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Frustrated spin chains in strong magnetic field: Dilute two-component Bose gas regime
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We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity
of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent
momenta +Q, and just below the saturation field the system can be effectively represented as a dilute one-
dimensional lattice gas of two species of bosons that correspond to magnons with momenta around £Q. We
present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions
for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram
of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a
two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase
transitions numerically and find a good agreement with our analytical predictions.
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I. INTRODUCTION

Frustrated spin systems have been an object of avid interest
to researchers for several decades. In low dimensions, the
interplay of frustration and quantum fluctuations proved to
be favorable for generating states with unconventional spin
order, such as chiral, nematic, or general multipolar phases,
as well as for the existence of various disordered states. A
strong external magnetic field competes with the exchange
interaction, inducing a rich variety of phase transitions. An
overview of this rapidly progressing field may be found in
Refs. 1 and 2.

A spin chain with competing nearest and next-nearest
neighbor exchange interaction represents a paradigmatic
model of frustrated spin systems in one dimension. Despite
many years of extensive studies, it continues to deliver fresh
surprises. The frustrated spin-S chain model, which will be
the main subject of our study, is described by the following
Hamiltonian:

J
H=Y" [;‘(S:Sm S5+ IS8 - HS;
% +q- —qt 2 Qz Q2
+?(Sn n+2+Sn Sn+2)+‘]2 nn+2 |’ ey

where (SE,57%) are spin-S operators acting at site n of a one-
dimensional lattice, J;, J{ and J,, J; are nearest-neighbor
(NN) and next-nearest neighbor (NNN) exchange interactions,
and H is the external magnetic field. In this paper, we are
interested in the frustrated case, so J; is chosen to be positive
and the sign of J; is arbitrary. It is convenient to use the
quantity

B=Ji/) )
as the frustration parameter. The system may be alternatively
viewed as two antiferromagnetic chains connected by ferro-

or antiferromagnetic zigzag couplings J;, J{.
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PACS number(s): 75.10.Jm, 75.30.Kz, 75.40.Mg, 67.85.Hj

For § =1/2, the above model has been extensively
studied. Its isotropic (J{ = J;, J; = J») version has a rich
magnetic phase diagram exhibiting states with competing
unconventional orders, both for a ferromagnetic3’7 and an
antiferromagnetic®~'> NN exchange interaction J;. In particu-
lar, the vector chirality (VC), which is a quantum remnant of
the classical helical spin order and is equivalent to the local
spin current, competes, on the one hand, with multipolar orders
characterizing quasicondensates consisting of multimagnon
bound states, and, on the other hand, with the two-component
Tomonaga-Luttinger liquid (TLL2)'® where the two com-
ponents correspond to magnons with momenta around two
degenerate dispersion minima at inequivalent points in the
Brillouin zone. The same set of phases has been found in the
anisotropic version of the model as well.'*

The model (1) with S = 1/2 and a ferromagnetic (FM)
NN coupling has been discussed recently in connection with
the description of several quasi-one-dimensional magnetic
materials such as LiCuVQy (see Refs. 15-18), Rb,Cu,Mo3 01,
(see Ref. 19), Li,ZrCuQOy (see Ref. 20), and anhydrous CuCl,
(see Ref. 21).

For higher values of S, not much is known about the
magnetic phase diagram of frustrated chains. A theoretical
approach based on bosonization® predicts that in the regime of
two weakly coupled antiferromagnetic (AF) chains (|8 < 1),
a VC phase completely fills the magnetic phase diagram for
all nonvanishing values of the magnetization between zero
and saturation. On the FM side (8 < 0), for spin S > 1 chains
right below the saturation field, a recent large-S analysis in
the framework of a dilute magnon gas approach?® predicts
the existence of either a VC phase, for B.(S) < 8 <0, or
a metamagnetic magnetization jump, for —4 < B < B.(S),
with B, (S > 6) = —4. Numerical studies of magnetization
curves®? have established the universal presence of a mag-
netization plateau at one third of the saturation value in
antiferromagnetic chains with § =1, 3/2, and 2, while a
metamagnetic jump at saturation has been found in FM
chains®? for S = 1 and 3/2 (metamagnetic jumps have been
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observed earlier in § = 1/2 chains’ as well, particularly at
saturation for 8 — —4). The numerical analysis of correlation
functions'®>* has been limited to cuts at the fixed value of the
frustration parameter 8 = 1, and has led to the conclusion
that the field-induced VC phase is present in AF chains with
higher § as well (values up to S =2 have been studied).
The TLL2 phase has been observed in S = 1/2 frustrated AF
chains,®!'=13 in anisotropic S = 1/2 frustrated FM chain'*
as well as in S =1 chain with bilinear and biquadratic
exchange.'3?> Indications of its existence have also been found
in the form of kinks in magnetization curves in higher-S
frustrated AF chains.??

In this paper, we study the ground state of a strongly
frustrated (|B| < 4) spin-S chain (1) in strong magnetic
fields in the immediate vicinity of saturation. Just below the
saturation field, the system can be represented as a dilute lattice
gas of magnons, and since in the case of strong frustration the
magnon dispersion has two degenerate minima at inequivalent
points =0 in momentum space, this lattice gas is effectively
a two-component one. We present a theory of effective
interactions in such a dilute magnon gas that is especially
adapted to the one-dimensional case, does not involve an
1/S expansion, and thus allows us to draw quantitative
predictions for arbitrary spin. We establish the magnetic phase
diagram of isotropic and anisotropic frustrated chains close
to saturation and study phase transitions between several
nontrivial states, including TLL2 and VC phases, and phases
with bound magnons. Particularly, we show that the TLL2
phase appears in FM and AF chains for all values of the spin
S. We complement our analytical results with density matrix
renormalization group?®?’ (DMRG) simulations. Specifically,
we compute the central charge as a function of 8 (at fixed
magnetization close to the saturation value), which allows us
to locate phase transitions between one- and two-component
states. In order to identify those one-component states that
have vector chiral order, we further calculate the chirality.
Our DMRG results for the transition from the VC to the
TLL2 phase are in a good agreement with our theoretical
predictions.

The structure of the paper is as follows: in Sec. II, we
describe the mapping of the spin problem to the dilute
two-component lattice Bose gas and present the theory
allowing us to calculate effective interactions in such a gas
for general spin S. In Sec. III, the two-magnon scattering
problem in a frustrated chain is considered, and its links to
the effective theory of Sec. II are established. Section IV
discusses the specific predictions of the theory for frustrated
spin chain models with different S and either isotropic or
anisotropic exchange interactions, while Sec. V presents
the results of the numerical analysis and their comparison
with analytical predictions. Finally, Sec. VI contains a brief
summary.

II. EFFECTIVE TWO-COMPONENT BOSE GAS MODEL

We are interested in the interactions between magnons in
the regime of a dilute magnon gas, i.e., for values of the field
H just slightly below the saturation field H;. Because of the
diluteness of the gas, two-body interactions dominate. It is
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convenient to use the Dyson-Maleev representation®® for the
spin operators in Eq. (1):

biby
St =+28b,, S, = «/251;1(1 - F)

S:=S—bb

n n-n’

3

where b, are bosonic operators acting at site n. To enforce
the constraint b,T, b, < 28, one can add the infinite interaction
term to the Hamiltonian, which reads

Hi>H+UY (b)) U—+oo, (4

where : (- - -) : denotes normal ordering. Obviously, at the level
of two-body interactions, this term is important only for S =
1/2.

Passing further to the momentum representation for bosonic
operators, one can rewrite the model (1) in the following form:

1 , ‘
H =Y (ex — wbjb, + o7 > Vo kb, bl byby.
k kk'q

(&)

Here, L is the total number of lattice sites, the chemical
potential is u = H; — H, where

Hy =281 (1 + B*/8) + 28(Jf + J5)

is the saturation field®® for the case of a strong NNN interaction
|J1] < 4J,, which is of our main interest here. The magnon
energy

ex =28(Jicosk + Jycos2k — Jf — J5)+ Hy  (6)

is defined in a way that ensures that min &, = 0. The lattice
constant has been set to unity. It is easy to convince oneself
that &; does not depend on Jy,. The dispersion & has two
degenerate minima at k = £Q, where

Q = arccos(—B/4).

