy (STM). Whereas angle-resolved photoemission spectroscopy and STM provide surface-sensitive
information, this inversion procedure provides bulk electronic properties. The technique is essentially model
independent and can be applied to a wide variety of materials.
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I. INTRODUCTION

The study of cuprate superconductivity has led to the
discovery of a number of unexpected relationships between
seemingly different spectroscopies. Scanning tunneling mi-
croscopy (STM) provides an outstanding example of this:
While basically a real-space probe, it can extract momentum-
space (k-space) information of the electronic Fermi surface and
superconducting (SC) pairing symmetry usually associated
with angle-resolved photoemission spectroscopy (ARPES).
Elastic scattering of Cooper pairs leads to the quasiparticle
interference (QPI) pattern measured by STM.1,2 By analyzing
the QPI pattern as a function of scattering angle (in q space) it is
possible to reconstruct both band structure and gap information
in k space. While the technique was originally developed
for d-wave cuprates, it is finding wide applications in other
materials, including pnictides, where the SC gap is probably
of s± symmetry, and in non-superconducting topological
insulators.

The development of a similar technique for inelastic neutron
scattering (INS) has obvious advantages. First, ARPES and
STM are surface-sensitive probes,3,4 which in practice means
that they can only be performed on materials that are readily
cleaved. For the same reason, they are mainly restricted to
quasi-two-dimensional materials, and the question always
remains how sensitive the results are to surface effects, such as
pinning, reconstruction, and excess scattering. In contrast, INS
is a bulk probe which does not need special surface preparation
and can readily be applied to three-dimensional materials.
For instance, INS results on heavy-fermion materials were
available years before the first high-resolution ARPES studies.
Here we demonstrate that inelastic scattering between the
particle and hole Bogoliubov quasiparticles generates a similar
magnetic quasiparticle scattering (MQPS) profile which can
be probed directly by INS measurements.5–7 Taking all three
spectroscopies together, we are able to establish a definite con-
sistency between the r-space (STM), k-space (ARPES), and
q-space (INS) dynamics of the unconventional Bogoliubov
quasiparticles.

The overall phenomenology of neutron scattering in
cuprates is well known, and a number of universal features
have been experimentally identified8–16 and theoretically
interpreted.5–7 The results indicate that a distinct low-energy
magnetic mode is present near the antiferromagnetic nesting
vector Q = (π,π ) in almost all the cuprates. The intensity
of this mode is enhanced in the SC state while its energy
scales ωres( Q) ∝ 2�SC for all cuprates,17,18 suggesting a close
connection of these modes with SC pairing. The dispersion of
spectral weight away from this resonance peak also has a uni-
versal character, forming an “hourglass”-like pattern centered
on the resonance mode and displaying a 45◦ rotation on passing
through the resonance peak. Below the resonance energy,
spectral weight disperses along the Cu-O bond direction, while
above the resonance the dispersion peak lies along the diagonal
direction. Despite an overall universality, many features of
this “hourglass” dispersion are highly material specific and
we show that the difference comes mainly from the nature
of the pseudogap order among other band-structure-related
properties.

This paper is organized as follows. In Sec. II, we introduce
our inversion procedure and its analogy with the QPI pattern.
The microscopic description of the magnetic resonance peak
and its associated hourglass pattern is given in Sec. III. In
this section, we have also used the experimental INS data
and ARPES data to reconstruct one from the other. The
constant-energy profile or the magnetic quasiparticle scattering
pattern is given in Sec. IV, including the observation of
several new q vectors away from Q = (π,π ), 45◦ rotation of
the constant-energy profile, and direct comparison with QPI
patterns. We discuss our results in the context of previous
model calculations and conclude in Sec. V.

II. INVERSION PROCEDURE AND ITS ANALOGY
WITH QPI PATTERN

Recalling the QPI pattern. We begin by describing the
inversion procedure in INS, which is analogous to the common
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FIG. 1. (Color online) Origin of MQPS vectors. (a) Sketch of
cuprate constant-energy cut, showing four “banana”-shaped regions
(green shapes) with intense spectral features at their tips (red dots).
The gap as a function of angle is shown on one banana (red and
black lines). Above the Fermi pocket, the superconducting gap is
cut off by a competing-order pseudogap (black solid line). On this
gap curve the contrasting behavior of QPI and MQPS vectors is
illustrated: The QPI vectors connect two banana tips at the same
energy, as shown by the long-dashed cyan line, while the MQPS
vectors connect banana tips across the Fermi energy, from an electron
tip at ω < 0 to a hole tip at ω > 0, shown by the dotted cyan arrow
for the Q3 branch. For convenience the various MQPS vectors are
defined by projected horizontal arrows, labeled Q1–Q3, illustrating
the two bright points that they connect. (b) The q-space representation
of the MQPS. Symbols represent the Qi vectors of the same color
as shown in (a). The associated arrows point in the direction that
the Qi vectors shift with increasing energy along the Fermi surface.
(c) The energy and momentum dispersions of two Qi vectors are
shown along the diagonal direction (Qx = Qy). [The intensity of Q3

is expected to be low (see text).] The black solid line depicts the spin
waves which are gapped below the SC gap while the black dashed line
stands for the gapless-spin-wave (schematic) dispersion expected in
the non-superconducting state. (d) Both spin wave (solid black) and
MQPS (solid blue) have monotonic intensity variation as a function
of energy, and as they meet at Q, the total intensity (red line) attains
a sharp peak.

