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Proposal for electron quantum spin Talbot effect
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We propose a spin-polarized Talbot effect for an electron beam scattered from a grating of magnetic
nanostructures. Existing periodic magnetic nanostructures can be used in conjunction with electron-beam
illumination to create a spin-polarized replica of the transversely periodic exit surface beam a Talbot length
away. Experiments have been proposed to verify the effect in a two-dimensional electron gas and an atomically
flat surface by spin-polarized scanning probe microscopy. This effect provides a new route to modulate electron
spin distributions in two-dimensional space.
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I. INTRODUCTION

The ability to tune scalable semiconductor-based spintron-
ics devices, based on the intrinsic spin of electrons to store
and manipulate information, is both important and highly
challenging for spin-based electronics since spin injection,
spin accumulation, and spin modulation of electrons are
required.1–5 Currently, manipulation of the spin during trans-
port between injector and detector via spin precession and
spin pumping can be accomplished;6 however, those methods
have difficulty controlling spin distributions. By contrast, local
tunability of spin distributions over nanometer scales is crucial
for future solid-state quantum computers based on electron
spin.7 Inspired by the progress in fabricating and controlling
nanoscale magnetic structures in low-dimensional systems,
we propose a spin-dependent Talbot effect for electron waves
scattered by a grating composed of magnetic nanostructures, to
modulate the spin lattice pattern formed from a spin-polarized
replica of the structure upon propagation through a Talbot
length period and adjustable by controlling the electron
wavelength and magnetic nanostructure period.

The optical Talbot effect was discovered in 18368 and later
explained by Rayleigh as a natural consequence of Fresnel
diffraction. He showed that the Talbot length ZT is given by
ZT = 2a2/λ (Ref. 9) in the paraxial approximation a � λ,
where a is the period of the grating and λ is the wavelength of
the incident light. However, in the nonparaxial regime where
λ � a < 2λ in Fig. 1, the Talbot effect is also operative for
nonevanescent components of the scattered beam.10 This effect
reveals the wave nature of both radiation and matter wave
fields, examples of the latter including atoms, electrons, and
plasmons.10–15

Here, we demonstrate the existence of a spin-polarized non-
paraxial Talbot effect for electron matter waves scattered by a
grating composed of magnetic nanostructures. We find that the
spin asymmetry of the scattered field varies with distance from
the grating, creating an electron spin replica of the structure
a Talbot length away, in a nonparaxial regime where λ �
a < 2λ. This creates a tunable spin lattice in two-dimensional
space, which is a powerful method to manipulate electron spin
distributions in solid-state systems. We find that the spin inter-
ference pattern strongly depends on the wavelength and grating
period; furthermore, the effect of a polyenergetic electron
beam has been studied. Based on our theoretical results, we

propose an experiment to verify this quantum spin Talbot effect
(QSTE) in a two-dimensional electron gas (2DEG) system and
an atomically flat surface by spin-polarized scanning probe
microscopy. The potential applications in spintronics devices
are proposed based on the QSTE.

II. THEORY

For a one-dimensional grating with period a, normally
illuminated with a monoenergetic electron plane wave, the
two-component spatial electron wave function {ψ+,ψ−}T at
energy E and at any distance z � 0 downstream of the exit
surface z = 0 is

ψ±(x,z; E) =
∑

m

c±
m(E) exp[ı̇(γmx + tmz)]. (1)

Here, x is the transverse coordinate, c±
m(E) denotes the

Fourier coefficients of the two independent electron spin
projections, γm = 2πm/a, and tm = √

(2π/λ)2 − γ 2
m;10,13,14

λ = h/
√

2meE is the de Broglie wavelength, h is Planck’s
constant, and me is the electron mass. + and − represent “spin
up” and “spin down” states of electron spin, respectively.