The two-body interaction V,(k,k’) generally depends on the
transferred momentum ¢q as well as on the incoming momenta
k, k'

/ JNg) =120 (k) + J(KN], S =1
Vy(k,k') = . ~ . (D
U+Jq), U— 400, S§S=1/2
where
J(k) = 2Jy cosk + 2J, cos 2k, 9
(

Ji(k) = 2J{ cos k 4 2J5 cos 2k.

It is easy to see that in this notation &, = S[J (k) — J(Q)].
The model (5) defines a gas of bosons with a nontrivial
double-minima dispersion, on a one-dimensional (1D) lattice.
We are interested in the renormalized two-body interaction in
this gas in the dilute limit, i.e., u — 0. In the © — 0 limit, the
self-energy vanishes,*” so the full propagator coincides with
the bare one. Then, the Bethe-Salpeter (BS) equation for the
renormalized two-body interaction vertex I'y(k,k’; E) (where
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FIG. 1. The ladder approximation to the Bethe-Salpeter equation
for the renormalized two-body interaction vertex I',(k,k’; E). Solid
lines denote bare propagators. The approximation becomes exact at
w— 0.

E is the total energy of the incoming particles) in the limit
w — 0 takes the following simple form:*!

Fq(k»k/; E)

= V,(k,k') — %Z

P

Vq—p(k + P,k/ - P)Fp(k,k/é E)
Ek+p + E—p — E ’

©))

This expression is schematically shown in terms of Feynman
diagrams in Fig. 1. For the physical “on-shell” vertex, the
energy is fixed at E = & + &, but we keep Eq. (9) in a general
form for reasons that will become clear shortly.

At a low density of magnons (small chemical potential w),
the system is mainly populated by particles with momenta
around the two dispersion minima at +Q, which at low ener-
gies can be interpreted as two different bosonic flavors. One
can obtain the low-energy effective theory in the form of the
Gross-Pitaevsky-type energy functional for two-component
field (for the outline of the derivation, see Appendix A):

V(DaZ
ngzfdx[z | 2m| +1/20% (n}

a=1,2

+ n%)

+ Diyning — pu(ng + nz):| . (10

Here, ®'2 are the macroscopic bosonic fields that describe
magnons with momenta k lying within the intervals |k £ Q| <
A around the dispersion minima, A is an infrared cutoff,
and n, = |®“|? are the corresponding densities. Both bosonic
species have the same effective mass

"=\ |l,) T Sh6—pY)

For the sake of clarity, the Planck constant is set to unity.
The macroscopic couplings I', are given by

I =T3(0.0:0),
Iy = T8(—0,0;0) + I'5(~0,0:0),

where the vertex function I ;\ (k,k’; E) is the solution of the BS
equation (9) with the infrared cutoff |p| > A introduced into
the sum over transferred momentum p.

As noticed first by Batyev and Braginskii,’! for a model
with short-range interaction, the solution of Eq. (9) can be
expressed in terms of a finite number of Fourier harmonics in
the transferred momentum. In our case, from the structure of
V,(k,k') it is easy to see that I',(k,k"; E) generally contains
harmonics proportional to 1, cos g, sing, cos 2g, and sin 2q.
The integral equation thus is reduced to a system of five linear

12)
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equations that can be solved for general spin S, thus no 1/S
expansion is necessary. For the purpose of finding only the
effective couplings I'y1, I'1,, the number of linear equations in
the general problem outlined above can be reduced from five
to three, see Appendix B.

The point I'j; = I'j» corresponds to the enhanced SU(2)
symmetry at the level of the effective low-energy theory. For
I';» < TI'yy, the ground state of the gas contains an equal density
of the two particle species, and for I'1, > I'1; just one of the
two species is present in the ground state. Recall that in our
spin problem the total number of each species is not separately
fixed, in contrast to a typical setup for atomic Bose mixtures. In
a setup with fixed particle numbers, the ground state at I'j; <
I'1; is in the mixed phase, and I}, > I'j; corresponds to phase
separation. In the spin language, in two or three dimensions the
state with only one bosonic species corresponds to the helical
magnetic order, while the state with an equal density of the
two species corresponds to the “fan” phase with coplanar spin
order.*” In one dimension, no long-range order is possible, and
the state with only one species can be identified with the vector
chiral (VC) phase,” while the two-species state corresponds to
the two-component Tomonaga-Luttinger (TLL2) liquid.'>>

The approach that we have just described is well known in
the physics of magnetism in a strong field*'=3” and is rather
straightforward for three-dimensional systems where in the
limit A — O the couplings '} are well defined and acquire
finite values. In the case of low dimensions, however, for
A — 0 the integral in Eq. (9) diverges at p = 0 for (k,k") =
(0,0), and for (k,k") = (—Q, Q) there are divergences both
at p=0 and p =2Q. Thus the above scheme needs a
modification in the low-dimensional case. The couplings I},
can be interpreted as functions of the running cutoff A in the
spirit of the renormalization group (RG) approach. The RG
flow is then interrupted at a certain scale A = A, that depends
on the particle density. This approach has proved to be quite
successful for one-component Bose gas.?3#! The focus of our
study here is to extend this approach to the two-component
gas, which, as we have seen, is of special interest for frustrated
systems. In this paper, we concentrate on the one-dimensional
case.

Solving the BS equation (9), one can show that the
expansion of I'} as a series in A has the following form:

1 1

—=—+—+OA +-

Ff\l TA  gn (A)

1 1 13)
— = — 4+ — 4+ 0(A

rx nA+ +O(A) + -+

Note that the expansion starts with the term proportional to
1/A that turns out to be the same for both couplings. Thus,
for A — 0 both I'{} /A and F 5/ A flow to the same universal
value, which reflects the tendency of the RG flow to restore
the SU(2) symmetry for the two-component Bose mixture.*?
The parameters g1, and gi,, which determine the second
term in the expansions (13), have a special meaning: under
certain conditions they can be identified (see Appendices A
and C) with the effective bare coupling constants of the
continuum two-component Bose gas with a contact interaction
g118(x — x’) between the same species [here §(x) is the Dirac &
function] and an interaction of the form g;,8(x — x’) between
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FIG. 2. The typical behavior of the running coupling constant I"
as a function of the infrared cutoff A in a continuum model of a Bose
gas with a bare contact interaction g [i.e., the two-body interaction
potential is approximated by the delta-function U(x) = gé(x)]:
(a) for the case of the repulsive coupling g > 0 and (b) for the case
of attraction g < 0.

different species. Such a continuum model is essentially the

two-component Lieb-Liniger model. The behavior of running
. A . . . .

couplings I';} in this problem is exactly given by the first two

terms in Eq. (13).*> In the semiclassical limit § — oo, the

parameters g, are given by simple expressions:*?

gu = B4 +2(1 + J; + J7) = H/S,

Jipt
16

(14)

JZ
g = + 8 (1/2+—1—J;>+4(J;+1).

4

Typical behavior of '/, for the Lieb-Liniger model is
shown in Fig. 2. It is clear that 'y, changes its behavior
on the characteristic scale Ag ~ g,»m. For the repulsive case
(gap > 0), this is simply the scale at which the renormalized
coupling '} starts to deviate considerably from its bare value,
while for the case of attraction (g, < 0), the renormalized
coupling has a pole at A = A that technically limits the RG
flow and physically indicates the existence of bound states
with energy E, ~ Aj/2m.

It is important to realize the following: since we actually
deal with a lattice problem that has a natural ultraviolet cutoff
Ayy ~ 1, the interpretation of g,; as physical bare couplings
makes sense only if the condition
s)

lgulm <1, |gnim <1

is satisfied (see Appendix C for more details). If the above
condition of weak coupling is broken, parameters g,; cannot
be interpreted as physical bare couplings, and only the fully
renormalized interactions

A=A
Fab = Fab )

retain their meaning as effective low-energy coupling con-
stants. For instance, if g,, < 0 but |g,s|m 2 1, there is no
attraction in the lattice problem and no bound states are
present: directly looking at the behavior of 'Y} for the lattice
problem, one can convince oneself that there is no pole in
A. In the strong coupling regime, |g.»|m 2 1, the sign of g,
merely determines the curvature of the I', dependence near
A = 0, but the renormalized coupling itself remains positive.
The only physical meaning of g,; in such a case is that they
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are connected to the asymptotic phase shift of scattering states
at small transferred momenta, see Sec. III below.