inversion procedure performed using the QPI features in the
STM spectra. Figure 1(a) depicts a typical form of the Fermi
surface (green shadings) which is assumed to be truncated
below the antiferromagnetic Brillouin zone due to the presence
of underlying pseudogap ordering. When the superconducting
gap has a d-wave form �k = �0[cos(kxa) − cos(kya)]/2,
where a is the in-plane lattice constant, the spectral function at
any particular energy ω � 2�0 has a maximal intensity at eight

bright points K(ω) that develop on four banana pockets which
satisfy ω = �K(ω) (red dots). In STM experiments, elastic
scattering at energy ω is dominated by scattering between
these points, leading to a form of Friedel oscillations known
as QPI, satisfying the condition1,2

ω = �K(ω) = �K(ω)+qi
. (1)

The long-dashed cyan arrow in Fig. 1(a) illustrates one possible
qi vector.

Origin of MQPS. The INS experiments, which measure the
imaginary part of the transverse spin-spin correlation function
χ ′′, can also be understood through an analogy with the QPI
pattern.5,7 Indeed, since χ is related to the joint density of
states (JDOS), the neutron scattering will be dominated by
transitions from banana tips below the Fermi level to banana
tips above the Fermi level, as illustrated by the dotted cyan
arrow in Fig. 1(a). The energy of a particular transition will be
given by

ω(Qi) = |�k| + |�k+ Qi
| = �0[|gk| + |gk+ Qi

|], (2)

where the d-wave structure factor is gk = [cos (kxa) −
cos (kya)]/2.

Similarity and differences between MQPS and QPI. While
the same banana points contribute to both QPI and neutron
scattering, there are actually more q vectors in the former
case. In elastic scattering there are 7 qi vectors at any energy
that connect a given banana point to the other banana points.1,2

However, in INS there is a coherence factor which allows only
the poles for which �k and �k+ Qi

have opposite signs, since
the magnetic neutron scattering cross-section is odd under
time-reversal symmetry.5–7 Hence we identify three neutron
scattering vectors which dominate in cuprates and give rise
to a spin excitation profile, which can be called the MQPS
pattern, in analogy with the QPI patterns. The MQPS vectors,
shown in Fig. 1(a), can be denoted as Q1,2,3 ∼ q3,6,7 (we do
not distinguish the QPI vectors q2 and q6 which have the same
length, denoting both as Q2), where the lowercase q’s are the
corresponding QPI vectors.1,2

There is a second, more important difference from QPI.
Note that for fixed ω Eq. (1) is the equation of a point in
q space, while Eq. (2) is the equation of a curve, because
there will be a different Qi for each pair �k and �k+ Qi

which satisfy Eq. (2). However, we show below that this is
not a problem: The gap and FS can be reconstructed from INS
data along any Q-ω cut. INS data are mostly available along
the diagonal cut Qx = Qy and along the bond direction, i.e.,
[(π,0) → (π,2π )], and equivalent cuts as a function of energy.
We therefore define the spanning vectors as Q1 and Q3 along
the diagonal direction and Q′

1 and Q′
3 along the bond direction

(note that Q2 does not lie on these two special cuts). The
diagonal cut is a particularly simple choice, since along this
cut the MQPS vectors are exclusively associated with special
points, for which �k = −�k+Qi

. For these special points the
analogy with QPI becomes exact, with ωMQPS = 2ωQPI. Along
the bond direction, the situation is similar as discussed below.

The Q-space positions of the poles of Eq. (2), or the
MQPS pattern, are plotted schematically at a constant energy
in Fig. 1(b). The associated arrows indicate the direction
each vector moves as the excitation energy increases which is
determined by the shape of the Fermi pocket and the d-wave
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superconducting gap values at each Fermi momentum, just as
for QPI. To see this, we draw an illustrative energy versus
momentum dispersion relation for the two Qi vectors along
the diagonal direction in Fig. 1(c). Branch Q1 disperses from
ω = 0, where the incommensurate Q1 vector connects pairs
of nodal points, and hence measures the width of the hole
pocket, to the resonance peak at (π,π ) at energy ω = ωres

connecting the hot spots at the boundary of the magnetic
Brillouin zone—that is, Q1 is the dispersion branch associated
with the magnetic resonance peak. Branch Q3 represents an
intrapocket scattering, and the corresponding branch starts
from Q3 = 0, ω = 0 at the nodal point, dispersing toward
a Q3 vector which spans the length of the hole pocket when
ω = ωres. Thus both curves attain the maximal ω when the
banana points correspond to the hot spots along the Brillouin
zone diagonals—the maximal diagonals of the hole pockets.
A similar phenomenon is found in the experimental QPI
spectra.1,2 In summary, the inelastic MQPS intensity pattern at
an energy ω = 2� in neutron scattering exactly corresponds
to the elastic QPI pattern seen at an energy ω = � in STM,
and hence can also be used to reconstruct the Fermi surface
and SC gap properties.