The scale A, at which the RG flow has to be interrupted,
can be easily fixed from the well-known exact result for the
single-component dilute Bose gas:** in the limit & — 0, the
particle density n must behave as

n=QCmu x> (16)

Indeed, in the phase with only one bosonic species, which
corresponds to I'jp > I'jq, the density of particles obtained
from the semiclassical description of Eq. (10) is n = u/I'yy,
so in order to fullfil Eq. (16), one has to assume that at © — 0
the effective coupling behaves as I'j; — w4/ /(2m) and thus

a7

In the phase with equal densities of different species, which
corresponds to "1, < I'jy, the total density at the semiclassical
level of Eq. (10) is n =2u/(I'1; 4+ I'1p). It follows from
Eq. (13) that for 4 — 0 the behavior of the density is described
by the same expression (16) as for the one-component gas.
Thus, at the transition from the vector chiral phase to the
two-component TL liquid, in the regime of a low magnon
density there is no magnetization kink (cusp), in agreement
with numerical results.®!'# The reason for that is the effective
fermionization of the magnon gas and formation of a single
Fermi sea at low densities, see the discussion below in Sec. III.

From Egs. (13) one can see that the transition point between
the TLL2 and VC phases, that is determined by the condition
I'1; =Tz, can be detected by the crossing of g, and gj;
(i.e., a change of sign of g;» — g1; that may happen if one of
the couplings goes through a pole does not correspond to a
phase transition). We will consider specific examples below in
Sec. IV.

There is another way of calculating the renormalized
interaction in low dimensions, which avoids introducing the
infrared cutoff. In Refs. 45 and 46, it has been shown that a
good approximation to the correct “many-body” expression for
the effective four-point vertex function (i.e., the two-particle
scattering amplitude in the presence of a finite particle density)
at low energy Fé” B(k,k'; E — 0) can be obtained from the
“bare” two-particle scattering amplitude Fq(k,k’; E) taken at
a finite negative energy E = —E, that is proportional to the
chemical potential p:

Ay =/ um/2.

IYP(kk's E— 0) ~ Ty(k,k';—E,), E.=Cp. (18)

Here, the coefficient C turns out to depend on the dimension d
of the problem: for d = 2, one obtains C = 1, and C = 7%/8
for d = 1. The two-particle scattering amplitude ', (k,k’; E)
is precisely the solution of Eq. (9) since # = 0 means that no
other particles are present except for the two that scatter off
each other.

Following this scheme, we can define the energy-dependent
coupling constants as

I (E) = To(Q. 03 E),
Fia(E) = Lo(=0Q.0: E) + I'yo(= 0,0 E)

(note that the expressions on the rhs of Eq. (19) are now calcu-
lated without any infrared cutoff). Solving the BS equation in

19)

064420-4



FRUSTRATED SPIN CHAINS IN STRONG MAGNETIC ...

the symmetrized form (B2), Eq. (B3) for I'y,(—E,), one can
show that the expansion of I',!(— E,) in E, has the following
structure:

1 :(m>1/2+L+O(E1/2)+”'
'i(—=E,) 4E, g * ' (20)

: =<m)1/2+i+0(E”2)+---.
To(—E,) 4E, g1 *

The similarity with the expansion in the infrared cutoff, i.e.,
Eq. (13), is obvious. Replacing E, with its 1D value E, =
721/8, one can readily convince oneself that

TA = Tup(—E,) + 0(u®?), 1)

i.e., both regularization methods yield equivalent results in
the dilute limit 4 — 0. However, for practical purposes, the
off-shell method is more convenient since it allows an easier
calculation of all integrals involved.

III. TWO-MAGNON PROBLEM IN FRUSTRATED
SPIN CHAINS

A general two-magnon state with the total quasimomentum
K can be written in the form

|\IJK> — Z Cre[K(n+%)

n,r=0

Sr?Sn_+r|F>
(FISy, St Sy Sy, |F)

where |F) is the fully polarized state. The Schrodinger
equation for the two-magnon problem leads to a coupled
system of equations for the amplitudes C,, presented in
Appendix D, that is a generalization of the one for the case
of an SU(2) symmetric exchange.?? Both scattering states and
bound states of two magnons can be obtained from the solution
of this system. The bound states can be obtained along the lines
derived for an SU(2) symmetric exchange.’”> Here, we discuss
the solutions for the case of continuum states that describe
scattering of two magnons with momenta &, k.

Solving this scattering problem, we have to distinguish two
cases. In the first case, the problem is nondegenerate, meaning
that for a given total momentum K = k; + k» and energy E
there is only one scattering state. This will be realized when
the momenta of the two magnons participating in the scattering
are in the vicinity of the same dispersion minimum, e.g.,
ki = Q + k, and k, = Q — k. In this nondegenerate case, the
system (D3) can be solved by using the following ansatz:

C, = cos(kr + 811) +ve™", r>=1. (22)

This ansatz satisfies the recurrence relation in Eq. (D3) for
(r = 3) if kg is a root of the following equation:

K
Ji cos 3(005 k — cosh k) + J, cos K (cos 2k — cosh 2«)
=0. (23)

Furthermore, to be a physically acceptable solution, the correct
root should satisfy Re(ky) > 0. The three unknown constants
Co, v, and §; are determined from the first three equations of
Eq. (D3).

To extract the scattering length a;; from the phase shift §;,
one can use the same relation as found in the one-dimensional
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continuum model of a one-component Bose gas interacting
via a short-range potential, namely, 8;;(k) — —% —ay k at
k — 0, or in a different form,

an = lim[cot(311)/k]. (24)

If the short-range potential between two particles of mass m
with coordinates x, x’ is approximated by the contact potential
of the form U(x — x’) = g;18(x — x’), then the scattering
length a;; is connected to the bare coupling g, as follows:*’

g1 = —2/(anm). (25)

In the second case, there is more than one scattering state
for a given energy and total momentum. This degeneracy stems
from the parity symmetry and the double-minimum structure
of the single-magnon dispersion. This case will be realized
if the momenta of two scattering magnons are in the vicinity
of two different dispersion minima. For instance, the state
with the total momentum K = 0 that corresponds to k| =
O + p, kp = —Q — p (half relative momentum k = Q + p)
is degenerate with another scattering state with k; = Q — p,
ky = —Q + p (half relative momentum k = Q — p). This
degeneracy is visible at the lower bound of the two-magnon
scattering continuum around K ~ 0, depicted in Fig. 3.
Generally, p # p because the shape of the one-magnon
dispersion curve is not exactly symmetric around the minima
at £Q, but 5 — p at p — 0. The relative momenta k, k of
two degenerate states with the same total momentum K are
connected by the equation

K - -
Ji cos E(COS k — cosk) + J, cos K(cos 2k — cos2k) = 0.

(26)
E
- \ —— '//,r K

FIG. 3. (Color online) Single-magnon and two-magnon spectra
for the isotropic spin-1 chain with g = —2.5 at the field H > H;
as a function of the total momentum K. The solid line shows the
single-magnon dispersion with minima at +Q. One can clearly see
degeneracies of the scattering states in the vicinity of the lower bound
of the two-particle continuum for K = 0 as well as in some high-
energy regions. A peculiar feature of the spectrum is the existence of
a stable two-magnon bound state inside the continuum of scattering
states (this happens for any spin § > 1/2 and 8 < 0). The procedure
of finding two-magnon bound states in isotropic ferromagnetic S >
1/2 frustrated chains was discussed in detail in Ref. 22, and here we
include them for the sake of completeness.
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For K = 0, the solution of the above equation takes the
form

27

from which, in particular, it follows that for p = (k — Q) — 0,
one has j = (Q — k) = p + O(p?).