III. MAGNETIC RESONANCE PEAK AND
HOURGLASS DISPERSION

QP-GW model. To illustrate how the above results play out
in practice, we compare them to experiment and to realistic
calculations of INS. We calculate the INS spectrum of the
cuprates from a one-band Hubbard model, with self-energy
corrections from a GW calculation called the quasiparticle-
GW (QP-GW) model.19,20 The QP-GW Hamiltonian consists
of four components which are calculated self-consistently:
HLDA + HSDW + HSC + �. The electronic dispersion, HLDA,
is based on a tight-binding fit to the material-specific first-
principles single-band dispersion of the antibonding com-
bination of Cu dx2−y2 and O px/y orbitals.21 As in our
earlier analysis of QPI,22 the pseudogap state is treated as
a spin-density wave (SDW), HSDW, based on a Hubbard term
in the Hamiltonian, which is treated using standard random-
phase-approximation (RPA) theory.23 Below Tc, d-wave SC
order develops HSC which couples naturally to the SDW
state.24 The resulting energy spectrum is E(k) =√

(Es )2(k) + �2
k,

where the non-superconducting dispersions for both spin states
are Es = ξ+(k) ± E0(k) [for E2

0 = ξ−(k)2 + G2, ξ±(k) =
[ξ (k) + ξ (k + Q)]/2, ξ (k) is the noninteracting band in the
Bloch state, and G is the effective SDW gap which produces
the pseudogap above the antiferromagnetic zone boundary].
The SDW gap causes a substantially reconstructed Fermi
surface (FS) at low temperature as shown in Fig. 2(c). At
low temperature the d-wave superconducting gap coexists
with the SDW state. By fixing U and the pairing interaction
V , to account for the experimental values of pseudogap and
superconducting gap, respectively (see Table I), there are no
free parameters in the susceptibility calculation. Finally, we
calculate the self-energy due to the magnetic and charge
excitations which renormalizes the overall dispersion by a
momentum-independent mass renormalization.

Spin susceptibility. The full susceptibility is computed in all
spin channels within the random-phase approximation (RPA).
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FIG. 2. (Color online) Reconstruction of Fermi surface from the
INS spectra. (a), (b) Computed χ ′′(q,ω) is plotted along the diagonal
and bond directions, respectively (see inset), in the superconducting
state of YBCO. The experimental data for YBCO6+y are shown in
various symbols [green stars (y = 0.85) = Ref. 10, blue squares
(y = 0.85) = Ref. 14, blue triangles (y = 0.95) = Ref. 26]. The
data along the bond direction in (b) are obtained for y = 0.6 (red
symbols) from Ref. 27. The blue and cyan dashed lines in (a) are the
plot of Eq. (2) for Q1 and Q3 [red and yellow dashed lines are for
corresponding equivalent vectors Q′

1 and Q′
3 along bond directions

in (b)]. The brown symbols give the resonance spectrum calculated
from Eq. (2) using ARPES dispersions (Ref. 28) for y = 0.6 as input
[see (c)]. The experimental and theoretical lines are only plotted in
one side of two equivalent directions for clarity. We plot χ ′′(q,ω)
in log scale to highlight weaker features. The black line is a guide
to the eye for the dispersion expected for gapped spin waves, which
constitutes the upward dispersion in the resonance spectrum. (c) Plot
of computed Fermi surface of YBCO. The black symbols are the locus
of the Fermi momenta determined from the experimental neutron data
shown in (a) solving Eq. (2) while red symbols are the same but along
the bond direction shown in (b). The brown symbols are the ARPES
Fermi surface from Ref. 28. All symbols have fourfold symmetry, but
are plotted here only along one particular quadrant for visualization.
The blue and red arrows are the scattering vectors Q1 and Q′

1. The
light-blue arrow represents Q3(ωres), which spans the length of the
hole pocket. (d) The extracted superconducting gap is plotted as a
function of Fermi surface angle [0◦ being the antinodal direction
and 45◦ the nodal direction] from the neutron data of (a) and (b),
compared to the ARPES data (brown symbols) of Ref. 29 and the
present theoretical curve.

In RPA, the resonance pole is determined by the real part
of the Lindhard susceptibility, χ ′

0, which has a logarithmic
divergence at all the Bogoliubov quasiparticle scattering
vectors. Simultaneously χ ′′

0 possesses a discontinuous jump
due to the Kramers-Kronig relation. In this spirit, the positive
divergence in χ ′

0 or the discontinuous jump in χ ′′
0 can be used
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TABLE I. Order parameters of the model. Experimental gap values and the resulting self-consistent values of the order parameters. Given
the order parameters, theoretical values of ωres are calculated and compared with experiment. The value of U/t (where t is nearest-neighbor
hopping parameter) is chosen to reproduce the experimental peudogap (�pg) whose values are presented here along the “hot-spot” direction
in the electron-doped case and the antinodal direction for all hole-doped cuprates. The value of U is in close agreement with our previous
calculations (Refs. 19 and 41). Similarly, the parameter value of pairing potential V is taken to reproduce the superconducting gap (�), whose
maximum value along the antinodal direction is presented here (Ref. 55). Our mean-field calculations overestimate the values of Tc, presumably
due to the neglect of phase fluctuations (Ref. 37).

�pg (meV) U/t �sc (meV) Pairing Potential Tc (K) ωres

Material Doping (x) (Exp./ Theory) (Theory) (Exp./ Theory) V (meV) (Theory) Exp. (Theory) Exp. (Theory)

NCCO 0.15 60 [Ref. 52] 4.1 3.5 [Ref. 53] −26 24 (37) [Ref. 53] 4.5 (5) [Ref. 52]
YBCO6.85 0.21 50 [Ref. 54] 2.5 35 [Ref. 26] −98 92 (160) [Ref. 26] 41 (40) [Ref. 10]

as an indicator of the observed magnetic spectra in the SC
state. In the SDW state, the situation is more complicated.
Nevertheless, the overall phenomenology can be understood
approximately from the imaginary part of the transverse spin
susceptibility which mainly consists of three important factors
(see Appendix A for more details):

χ ′′
0 (q,ω) ≈ π

N

∑∑
k

A(k,q)C(k,q)δ(ω − ωres(k,q)). (3)

Here, ωres(k,q) = E(k) + E(k + q), which converges to
Eq. (2) on the Fermi surface [Es(k) = 0]. Since the INS
spectrum is proportional to the RPA susceptibility χ ′′, the
associated intensity of a given pole in the spectrum is
controlled mainly by the two coherence factors A and C

associated with antiferromagnetic zone folding and SC gap
symmetry breaking, which can be approximated for the present
discussion as

A(k,q) = 1

2

(
1 − ξ−(k)ξ−(k + q) + G2

E0(k)E0(k + q)

)
, (4)

C(k,q) = 1

2

(
1 − Es(k)Es(k + q) + �k�k+q

E(k)E(k + q)

)
. (5)

At the normal-state Fermi surface [Es(k) = 0], the su-
perconducting coherence factor reduces to C = 1/2[1 −
sgn(gk)sgn(gk+q)] which attains its maximum value of 1
whenever �k and �k+q have opposite signs, thereby explain-
ing why the spectrum is dominated by the three magnetic
scattering channels Qi with (i = 1–3). Furthermore, at small
|q − Q|, the SDW coherence factor, Eq. (5), simplifies25

to A → 1 − [ξ−(k) + ξ−(k + q)]G2/4E4
0(k) = 1 − O((Q −

q)2), which attains its maximum value of 1 at q = Q. This
explains why, since the Q1 branch is closer to Q, its intensity
dominates over the other branches and the intensity gradually
increases to its maximum value at Q.

Upward and downward dispersion. Figure 2 presents our
main result, showing that the dominant spectral features in
neutron scattering correspond exactly to the MPQS features
in a SDW superconductor. For a specific example we analyze
YBa2Cu3O6+y (YBCO). The color plots in Figs. 2(a) and 2(b)
show two-dimensional q-ω intensity maps of the calculated
imaginary part of the RPA spin susceptibility (χ ′′) along
the diagonal and the bond directions for YBCO at y =
0.85. Shown superimposed on the left side of Fig. 2(a) are
the calculated MQPS dispersions, with Q1 = (π ± δ,π ± δ)

plotted as a dashed blue line and Q3 = (±δ,±δ) as a dashed
cyan line, computed from Eq. (2). Similarly, in Fig. 2(b) the
dashed red [yellow] line represents the equivalent branch along
the bond direction: Q′

1 = (π,π ± δ)/(π ± δ,π ) [Q′
3 = (π,

±δ)/(±δ,π )]. We find good agreement with the experimental
results, represented by symbols of various colors,10,14,26,27 on
the right-hand side of Figs. 2(a) and 2(b).

Along both momentum cuts an intense resonance feature
is seen at (π,π ), connecting to two oppositely dispersing
branches at higher and lower energies. The downward branch
is the MQPS branch in which Q1 and Q3 scatterings are
observed. The upward branch has a different origin, related to
the residual spin-density wave. At half filling, the upward spin-
wave branch is linear and extends to a zero-energy Goldstone
mode at Q = (π,π );23 see Fig. 5(a). When superconductivity
is turned on, this Goldstone mode acquires a gap ω < 2�0,
and the upward and downward dispersions coexist and meet at
the resonance energy. Note that the upward-dispersing branch
cannot be reproduced in a paramagnetic metallic state or in
any other time-reversal symmetry-invariant ground state as
discussed in Sec. V below.