The Schrodinger equation for the scattering states Eq. (D3)
is in this case solved by the following ansatz:

k = arccos(2cos Q — cosk),

C, = coslkr + a(k)] + v(k)sin(kr), r>1. (28)

From the form of the scattering state, Eq. (28), it follows that if
one prepares the incoming state of two magnons at ¢t — —oo0
with relative momentum k, the outgoing state at t — +oo will
be a superposition of states with relative momenta k and k.
To determine the three unknown quantities Cy, o, and v we
again use the first three equations of Eq. (D3). In Appendix E,
we show how to extract the interspecies scattering phase shift

coso
\/cosz o + (v + sina)?

from the scattering state Eq. (28). The scattering length is then
obtained in analogy to the case of the intraspecies scattering,

(30)

81p = — arccos (29)

a2 = lim[cot(812)/ pl.

and the interspecies coupling is given by a formula completely
similar to Eq. (25):

g12 = —2/(map). €29}

Itis worth noting that scattering states vanish when p — 0, i.e.,
when the magnons’ momenta tend to the dispersion minima
ki — Q, ko > —Q. This is a consequence of fermionization
at low densities and indicates that different “species” in
fact form a single Fermi sea at low energies. The existence
of a single Fermi sea is the reason for the absence of
a magnetization cusp at the transition between the vector
chiral and TLL2 phases.*® It is worth noting that a similar
phenomenon is known in the one-dimensional Hubbard model:
in the limit of low electron density, the electrons with different
spin form a common Fermi sea.*’

The resulting coupling constants for S = 1/2 chain are
shown in Fig. 4. One can see that on the antiferromagnetic
side (J; > 0) the scattering length a,; is typically small (of
the order of the lattice constant) and goes through zero (i.e.,
g11 has a simple pole). Similarly, on the ferromagnetic side
there is a pole in g},. In the previous section, we have seen that
if the condition (15) is not satisfied, a mapping to the effective
continuum model of the Lieb-Liniger type (with contact
interactions) is problematic. In relation to that, we would
like to discuss the scattering length for an unfrustrated (J, =
J; = 0) spin-1/2 X X Z chain, which shows a similar behavior.
Setting J; = 1, one can write the analytical expression for this
scattering length as

axxz = Ji /(1 + J). (32)

Close to the ferromagnetic point, J{ = —1, it shows resonant
behavior and this allows one to develop the effective Lieb-
Liniger model as the continuum limit in this region.’® At Ji=
0, however, ay x z goes through zero and this can be interpreted
as follows: the continuum limit of the X X Z spin-1/2 chain for
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0
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FIG. 4. (Color online) Bare coupling constants for § = 1/2: solid
lines correspond to the calculation based on the regularized Bethe-
Salpeter equation, while symbols show the results extracted from the
solution of two-magnon scattering problem. In the region 8 > 0.614,
the intraspecies coupling g;; enters the super-Tonks regime. The
interspecies coupling g, enters the super-Tonks regime in the region
B> 2.

J{ > 0does not fit into the description in terms of the repulsive
Lieb-Liniger model, rather, it is a super Tonks gas (sSTG)’! with
the Luttinger parameter K < 1. Including now the second-
neighbor interaction J5 (but not the hopping J>), one obtains
that at J{ — oo and J; — oo, the scattering length goes to 2.
Thus it seems that in the regime of strong coupling, |g|m > 1,
the scattering length has a different physical meaning, namely,
it can be interpreted as the excluded volume of a particle. What
is the correct continuum limit in this case, however, remains a
complicated issue.

IV. ANALYTICAL PREDICTIONS FOR FRUSTRATED
SPIN-S CHAINS

The formalism developed in Sec. II is rather general and
applies to any lattice Bose gas with degenerate inequivalent
dispersion minima. Let us look in more detail at the predictions
of our theory for the frustrated spin chain model defined by
the Hamiltonian (1).

Figures 4 and 5 show the values of the “bare couplings” g,
and g, for frustrated spin-S chains with isotropic interactions
(e, Jf = Ji, J; = J) with S = 1/2, 1, and 3/2 as functions
of the frustration parameter 8 = J;/J,. One can see that even
for the lowest spin values, S = 1/2 and 1, there is an excellent
agreement between the approach based on the regularized
Bethe-Salpeter equation and the results extracted from the
direct solution of the two-magnon scattering problem.

A. Ferromagnetic frustrated isotropic chains (J; <0, A =1)

On the ferromagnetic side (8 < 0) the intraspecies coupling
g11 remains small enough for its interpretation as the bare
coupling of the effective continuum Lieb-Liniger model to
be justified (strictly speaking, this is true for S > 1 where
|g11|lm < 1, while for § = 1/2 the coupling values are higher,
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FIG. 5. (Color online) Bare coupling constants for isotropic
frustrated spin chains with (a) S =1 and (b) S = 3/2: solid lines
correspond to the calculation based on the regularized Bethe-Salpeter
equation, while symbols show the results extracted from the solution
of two-magnon scattering problem.

lg11lm < 0.5). For § = 1/2, this coupling remains negative in
the entire range of —4 < 8 < 0, which indicates the presence
of bound states and is consistent with known numerical
results.57-2

For § = 1, the intraspecies coupling g;; becomes negative
in the region —4 < 8 < By >~ —2.11 [see Fig. 5(a)], which
signals the appearance of bound magnon states. As shown
previously in Ref. 22 by means of an 1/S expansion and
numerical analysis, this also leads to metamagnetism (a finite
jump in the magnetization at the saturation field). The finite
value of this jump can be understood in our approach by
noticing the fact that the full renormalized effective coupling
FlAl* depends on the particle density n = 1 — M, where M
is the magnetization in units of saturation, and for 8 < B¢
the coupling Fﬁ* becomes positive at M below some critical
value that determines the magnitude of the jump in M that
is necessary to make the system stable again. The values of
M that are spanned by the jump correspond to states with
magnons collapsed into a single “drop.” Such states have
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FIG. 6. (Color online) The critical value S,; of the spin that marks
the disappearance of the metamagnetic phase, as a function of the
order n of expansion in 1/S. The exact value is S, = 5, while the
leading-term calculation presented in Ref. 22 gives S, = 6.

negative magnetic susceptibility and are avoided in the “grand
canonical” setup when one fixes the external magnetic field H.

The numerical results of Ref. 22 also suggest that the
collapsed state has a finite vector chirality. This is easy
to understand by observing that the interspecies interaction
remains repulsive in the entire ferromagnetic region —4 < 8 <
0. Thus, it is energetically favorable to form a “drop” involving
only one magnon species. As a side note, in this case, g;; can
be directly interpreted as the bare coupling of the effective
continuum theory, even though the interspecies coupling gi»
remains large |g12|m 2 1. This can be done because the system
is effectively in a one-component state.

Frustrated ferromagnetic chains with spins up to § = 9/2
behave qualitatively in the same way as described above for
S = 1. The interspecies “bare coupling” gi, goes through a
simple pole only for S = 1/2 (for S =1 it goes through the
pole of order 2 at 8 = 0), so for § > 1 it becomes positive
everywhere (see Figs. 4, 5, and 7). The intraspecies coupling
g11 remains small and vanishes at = . Upon increasing S,
the transition point 87 quickly moves very close to 8 = —4
and disappears for S > 5. This is clear from the behavior of
g at g - —4:

S-5

N 2 5/2
_4(S+1)('8+4) +OlB + 4] (33)

811

Thus, S, = 5 is the critical value of spin where the metamag-
netic behavior vanishes in isotropic chains (for S > 5, it exists
only in the presence of an easy-axis anisotropy). We would
like to note that Ref. 22 reported a slightly different value of
Ser = 6; this discrepancy is due to the fact that Ref. 22 used just
the leading term in the large-S expansion, while our present
approach is exact to all orders in 1/S. Figure 6 illustrates the
behavior of S, as a function of the order of the 1/S expansion.

B. Antiferromagnetic frustrated isotropic chains
(J1>0,A=1)

On the antiferromagnetic side 0 < 8 < 4, the prominent
feature of isotropic chains is that for realistic (low) values of
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FIG. 7. (Color online) Typical behavior of the “bare couplings”
g1 and gy, for isotropic spin chains with small and large spin
S as functions of the frustration parameter S, compared to the
semiclassical, S — oo result (shown with thin solid line for g,; and
thin dashed line for g1,): (a) for small §, there is a single crossing
of g1 and g;, curves, while (b) for large S > 12, those curves cross
three times (see the inset).

the spin S the condition (15) is not satisfied, as can be seen from
Figs. 4 and 5. Moreover, g;; changes its sign through a pole
in this interval of 8, for any value of S. As discussed above,
in this regime, the system cannot be mapped onto an effective
continuum Lieb-Liniger-type model; however, a mapping onto
the effective classical Gross-Pitacvskii model (10) is still
possible, and the corresponding effective couplings I'y; and
I'1» remain positive in the entire antiferromagnetic region. For
large S, the mass m o S~! becomes small (except near the two
Lifshitz points B = £4) that ensures that in the limit S — oo,
the condition (15) is again satisfied everywhere except for
small regions around the pole and the antiferromagnetic
Lifshitz point.

Figure 7 shows the typical behavior of the “bare couplings”
g1 and g, for isotropic spin chains with small and large spin
S, compared to the semiclassical S — oo result. In the S —
oo limit, g;» > g1 everywhere, and g, = g;; only at two
points B = —4 (the ferromagnetic Lifshitz point) and g = 2
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FIG. 8. (Color online) Phases of isotropic frustrated antiferro-
magnetic (J; > 0) spin-S chains just below the saturation field, as
predicted by our effective two-component Bose gas theory. The region
B > 4 corresponds to a one-component TL liquid phase (TLL1).
If one varies B at fixed S, there is a single transition between the
two-component TL liquid (TLL2) and the vector chiral (VC) phase
for S < 12, while for S > 12, one encounters three consecutive
TLL2-VC transitions. Symbols correspond to the transition points
extracted from our numerical analysis of chirality correlators, see
Sec. V for details.

(the Majumdar-Ghosh point).** For small S, there is only one
crossing of g1; and gy, at some 8 = B; < 2, indicating a
transition between the VC phase that exists in the interval
0 < B < B; and the TLL2 phase that occupies the region
B1 < B < 4. With increasing S, the transition point 8; moves
toward the Majumdar-Ghosh point 8 = 2, see Fig. 8 and Table
L. For very large S > 12, two more crossings of the g;; and g1,
curves appear [see the inset in Fig. 7(b)], and another piece
of the VC phase emerges in the region 2 < § < 4, filling it
completely as S goes to infinity (see Fig. 8).

C. Anisotropic chains (A # 1)

Motivated by the availability of numerical results'* for
anisotropic frustrated ferromagnetic chains with S = 1/2, we
would like to check our theoretical predictions for anisotropic
systems as well. Figure 9 shows the behavior of the “bare
couplings” for § = 1/2 anisotropic chains with two different
values of f <0 as functions of the anisotropy J{/Ji =
J5/Jo = A. For B =—0.3, the intraspecies coupling g
remains small and vanishes at A >~ 0.56, while g, is negative
and large (|gi2|m 2 1). This indicates a transition from the
vector chiral phase at A < 0.56 to a phase with bound states
at A > 0.56. This agrees favorably with the numerical results

TABLE . Critical values of the exchange coupling 8 = J,/J, for
the transition from the VC to the TLL2 phase in isotropic frustrated
antiferromagnetic chains of spin § at the saturation field, from the
dilute Bose gas theory of the present work (cf. Fig. 8).

S 1/2 1 3/2 2 12

1.682 1.688 1.694  1.702 1.80, 2.89, 3.13

ﬂTLL27VC
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A=171=111

FIG. 9. (Color online) Bare coupling constants for S =1/2
anisotropic chain with J{/J, = J5/J, = A: (a) J;/J, = —0.3 and
(b) Ji/J, = =3.0.

of Ref. 14, which reports a transition between the chiral and
nematic phases at A >~ 0.6.

For 8 = —3, there is a crossing of g|; and g, at A >~ 0.5
[see Fig. 9(b)] that indicates a transition between the TLL2
phase at A < 0.5 and the VC phase at A > 0.5, nicely fitting
to the numerical data of Ref. 14. Both g; and g, go through
poles and become positive (which does not change the phase
since in the course of this change one always has I'1; > I'}),
then they become small and positive around A = 1, and g
crosses zero at A ~ (0.947, indicating a transition from the VC
phase to a phase with bound states (g1, changes its sign later,
at about A = 1.05). Again, this is in good agreement with the
numerical study of Ref. 14, which observes a transition around
A =0.95.

Figure 10 shows the predicted phase diagram of anisotropic
S =1/2 and S = 1 chains immediately below the saturation
field in the (8, A) plane. One can see that with increasing S the
TLL2 phase shrinks and the phase with bound states is pushed
toward higher A (for § > 5 it lies entirely in the easy-axis
region A > 1). The vector chiral phase dominates the phase
diagram. One can conclude that the present theory reliably
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FIG. 10. (Color online) Phase diagrams of anisotropic (J{/J; =
J5/J» = A) frustrated chains with (a) S = 1/2 and (b) S = 1 right
below the saturation field, derived from our dilute Bose gas approach.
The boundary between the two-component Tomonaga-Luttinger
liquid (TLL2) and the vector chiral (VC) phases has been extracted
from the condition g;; = g;,. At the boundary of the region labeled
“Bound states” the intraspecies coupling g;; changes its sign from
positive to negative (it turns out that g;; always becomes negative
before g, does). The bound-states region for S = 1/2 in fact contains
multiple phases corresponding to bound states of a different number
of magnons,®’ which is beyond the scope of the present theory
that can only detect the presence of two-magnon bound states. For
S =1, the bound-states region is metamagnetic,22 i.e., it exhibits a
finite magnetization jump immediately below the saturation field.
For § = 1/2, circles correspond to the numerical data of Ref. 14, and
the diamond is the location of the VC-TLL2 transition at A =1 as
found numerically in Refs. 11 and 12. For S = 1, symbols denote our
DMRG results (see Sec. V for details): diamonds and circles denote
the phase transition points extracted from the analysis of the chirality
correlators and the magnetization curves, respectively.

detects the transition points in anisotropic ferromagnetic
chains even at such low values of the spin as § =1/2. It
is worth noting that the transition point between the TLL2 and
VC phases in the 8 = —3, § = 1/2 chain comes out correctly
despite the fact that both |gj»|m and |g;;|m are large at the
transition. On the antiferromagnetic side, the only numerical
data available in the literature is for the isotropic S = 1/2
chain."*'? In this case, for a reason that is not yet clear, the
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agreement between the theory and numerics is considerably
worse.

V. NUMERICAL ANALYSIS

To verify our theoretical predictions, we have performed
extensive density matrix renormalization group (DMRG) sim-
ulations. For a detailed description of the DMRG technique,?
we refer the reader to the review Ref. 27. We focus on two
quantities: first, we calculate the central charge from the
scaling behavior of the von Neumann entropy, which allows
us to distinguish one- from two-component phases. Second,
we compute the vector chirality order parameter from the
analysis of chiral correlation functions, to identify those one-
component phases that have long-range vector chiral order.
The goal is to provide a numerical check of the phase diagrams
for isotropic and anisotropic frustrated chains, Figs. 8 and 10,
respectively. In order to identify the region with bound states
in anisotropic chains, we calculate magnetization curves. We
have studied systems of different sizes L ranging from L = 50
to 400, both with periodic and open boundary conditions,
typically keeping 600 to 1500 states in most calculations.

A. Central charge

Our theory suggests that close to the saturation field, in
antiferromagnetic frustrated chains with spin values of 1/2 <
S < 12, one encounters two phase transitions when increasing
B from zero: (i) from the VC phase into the TLL2 phase and
(ii) from the TLL2 phase into the TLL1 phase (compare Fig. 8).
The TLL2 phase has central charge ¢ = 2, while the VC and
the TLL1 phases have ¢ = 1, suggesting that a calculation of
¢ can be helpful in determining the phase boundaries.

To accomplish that, we exploit that the von Neumann
entropy S,n can be obtained as a byproduct of any DMRG
calculation. Furthermore, from the finite-size scaling of S,y,
one can extract the central charge. The von-Neumann entropy
is defined as

Son, (1) = =Tr(p; In py), (34)

where p; is the reduced density matrix for a subsystem of
length / embedded in a chain of a finite length L. In a gapless
state that is conformally invariant, the / and L dependence of
the von Neumann entropy is given by >

c L . T
SUN,L(Z)Zgln ;sm Zl + g,

which is valid for systems with periodic boundary conditions
(PBC). Here g is a nonuniversal constant that depends on the
magnetization M. As DMRG directly accesses the eigenvalues
of these reduced density matrices,’®?’ it is straightforward
to measure Syy,z,2(/) with this method. In the case of open
boundary conditions (OBC), the von Neumann entropy is given
by one-half of the formula (35), where besides g, there is also
a contribution that oscillates as a function of /.