Why does the bond direction obtain stronger intensity than
the diagonal one? There are two main sources of intensity
variation for each Q vector. As discussed earlier, the SDW
coherence factor is strongly momentum dependent and reaches
a maximum at Q. Since branch Q3 stops dispersing well before
it reaches Q, its intensity is relatively low while the Q1 branch
gains more intensity as it moves toward the resonance. The
equivalent Q′

1 (Q′
3) branch along the bond direction in Fig. 2(b)

has twice as large intensity as Q1 (Q3) in Fig. 2(a). This is due
to an overall degeneracy factor. The scattering vectors Q′

1,3
have one commensurate direction and one incommensurate
one while Q1,3 are incommensurate along both x and y

directions except at the resonance at Q. Thus Q′
1,3 connect

twice as many Fermi surface points as any other Q1,3. As
a result the intensity of the magnetic spectrum along the
bond direction [in Fig. 2(b)] is twice as large as that along
the diagonal direction [in Fig. 2(a)]. Therefore, below the
resonance peak the intensity profile is rotated along the bond
direction as shown in Fig. 3(a).

Extracting Fermi surface and gap information. Now, the
hole-pocket Fermi surface and the d-wave superconducting
pairing can be extracted from the INS data and vice versa.
The lower branch of the experimental data which disperses
downward from (Q,ωres) is associated with the Q1 scattering
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FIG. 3. (Color online) Comparison of MQPS maps with experimental QPI maps. (a1)–(a3) Computed spectra of χ ′′(ω) are plotted in
logarithmic scale for three representative constant-energy cuts, below the resonance, near the resonance, and above the resonance. (b1)–(b3)
The corresponding experimental data of YBCO6.95 from Ref. 13 for the acoustic channel, obtained after subtracting the corresponding
normal-state data, which can enhance weak features away from Q. The white arrows in the experimental curves were used in the discussion in
Ref. 13. (c) A QPI map of the STM data (Ref. 2) for Bi2212 is compared with the MQPS map of INS in (d). The MQPS spectrum is chosen
in (d) for the optical channel to ease comparison with QPI maps as the magnetic profile is rotated here along the diagonal direction. We note
that QPIs are usually plotted in the range [−π to π ] while the neutron scattering is plotted in the range [0 to 2π ]; the dashed box in (c),
(d) represents the range [0 to π ] to be compared. In (a1), (b1), and (d), circles of various colors depict various MQPS vectors while the circles
with same colors in (c) are the corresponding QPI vectors.

vectors. Therefore, by solving Eq. (2) at the experimental
points in Figs. 2(a) and 2(b), we determine a map of kF (black
and red dots) which agrees very well with the theoretical Fermi
surface as well as with the ARPES FS in Fig. 2(c). Note that
we find the same Fermi surface by utilizing the diagonal cut
Q1 [black dots in Fig. 2(c)] or the bond direction Q′

1 [red dots].
The light blue arrow in Fig. 2(c) shows how Q3 at ωres can
be used to determine the length of the hole pocket. Notably,
recent studies have been able to extract weaker features from
the INS data,30 suggesting that determination of the remaining
Q vectors may soon be possible. Alternatively, if the inversion
is guided by a model calculation, the Q1 vectors alone can
provide valuable information about the pocket shape.

Reconstructing INS spectra from ARPES Fermi surface.
For a cross-check, we use the experimental FS [brown open
symbols in Fig. 2(c)] and gap measured by ARPES28 to
compute the magnetic resonance spectra by solving Eq. (2),
brown open symbols in Fig. 2(a). This agrees well with the
INS data. Furthermore, the extracted values of kF versus ω

can be used to determine the underlying superconducting gap
symmetry using Eq. (2) which assumes dx2−y2 symmetry. This
also agrees well with ARPES data29 and the present theory; see
Fig. 2(d). The superconducting gap can be extracted up to the
edge of the magnetic Brillouin zone or the hot spot (φ ∼ 15◦),
above which the pseudogap dominates in the spectrum and the
MPQS features can no longer be followed.

IV. MQPS PATTERN AND COMPARISON WITH
QPI PATTERN

MQPS versus QPI. Combining the MQPS and spin wave
spectra, Fig. 3 compares the ω evolution of our present
theoretical MQPS maps [Fig. 3(a)] with corresponding experi-
mental data [Fig. 3(b)]. In the low-energy region, the magnetic
scattering profile of Fig. 3(a1) has the highest intensity (red)
along a square centered at (π,π ). The intensity is larger along
the bond directions than along the diagonal as discussed above,
consistent with experiments shown in the corresponding
lower panel. It should be noted that the experimental INS
data plotted in Fig. 3 are obtained after subtracting out the
normal-state contribution [χ ′′(15 K) − χ ′′(100 K)] to remove
the background and enhance weaker features. This is why
the MQPS pattern here looks much brighter than in other
existing data sets. We note that there are hints of weak features
corresponding to Q2,3, although these are close to the noise
level. The intensity variation in the equivalent Q points of the
same Brillouin zone might be related to orbital form factors
and other extrinsic effects, as observed, e.g., in ferroelectric
materials.31 Figure 3 also compares a QPI map (only available
for Bi2212), in Fig. 3(c), with a neutron scattering map of the
odd channel in YBCO, in Fig. 3(d). Again, there are hints of
the three high-symmetry vectors Q1,2,3 (and two equivalent
vectors along the bond direction Q′

1,2) in Fig. 3(d) which
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correspond to the q3,6,7 vectors in the QPI map in Fig. 3(c)
(denoted by circles of the same colors), but these features
remain close to the noise level.