Typical DMRG results for the von Neumann entropy of
chains with L = 64 spins and PBC are presented in Fig. 11
for § = 2, together with a fit of Eq. (35) to the numerical data
(lines). These fits result in ¢ & 1 for 8 =1 and ¢ & 2.1 for
B =2at M =7/8. As it turns out, there are strong finite-size

(35)
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FIG. 11. (Color online) The von Neumann entropy S,y (/) vs
block length / for S =2 at M = 7/8 for B = 2 (circles) and f =1
(squares). The solid lines are fits to Eq. (35), resulting in ¢ & 1.01 and
¢ = 2.10, respectively (the last ten data points were excluded from
the fits). Symbols are DMRG data for m = 1500 states.

effects in the estimation of ¢ from fits to Eq. (35), in particular
athigh fields close to saturation, which are our primary interest.
Nishimoto® has recently suggested to calculate ¢ from the
following formula:

. 3[Sun, . (L/2 = 1) — Sun (L /2)]
o In[cos(rr/L)]

which turns out to converge much faster with the system size.
However, the numerical data needs to be sufficiently accurate
for Eq. (36) to yield reliable results, and we found that one has
to push the number of states in a typical DMRG calculation
to about m ~ 1500 to achieve good accuracy. For instance,
for the parameter of Fig. 11, Eq. (36) results in ¢ = 1.005 for
B = 1. We used Eq. (36) to extract ¢ whenever the DMRG
calculation proved to be sufficiently accurate, and resorted to
fits to Eq. (35) (or its OBC counterpart) otherwise.

) (36)

B. Chirality order parameter

To study the behavior of the vector chirality, we have
calculated correlators of the form

(kikj), ki =1[Six8inl°. 37
The chiral order parameter « has been extracted as
i = Hm (G ), (38)

li—jI>1

where the index “av” means that correlators were averaged
over pairs of sites (i, j) with the same |i — j|, while care was
taken to stay “in the bulk”, i.e., i and j were kept sufficiently
far away from the ends of the chain. Figure 12 shows typical
vector chirality correlation functions for an S = 1 isotropic
frustrated chain of length L = 200.

C. Numerical results: Isotropic chains

Our results for the central charge of isotropic frustrated
chains are shown in Fig. 13. We have collected data at fixed
magnetization M for S =1, 3/2, and 2. From the figure,
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FIG. 12. (Color online) Typical vector chirality correlation func-
tions for an isotropic S = 1 chain of L = 200 spins.

we clearly identify two phase transitions: (i) at a critical,
S-dependent g 2 3 from TLL1 (¢ = 1) phase into the TLL2
phase (¢ = 2) and (ii) at 8 2 1.6, from the TLL2 phase into
another ¢ = 1 phase. Based on our theory, we expect this
latter phase to have vector chiral order (which is verified by
calculating the chiral order parameter, see below).

The position of the phase transition from TLL2 into VC
depends only weakly on S, consistent with our theory (compare
the values given in Table I). According to our theory, the phase
transition from TLL2 into TLL1 happens at approximately
B = 4, the Lifshitz point, in the limit of M — 1. Our numerical
data for M < 1, however, show that this transition sets in at
a slightly smaller 8 < 3.5 than what one would expect from
Fig. 8. This suggests that the phase boundary depends on M.
Indeed, for instance, in the case of § = 1, this phase boundary
shifts to smaller values of 8 as M decreases, which can be
deduced from the analysis of magnetization curves presented
in Ref. 23, where this particular phase transition shows up as
a kink in M(H). We have not systematically studied the M

TLL1

central charge ¢

-8 S=1, L=128, m=1200
0-0 S=3/2, L=128, m=1200
A-AS=2, =64, m=1200

| | | |
I 15 2 25 3 35 4 45
B=1,/1,

FIG. 13. (Color online) Central charge at M =7/8 for S =1,
3/2, and 2, as extracted from Eq. (36) [The data points in the ¢ ~ 2
region, i.e., 1.5 < B < 2.5 were extracted from direct fits of Eq. (35)
to the DMRG results for S,y . ()]
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FIG. 14. (Color online) Square of the vector chirality order
parameter k> for frustrated isotropic antiferromagnetic § = 1 chain
at fixed value of the magnetization M = 95/100 as a function of the
frustration parameter 8 = J,/J;.

dependence as the DMRG data for S,y ; tends to converge
rather slowly at large M. Our numerical results for ¢ are in
very good overall agreement with the theory.

We next verify that the ¢ = 1 phase at 8 < 1.6 is the VC
phase, by directly calculating the chiral order parameter as
described above; the results are shown in Figs. 14 and 15.
One can clearly see from Fig. 15 that, in agreement with
our analytical predictions, the transition point 8 from the
vector chiral phase to the two-component Tomonaga-Luttinger
liquid increases slowly with the increasing spin value S. Our
numerical results for the transition boundaries in isotropic
frustrated chains are shown as symbols in the phase diagram
of Fig. 8.

Figure 14 illustrates that with increasing system size L, the
VC-TLL2 transition becomes more steep. This is consistent
with the first-order character of this transition as predicted by
the theory (recall that the VC-TLL2 transition corresponds
to phase separation in the language of the effective two-
component Bose gas theory).

For high magnetization sectors, it is possible to study large
spins as well and results for § = 12 are included in Fig. 15. One
should take those S = 12 results with some caution: our data
for small systems (consisting of 80, 100, and 120 sites) still
show a strong nontrivial size dependence [see Fig. 15(b)] that
precludes infinite-size extrapolation, and we could not study
larger systems because of the rapidly growing dimension of the
Hilbert space. Nevertheless, the resulting picture for S = 12
qualitatively agrees with our analytical prediction, namely, one
can see the recurring VC-TLL2 phase transitions in accordance
with the phase diagram of Fig. 8.

D. Numerical results: Anisotropic S = 1 chain

We have studied numerically the phase diagram of the
anisotropic (J5/J, = J{/Ji = A) frustrated spin-1 chain, to
verify the analytically predicted phase diagram of Fig. 10(b).
Figure 16 shows the typical dependence of the chiral-order
parameter « on the frustration parameter 8 for an anisotropic
S =1 chain, at fixed anisotropy A and magnetization M, for
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FIG. 15. (Color online) Square of the vector chirality order
parameter « for frustrated isotropic antiferromagnetic spin-S chains,
at fixed value of the magnetization M = 9/10, as a function of the
frustration parameter 8 = J;/J,: (a) for chains consisting of L = 100
spins, at different values of S; (b) for § = 12 chains of different length
L.

three different system sizes. One can notice that finite-size
effects are not always monotonous, which complicates the
extrapolation to infinite system size.

In Fig. 17, we present our results for the dependence of the
central charge on g, for the same parameters as used for the
chirality in Fig. 16. These data were obtained from systems
with open boundary conditions for which we could obtain
reliable data. The additional oscillatory contributions to S,y
are evident from the inset of Fig. 16. The behavior of the
central charge is consistent with the results for the chirality;
whenever k2 > 0,c = 1. Atboth 8 > 2 and 8 < —3.5, where
« drops to zero, the central charge goes up to ¢ = 2, indicating
the phase transition from VC to TLL2 phase.

As for the regime of almost decoupled chains |B]| < 1,
one should keep in mind that this is a particularly difficult
parameter region for DMRG calculations, and the apparent
deviation from the analytical predictions (according to which
¢ = 2is only realized for one point 8 = 0) is an artefact of the
rapidly deteriorating accuracy at 8 — 0.

In order to study the phase boundary between the VC
and the bound-states (metamagnetic) phase, we have also
calculated magnetization curves, and looked at the value
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FIG. 16. (Color online) Square of the vector chirality order
parameter « for frustrated antiferromagnetic S = 1 chain for A =
0.7, at fixed value of the magnetization M = 9/10, as a function of
the frustration parameter g = J;/J,.

AS*® of the steps by which the magnetization changes. While
inside the VC phase (where magnons interact repulsively) the
magnetization grows in steps of AS® =1 when increasing
the magnetic field, after crossing the metamagnetic region
boundary the height of steps in the magnetization curves
quickly changes to higher values AS* =2, 3,.... Typical
results for M (H) are shown in Fig. 18. In this example (S = 1,
B = —1.2), we see metamagnetic behavior [a jump in M(H)]
directly below the saturation magnetization for A = 1.1, but
not for A =1.02 or 0.98. The results for the onset of the
metamagnetic behavior as a function of A and g are included
in Fig. 10(b) (circles).

Our numerical results for the VC-TLL2 phase boundary
are shown by diamonds in Fig. 10(b). The overall agreement
between the theory and numerics is very good.

5—_ —

| S=1,A=07 PR S SR B
L=200, M=0.9 S sk —p2e6 ]

4 z [ 1
w2 13k —
1 1' I R

3L TLL2 40 100 160 -

block length /

central charge ¢

decoupled
chains

. | . | . | . |
0 -2 0 2 4

B=1,/1,

FIG. 17. (Color online) Main panel: central charge, obtained with
open boundary conditions, for a frustrated antiferromagnetic S = 1
chain for A = 0.7, at magnetization M = 9/10, as a function of
the frustration parameter § = J;/J,. Inset: von Neumann entropy
Syvc()vslat g =1,2.6.
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FIG. 18. (Color online) Typical magnetization curves for the
S =1 chain with 8 = —1.2 at different values of the anisotropy A.
For A = 1.1, the curve exhibits a metamagnetic jump at the saturation
field (similar jump for A = 1, for —4 < 8 < —2.11, has been already
discussed in Ref. 22).

VI. SUMMARY

We have developed an effective theory for low-density one-
dimensional lattice Bose gas with two degenerate dispersion
minima. This study has been motivated by the problem of
the ground-state phase transitions in frustrated spin-S chains
subject to strong magnetic fields just slightly lower than the
saturation field, where such a system can be viewed as a dilute
lattice gas of magnons in the fully polarized background.
At low density of magnons they can be treated as bosonic
particles, and in a wide region of parameters the magnon
dispersion has two degenerate minima at inequivalent points
4 Q in the momentum space.

The low-energy effective theory has the form of the Gross-
Pitaevskii functional for a two-component field. We have
developed a scheme that allows the calculation of renormalized
effective interactions I"y; and I"1,. Applying this formalism to
frustrated spin-S chains, we established the magnetic phase
diagram of isotropic and anisotropic, ferro- and antiferromag-
netic frustrated chains close to saturation and studied phase
transitions between several nontrivial states, including the
two-component Tomonaga-Luttinger liquid (TLL2), vector
chiral (VC) phase, and phases with bound magnons. Our
scheme does not involve an 1/S expansion, and thus allows
us to draw quantitative predictions for arbitrary spin.

We complemented our analytical predictions by a variety
of numerical results obtained by means of the density matrix
renormalization group technique. Particularly, we computed
the central charge as a function of the frustration parameter
close to saturation that allows us to locate phase transitions
between one- and two-component states. Further, we directly
computed chirality correlators in order to identify those one-
component states that have vector chiral order. In addition,
we studied the magnetization curves to detect the presence
of magnon bound states. These numerical results are in a
good quantitative agreement with our theoretical predictions
for chains of spin S > 1. At the same time, in the case of
frustrated antiferromagnetic § = 1/2 chains, the quantitative
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discrepancy between our theoretical prediction and the nu-
merical results by Okunishi'! and Hikihara et al.'> for the
location of the TLL2/VC phase boundary is unexpectedly
large. Nevertheless, even for S = 1/2, our theory still correctly
captures the topology of the phase diagram.
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APPENDIX A: LOW-ENERGY EFFECTIVE THEORY AND
CONNECTION TO THE TWO-COMPONENT
LIEB-LINIGER MODEL

To obtain the low-energy effective theory for the Hamilto-
nian (5), we define the bosonic field ¥ = ), bre™™ with the
Euclidean action given by Ay = [dt[ [ dxy*d: ¢ + H)],
and divide the field v into “slow” parts ®!-? and the “fast”
part ¢:

w — Z cbcleiaan +¢’
a=1,2
(A1)
i 1 a=1
o ikx _ s
[kl<A

where A is the running cutoff. Treating the “slow” part as
the background field, one can integrate over the fast modes
[ Dlgle=*" = e+ and obtain the effective action Ag that is
essentially the generating functional of vertex functions>® and
can be written as follows:

_ qokrr(2D).aB 1B
"4‘1’ - ch.a)Uk,a) qu,w

o, % B.x 4),ap
129, 040 Pi—g.0-0Ugin ot

+ (higher-order terms in ®).

2Pl o
(A2)

In the above equation, the summation over repeated indices
is implied, and the A-dependent coefficients U™ can be
expressed through the vertex functions I'™ of the initial theory
determined by the action A,

U/i,zc)u’aﬂ = 8,470, 0 + k,0),
Ut =T%(0,0 4+ k.0,0 + K ).
UL = P90, Q + k050 + K3 )
+ F((iz)i—%)Q-&-k’—k—q(Ua Q+k,050+k;w),

(A3)

with the restriction that sums in the internal lines of the
corresponding Feynman diagrams include only “fast” modes
with momenta p outside the regions |p = Q| < A.

The two-point function —I"®(k,w) is equal to the Green
function G(k,w). In the limit © — 0, i.e., in the absence of
particles, the self-energy vanishes®® and the full propagator
G(k,w) is given by its bare value GO%,w) = (iw — ).
The four-point vertex F;“)(k,k/,a)) = F;\(k,k’;E =iw) is
determined by the Bethe-Salpeter equation, which in the
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limit © — O takes the simple form of Eq. (9), with the
infrared cutoff A around the momenta + Q introduced into the
integral.

We neglect higher-order terms in the expansion (A2), which
is justified at low densities, replace e4 ¢ 1 thatenters U‘® by its
leading small-k term k?/(2m), and neglect the momentum and
energy dependence of U, which is appropriate in the limit of
small A. Then the effective low-energy action (A2) takes the
form of the Gross-Pitaevskii functional for a two-component

field:
Aoy = /dr/dx|}l>°’*(8r — n)d*

1
+— 0, D%> + l/ZCD“*dDﬂ*Fé‘ﬂCD“CDﬂ], (A4)
2m

where the renormalized running couplings are given by
Fé‘ﬂ = Uéfg:g’ﬂo. As shown in the main text by solving the BS
equation, in the one-dimensional case, the dependence of those
couplings on the cutoff has the form

Tl =aA/m+CoypA*+---, A—0. (A5)

Now, consider the system of two bosonic species ¢
interacting via contact potential, described by the action

82
= [ dr [ dx|e( 0, — = — 1 )pa
A, t/ ){%( . /L)ca

+1/2gaﬂna(x)nﬂ(x)j|v (A6)

where n, = |<pa|2, o = 1,2 are the densities of the two
components. This is nothing but the two-component Lieb-
Liniger model. The low-energy effective theory for this model
can be again cast in the form (A4),*> with the renormalized
couplings given by

LZE_L<E>Z+...
1+%gaﬂ m 8ap m

(A7)

(LL) __
[7:} -

A — 0.

Comparing Eqgs. (A7) and (AS), one can establish a corre-
spondence between the original lattice problem (5) and the
simplified continuum model (A6) of the Lieb-Liniger type,
that is characterized by bare couplings gqg.
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APPENDIX B: SYMMETRIZED EQUATIONS
FOR I';; AND I'y;

To simplify Eq. (9), we first symmetrize the kernel. Let
us introduce the following functions that are even in the
transferred momentum ¢:

I{(E) =T,(0,0; E),
(B1)

I(E) =T4g(—0.Q:E) + To_o(—Q.0: E),
then T'yj(E) =T\ and I'p(E)=T\2,. From Eq. (9),
using the identities & =e_y, V,(k,k') = V_,(k'.k), and
Iy(k,k's E) = T_ (k' ,k; E), one readily obtains the following
equation for I'{!:
Vii(g, p)TV(E)
eo+p +egp— E

(B2)
Virlg,p) = 1/2[V,—p(Q + p,Q — p) + (p = —p)l,

and a similar equation for F;lz):

1
rE) = Vin@.00— 7 3

P

Via(q. p)TIP(E)

b

1
F((IIZ)(E) =2Vi(g,0) — 52 ;

2e, + E
(B3)
Via(g.p) = 1/2[V4—p(p, =) + Va4 p(=p, + P)].
Explicitly, the symmetrized kernels for our model are
Vi(g,p)+Ujcosp+ Uycos2p, S=>1
Viulg.p) =1 ... ;
Viq,p)+ U, U — oo, S=1/2
Viq.p) — J(p), §=1
Vialg.p) = ., ;
(B4)
where
U =-2JicosQ, U=-2J,cos20,
(B5)

Vi(gq,p) = 2J} cos(g) cos(p) + 2J5 cos(2g) cos(2p).