45◦ rotation of the spectra in going from MQPS to spin-
wave dispersion. With increasing energy, at the resonance
[Fig. 3(a2)] the intensity piles up at (π,π ) with tails dispersing
toward q = (0,0) similar to what was recently seen in Hg-
based compounds.30 Above the resonance, Fig. 3(a3), the
magnetic spectrum is purely spin-wave based and the profile is
rotated along the diagonal direction, as found experimentally.
In the above calculations, we have assumed that the super-
conductivity couples to the SDW order. When the spin-wave
spectrum of upward dispersion and the MQPS of downward
dispersion meet at the commensurate antiferromagnetic vector
Q = (π,π ), a resonance peak in the intensity occurs. The
SDW coherence factors play an important role in distributing
the intensity over the entire magnetic spectrum, Eq. (4).
Furthermore, the QPI-MQPS correspondence is obscured
when the non-superconducting state becomes paramagnetic.
While the Qi vectors still play a significant role, the magnetic
resonance peak is shifted to a lower energy at a pole of
the dynamic susceptibility.7 In the magnetic superconducting
ground state, the susceptibility peaks correspond to the MQPS
Qi(ω), with ω given by Eq. (2), as shown in Figs. 2(a) and 2(b).

V. DISCUSSION AND CONCLUSIONS

Thus, we provide a simple explanation for the hourglass-
shaped INS spectrum commonly seen in cuprates and other
correlated materials.

The upward-dispersing branch is a signature of the com-
peting order. Thus, models based on a pure superconducting
phase with no competing order5–7,32,33 are unable to explain
this feature. Furthermore, if the competing phase is assumed
to be a pure charge-density wave or d-density wave phase,34

the corresponding Goldstone modes are not time-reversal
symmetry breaking, and hence will not be able to account for
the experimental observations. Furthermore, the time-reversal
breaking orbital order phase will have a resonance peak
concentrated at q = 030,35 instead of the present q = Q mode.
On the other hand, if the competing order is magnetic, as in
our SDW model but also in many models of stripes,36 then the
Goldstone modes are spin waves and so can explain the upper-
branch dispersion. We note that since the dispersion starts at a
finite frequency, it is not necessary that the competing order be
long range, but only that there are significant short-range corre-
lations. A demonstration that the competing order is magnetic
is very significant, since a number of calculations have found
that magnetic fluctuations can play an important role as the
glue for high-Tc superconductivity.37,38 The hourglass shape
has also been observed in La2−xBaxCuO4, which has stripe
order but only fluctuating superconductivity.15 This suggests
that there may be competing magnetic orders present.39

The resonance peak. The MQPS and spin wave both predict
a gradual increase of intensity as one approaches the Q point,
see Fig. 1(d), but neither acting alone can generate a true
peak in the intensity, as has been demonstrated in earlier
calculations.5,6 In the present case of SDW + SC, we find
that when the upward and downward dispersion of different
origin meet at Q, the intensity diverges and a true peak in the

intensity occurs, Fig. 4(c). In other words, the resonance peak
represents the mass gap of the Goldstone mode of the phase
competing with superconductivity within the present model.

The downward-dispersing branch can be used to recover
the angle dependence of the superconducting gap and the un-
derlying Fermi surface of the material when superconductivity
is turned off. In contrast to the upper branch, this behavior is
universal. Thus, if its resolution can be increased, INS stands
poised to become a powerful tool for extracting important
fundamental bulk information on many correlated systems of
high current interest.

We note that our model of a combined SDW + d-wave SC
ground state for the cuprates captures all three of the above key
features of the spin excitation spectrum. The QP-GW model
was designed to be the simplest model which could describe
both intermediate-strength correlations and competing order
in the cuprates. The INS results confirm that the leading
competing order is strongly magnetic in nature. The most
natural extension of the QP-GW model would thus seem to
be one with an incommensurate competing order.39 While the
deeply underdoped regime could be the home of strikingly
new physics,40 we note that the QP-GW model has been quite
successful in describing optical and ARPES spectra in this
regime.19,41

Conclusions. In summary, we have shown that while a
spin-wave spectrum of collective mode origin persists at all
dopings both in electron- (in Appendix C) and hole-doped
cuprates including at half filling, it becomes gapped in the
low-energy region ω < 2� where the spectrum is dominated
by the Bogoliubov scatterings of Cooper pairs. When the
spin-wave spectrum of upward dispersion and the magnetic
scattering of downward dispersion meet at the commensurate
antiferromagnetic vector Q, a resonance peak in the intensity
occurs. INS spectroscopy is one of the few probes42–44 which
can be utilized to reconstruct the Fermi surface and supercon-
ducting properties of the actual bulk ground state. Our method
of analysis is independent of any particular model and can
be performed entirely from experimental inputs. Therefore,
this inversion procedure can also be used to extract the
bulk Fermi surface topology and pairing symmetry in newly
discovered iron-selenide,45,46 pnictide, chalcogenide,47,48 and
heavy-fermion49–51 superconductors in which this information
is still not settled. We also predict that the present formalism
can be used to detect electron pockets on the cuprate Fermi
surface, if they are present in the bulk ground state.
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APPENDIX A: SUSCEPTIBILITY IN SDW + d-WAVE
SC STATE

Since the SDW state causes a unit cell doubling, the
correlation functions (Lindhard susceptibilities) are tensors
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in momentum-space representation.23 We define the suscepti-
bilities as the standard linear response functions

χij (q,q ′,τ ) = 1

2N

〈
Tτ�

i
q(τ )�j

−q ′(0)
〉
, (A1)

where the response operators (�) for the charge and spin-
density correlations respectively are

ρq(τ ) =
∑
k,σ

c
†
k+q,σ (τ )ck,σ (τ ),

(A2)
Si

q(τ ) =
∑
k,σ,γ

c
†
k+q,σ (τ )σ i

σ,γ ck,γ (τ ).

The σ i represent two-dimensional Pauli matrices along the ith
direction and ck,σ (c†k,σ ) is the destruction (creation) operator
of an electronic state at momentum k and spin σ . For
transverse spin response S± = Sx ± iSy whereas longitudinal
fluctuations are along the z direction only. In the present
(π,π )-commensurate state, charge and longitudinal-spin fluc-
tuations become coupled at finite doping. In common practice
the transverse, longitudinal-spin, and charge susceptibilities
are denoted as χ+−,χzz, and χ00, respectively. We collect
all the terms into a single notation as χσσ̄ where σ̄ = σ

gives the charge and longitudinal components and σ̄ = −σ

stands for the transverse component. For the pure SDW state
Eq. (A1) can be evaluated rigorously. Here we generalize
earlier calculations23 for realistic cuprate band structures. For
the combined SDW + d-wave SC state

χσσ̄
ij (q,ω) = 1

Nβ

∑
k,n,s

Gis(k,σ,iωn)Gsj (k + q,σ̄ ,iωn + ω)

(A3)

= 1

N

′∑
k,νν ′

Aσσ̄
νν ′,ij

3∑
m=1

Cm
νν ′χ

m
νν ′ (k,q,ω). (A4)

We obtain Eq. (A4) from Eq. (A3) after performing the
Matsubara summation over n. G is the 4 × 4 single-particle
Green’s function in the Nambu space, constructed from the
Hamiltonian given in the main text. The summation indices
ν(ν ′) = ± refer to the two split SDW bands. Here, the
coherence factor due to SDW order in the particle-hole channel
is

Aσσ̄
νν ′,11/22 = 1

2

(
1 ± νν ′ ξ

−
k ξ−

k+q + σ σ̄ (US)2

E0kE0k+q

)
,

(A5)

Aσσ̄
νν ′,12/21 = −ν

G

2

(
σ

E0k
+ νν ′ σ̄

E0k+q

)
.

The SC coherence factors are

C1
νν ′ = 1

2

(
1 + E

s,ν
k E

s,ν ′
k+q + �k�k+q

Eν
kEν ′

k+q

)
,

(A6)

C
2/3
νν ′ = 1

4

(
1 ± E

s,ν
k

Eν
k

∓ E
s,ν ′
k+q

Eν ′
k+q

− E
s,ν
k E

s,ν ′
k+q + �k�k+q

Eν
kEν ′

k+q

)
.

Lastly the index m represents the summation over three
polarization bubbles related to the quasiparticle scattering
(m = 1) and quasiparticle pair creation (m = 2) and pair
annihilation (m = 3), as defined by

χ1
ν,ν ′(k,q,ω) = − f

(
Eν

k

) − f
(
Eν ′

k+q

)
ω + iδ + (

Eν
k − Eν ′

k+q

) , (A7)

χ
2,3
ν,ν ′(k,q,ω) = ∓1 − f

(
Eν

k

) − f
(
Eν ′

k+q

)
ω + iδ ∓ (

Eν
k + Eν ′

k+q

) . (A8)

In the RPA model, the 2 × 2 susceptibility is obtained from
the standard formula23

χσσ̄
RPA,11(q,ω) =

[
1 + σ σ̄Uχσσ̄

22 (q,ω)
]
χσσ̄

11 (q,ω) + U
[
χσσ̄

12 (q,ω)
]2

[
1 − Uχσσ̄

11 (q,ω)
][

1 + σ σ̄Uχσσ̄
22 (q,ω)

] + σ σ̄
[
Uχσσ̄

12 (q,ω)
]2 , (A9)

χσσ̄
RPA,22(q,ω) =

[
1 − Uχσσ̄

11 (q,ω)
]
χσσ̄

22 (q,ω) + U
[
χσσ̄

12 (q,ω)
]2

[
1 − Uχσσ̄

11 (q,ω)
][

1 + σ σ̄Uχσσ̄
22 (q,ω)] + σ σ̄

[
Uχσσ̄

12 (q,ω)
]2 , (A10)