Solutions of Egs. (B2) and (B3) can be now sought in the
form containing only even Fourier harmonics:

I”f]“) = A; + Aycosq + Az cos2q,
(BO)
F§]12) = By + By cosq + Bz cos2q.
This ansatz transforms the integral equations (B2) and (B3)
into 3 x 3 linear systems:

ot morE T T A 1/cs

th Wt s T A= 1 | (B7)
) 5 Hh+ i As 1

ot morE B g By 2/es

tf Wt Th B | =] 2cosQ |, (B8)
8 2 8+ i B; 2cos2Q
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Wherec5:l—mf0rS> land cg =1 for § = 1/2,
and the matrix coefficients are given by

1 fifi
A _ tJJ
W=

Eo+k + E0—k —
f3 = cos 2k.

_Z ftfj

28k—
(B9)

fi=1,

The solutions of those equations can be easily obtained in a
closed though somewhat cumbersome form.

f» = cosk,

APPENDIX C: THE CONTINUUM LIMIT FOR A
ONE-COMPONENT LATTICE BOSE GAS: BARE AND
RENORMALIZED INTERACTION

Consider Bose gas on a lattice, with the single-particle
kinetic energy &, that behaves quadratically at small momenta,
e ~ k?/2m at k — 0. Let us assume there is an on-site
interaction of strength g¢. In the limit of vanishing density, one
can write down the Bethe-Salpeter equation for the renormal-
ized two-body interaction Iy (k = 0,k =0; E =0) =Tinthe
same way as we have done in Sec. II, but now it is considerably
simplified since the bare interaction vertex V,(k,k) = go is
independent of momenta, and the renormalized interaction I"
is independent of the transferred momentum g:

1 (A g
I= —/ . (C1)
A

['=go(1 = T1),
b4 2¢g,

Here, Ayy = 7 is the natural ultraviolet lattice cutoff and A is
the running infrared cutoff. The flow eventually gets stopped at
A = A, givenin Eq. (17). At low gas density n, the regulator
A, = mn/2 K 1, so we are interested in the behavior of I'(A)
at A — 0.

For the continuum Bose gas model with contact interac-
tion of the form U(x — x’) = g.8(x — x’) (the Lieb-Liniger
model), the equation for the renormalized interaction T, is
very similar,

Fc = gc(l -

[o.¢]
d

b, Io=— / LT
TJx D

TA
The running coupling in the continuum model is thus given by

8c
[+ g )
Let us come back to the lattice expression (C1). Since g —
k*/2m atk — 0, it is easy to see that the integral / in Eq. (C1)
behaves as
m
I—- —+ 1Ly, A—0, (C4)
T A
where I, is some parameter of the order of unity that
incorporates all effects of the lattice (ultraviolet cutoff as well
as the deviation of the dispersion g, from the quadratic law).
The important point is that this constant I, depending on the
lattice details, can be negative: for instance, if one takes the
free particle dispersion ¢, >~ p?/(2m) and simply introduces
the lattice cutoff Ayy, then I, = —m/(;w Ayy). Curiously,
this constant I, does not appear if the particle dispersion is a
pure cosine (i.e., only nearest-neighbor hopping is taken into
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account): it is easy to show that for ¢, = %(1 — cos p) the
integral / in Eq. (C1) is

m m A?
= > —|(1- + - at A — 0,
27 tan[A /2)] TA 12

(€5

i.e., in this case, I, — O.

The resulting behavior of the running coupling in the lattice
problem can be represented in the form identical to that of the
continuum model:

80 ~ 80

14+ 22y’ 8 T gl (o)
Comparing Egs. (C3) and (C6), one can see that g, plays the
role of the effective bare coupling g, if the original lattice
problem is mapped to the continuum Lieb-Liniger model. The
value of gy will, e.g., determine the phase shifts in two-body
scattering. As long as the coupling constant g is small, such
a mapping presents no problem. However, it is easy to see
that if I, is negative and go|/},| becomes close or exceeds 1,
then even the sign of gy can differ from that of the lattice bare
coupling go. The parameter g, can be directly interpreted as
the effective continuum bare coupling only if the condition

1§olm <1 €N

is satisfied, otherwise one has to look at the dressed coupling
T'(Ay).

APPENDIX D: SCHRODINGER’S EQUATION FOR THE
TWO-MAGNON SCATTERING PROBLEM

We set the magnetic field at the saturation value,”
H = Hg =2S(J{ + J;) + S(J} + 8J7)/4J> and consider a
general two-magnon state that can be written in the following
form (here we use a normalization different from that of
Ref. 22):

[Wapr) =

S, S, F)
> cum (D1)

o (FISh Sy Sy Sl F)

where | F') is the fully polarized state. The total quasimomen-
tum K is conserved, therefore one can separate the center of
mass motion by setting ¢, , = exp(i 25" K)C,,_,. Solving the
Schrodinger equation H| W,y ) = E|Wyy,) for scattering states
in the thermodynamic limit, one can identify the energy E =
e(k)) +¢e(ky) + Ep, where Ep = N[SZ(JlZ + J5) — HsS] is
the energy of the fully polarized state, as

E=Qq—2SJ(Q)+ Ep,
(D2)

K
Q0/4S = Jj cos(k) cos > + J> cos(2k) cos(K),

where k| and k, are the magnon momenta, k = 1/2(k; — k)
is one half of the relative momentum, and K = k; + k; is
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the total momentum. The Schrodinger equation leads to the
following linear system for the amplitudes C,:

K
QoCo =2/812S — 1)<JIC1 cos > + J,C; cos K),

K
(R0 — JF)C1 = 2J1/S2S — 1)Cy cos 5
K
+28J,C, cos - +2S81,(C; + C3)cos K,

(Qo — Jzz)CQ = 2.]2\/ S(2S — I)CQ cos K

K
+28J,Cqcos K +25J1(Cy 4+ C3) cos 5

K
QoC, = 28J; cos E(CH—I +Cr_1)

+28Dcos K(Crio+Crn) (r 2 3).
(D3)

APPENDIX E: SCATTERING PHASE SHIFT IN THE
INTERSPECIES SCATTERING PROBLEM

To extract the phase shift for the interspecies scattering
problem from the solution (28), we put k = Q + p and
consider the limit of small deviation from the minimum of
dispersion p — 0,thenk = Q — p + O(p?) and the scattering
state of Eq. (28) can be rewritten as follows:

C, = Vcos2a + (v + sina)? cos(Qr) cos(pr + 812)

—/cos?a + (v — sina)? sin (Qr) sin(pr — y),
(ED)
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where
cosa
81 = — arccos - ,
Veos?a + (v + sina)?
cosa (E2)
y = —arccos

Veos2a + (v — sinoe)z'

From the form (E1), one can easily guess that for J; =0
(Q = m/2) the scattering phase shift is 8;,. This is indeed
so, because to obtain the phase shift, we have to put r = 2n
and the second term in Eq. (E1) vanishes (for odd values,
r = 2n + 1, there is no scattering involved since at J; =0
the system corresponds to two decoupled chains). For Q = 0
(i.e., at the ferromagnetic Lifshitz point 8 = —4)and Q = 7
(the antiferromagnetic Lifshitz point 8 = 4), it is also easy to
recognize §;, as the scattering phase shift.

Furthermore, for general values of 8, one can show that
lim, .o = £7/2 and lim,_ov = %1, so that lim,_o(v —
sina) = lim,_,g cos = 0. This corresponds to the fact that
scattering states vanish when p — 0, i.e., when the magnon
momenta tend to the dispersion minima k; — Q, k, — —0,
and reflects the fermionization of excitations forming a single
Fermi sea, as mentioned in the main text. It is easy to
see that the second amplitude in Eq. (E1) tends to zero,
lim,_,o Vcos?a + (v — sina)? = 0, while the first amplitude
tends to a constant, lim,,_¢ \/ cos? o + (v + sin)? = 2. Thus
the scattering phase shift for interspecies scattering at p — 0
is given by 4, for any 8.

One can also show that the two following expressions are
equal to each other:

. cot(d2) .. cot(a)
lim —— = lim .
p—~0 p p—0 2p

In other words, if « — —m/2 + 2a,p at p — 0, then 61, —

—n/2 + appp.

(E3)
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