χσσ̄
RPA,12/21(q,ω) = χσσ̄

12 (q,ω)[
1 − Uχσσ̄

11 (q,ω)
][

1 + σ σ̄Uχσσ̄
22 (q,ω)] + σ σ̄

[
Uχσσ̄

12 (q,ω)
]2 . (A11)

In the longitudinal and charge channel (σ̄ = σ ), the RPA
corrections do not introduce any pole and thus all the normal
structure lies above the charge gap in the particle-hole contin-
uum. Along the transverse direction (σ̄ = −σ ), a linear spin-
wave dispersion develops in the normal state which extends to
zero energy at Q = (π,π ).23 The necessary condition to yield
a gapless Goldstone mode is that Eqs. (A9)–(A11) reduce to
the self-consistent SDW order parameter G at q = Q, which
is indeed the case in the normal state.

In the SC state, this zero-energy spin wave shifts to ω =
|�kF

| + |�kF +q |, due to the particle-particle (and hole-hole)

scattering terms χ2,3 in Eq. (A8). These terms have finite
intensity only if the SC gap changes sign at the “hot spot”
q,5 see Eq. (A6). Above the SC gap, the spin-wave term
coming from Eq. (A7) is turned on. The crossover between
them creates the hourglass pattern presented in Fig. 2.

APPENDIX B: MECHANISM OF MQPS

The result shown in Fig. 2 of the main text is obtained from
a coexisting state of SDW and d-wave SC order within the RPA
framework. To understand the origin of the observed resonance
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FIG. 4. (Color online) The real and imaginary part of bare
susceptibility χ0 is shown in (a) and (b), respectively, for YBCO. (c)
All three susceptibilities are shown at the commensurate momentum
cut. (d) Corresponding RPA result plotted in a logarithmic intensity
scale as in the case of Fig. 2 of the main text.

behavior, we decompose the resonance spectra of Fig. 2(b) into
its bare components as shown in Fig. 4. Figures 4(a) and 4(b)
show the real and imaginary parts of the bare susceptibility,
which are related to each other by the Kramers-Kronig relation.
Where the real part obtains a logarithmic divergence [blue line
in Fig. 4(c)] the corresponding imaginary part possesses a
discontinuous jump at the same location [green dashed line
in Fig. 4(c)]. Within RPA, a resonance is possible when the
condition χ ′

0 = 1/U is satisfied. In the region where χ ′
0 is

greater than zero and also attains a divergence, a resonance
can occur for a large range of U . In this spirit, a true resonance
spectrum within RPA can simply be identified by tracing
the divergences in χ ′

0 or by tracking the sudden peaks in χ ′′
0 .

We emphasize that this argument holds even for multiband
pnictide superconductors.48

APPENDIX C: MAGNETIC RESONANCE SPECTRA
IN ELECTRON-DOPED CUPRATE

Our analysis works equally well for other cuprates, but with
strong band-structure-related modifications. Here we illustrate
some issues in an electron-doped cuprate, NCCO, using the
parameters from Table I. In Fig. 5(a), we show that the
model well reproduces the experimental spin-wave spectrum
of the undoped material, with a characteristic dispersion

(a) (b)

FIG. 5. (Color online) INS calculations for electron-doped
NCCO. (a) The spin-wave dispersion in the normal state at x = 0
in electron-doped NCCO along the diagonal direction compared with
experimental data for LCO. (b) The INS spectrum for optimally doped
NCCO. The theoretical spectrum is compared with the available
experimental data of another electron-doped compound PLCCO at
the latter’s optimal doping. Due to the small superconducting gap,
the resonance energy is much lower in the electron-doped case
[arrow in the inset in (b)]. The incommensurate magnetic dispersion
branches extending to zero energy are MQPS scattering associated
with a hole pocket which develops near the magnetic quantum phase
transition.

ω(q) ∼ | Q − q|, as depicted by the black line. Since the SC
gap is much smaller, the resonance peak falls at a much lower
energy, but this is still well captured by theory, Fig. 5(b). Note
that the resonance peak is gapped, but has a spin-wave branch
dispersing to higher energies. MQPS dispersions play an
interesting role in the incommensurate branches of excitations
which extend to ω = 0. They are associated not with the main
electron pockets, but with a subsidiary hole pocket that opens
close to the SDW quantum critical point.

Something similar happens in hole-doped cuprates, where
as doping increases toward the quantum critical point of the
SDW state (which occurs slightly above optimal doping),
electron pockets begin to form at the antinodal points. These
new pockets have their own QPI, with associated banana points
at energies higher than the Q resonance. Neutron scattering
experiments should also be able to detect these electron
pockets, which may be observed in quantum oscillation
experiments. We also note that in a paramagnetic ground
state, the magnetic scattering of the superconducting pairs
survives above the resonance at all dopings and thus the model
fails to explain the hourglass features, and predicts other
spurious resonance energy scales which are not observed in
experiments.
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