Consider a grating formed by nanoscale magnetic
structures, for example, magnetic stripe domains, as shown in
Fig. 2. Electron waves have a different complex transmission
coefficient depending on the configuration of the incoming
electron-beam spin state relative to the magnetization direction
of magnetic domains [parallel (↑↑, ↓↓) or antiparallel (↑↓,
↓↑)].1,2,5 Consequently, in an ideal situation, the spin up
(down) electron wave ψ+ (ψ−) propagates through the up
(down) magnetic domains in the grating, therefore achieving
separation of the electron wave depending on the spin state, as
shown in Fig. 2(a). The electron wave ψ+ passes through the
magnetic “up” domains A (green) with 100% transmission
while being blocked completely by domains B (red). The
color denotes the magnetization direction of a single domain.
The corresponding probability density diffracted from the
magnetic grating is longitudinally periodic in z with period
equal to ZT . Simultaneously, the probability density depends
on the spin of the electron wave shown in Fig. 2(a), as given by

ρ±(x,z; E) =
∑

m

∑

n

c±∗
m (E)c±

n (E)Hm,n(x,z; E), (2)
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FIG. 1. (Color online) Principles of the nonparaxial Talbot effect,
in which illumination of a grating with period a yields the first self-
image at propagation distance ZT = 75 nm. Note that the paraxial
formula gives ZT = 2a2/λ = 80 nm. Here, a = 20 nm and λ = 10
nm.

where

Hm,n(x,z; E) = exp{ı̇[(γn − γm)x + (tn − t∗m)z]}. (3)

By definition, the spin asymmetry

ℵ(x,z; E) ≡ ρ+(x,z; E) − ρ−(x,z; E)

ρ+(x,z; E) + ρ−(x,z; E)
(4)

will have the same longitudinal periodicity as the probability
density. Since both the numerator and the denominator have
a longitudinal periodicity, when either a � λ or λ � a < 2λ,
Eq. (4) implies a continuously tunable spin lattice in
two-dimensional space as shown in Fig. 2(b). The distribution
of two-dimensional spin asymmetry is determined by λ and
a. In Fig. 2, λ = 10 nm and a = 20 nm; the numerically
calculated Talbot distance ZT is 75 nm instead of 80 nm as
expected by the conventional formula 2a2/λ. The discrepancy
is due to the paraxial approximation in conventional Talbot
theory. To calculate the nonparaxial ZT by the self-imaging
condition ρ±(x,nZT ;E) = ρ±(x,0;E), for integer n and
λ � a < 2λ, we obtain10

ZT = λ

1 − [1 − (λ/a)2]1/2
. (5)

From Eq. (5), ZT = 74.64 nm, consistent with our numer-
ical results based on Eqs. (2)–(4). In the paraxial limit where
a � λ, Eq. (5) approaches 2a2/λ. This is consistent with the
literature.10,13,14 The spin asymmetry distribution [Fig. 2(b)]
in the range 0.5 < ζ � 1, where ζ = λ/a, is

ℵ(x,z; E) = A0(x) sin
2πz

ZT

, (6)

where

A0(x) = sin 2πx
a

π
8 + 2

π
sin2 2πx

a

. (7)

Note that evanescent waves have been neglected in calculating
the above expression. If x = a/4, then A0 ≈ 0.97 as shown in
Fig. 2(b). Because the spin Talbot distance ZT ,S = ZT , spin
lattices can be tailored through nm to sub-μm length scales
depending on ζ and a.

To understand this tunability, we calculated the spin Talbot
effect for different λ, with results shown in Fig. 3 for ζ = 0.1,

(a)

(b)

FIG. 2. (Color online) Normalized diffraction intensity and pro-
files. (a) Maps for spin up ρ+ and down ρ− probability density with
spin asymmetry ℵ(x,z; E). (b) Two spin asymmetry profiles along
z are indicated by symbols 
 and �, and fitted by Eq. (6), where
a = 20 nm, λ = 10 nm, and ZT = 75 nm from Eq. (5).

FIG. 3. (Color online) Two-dimensional spin distribution
ℵ(x,z;E) and corresponding profiles for ζ = 0.1, 0.5, and 1.01,
respectively.
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FIG. 4. (Color online) The spin asymmetry distribution depen-
dent on transmission-rate difference between two channels. a =
20 nm and λ = 10 nm. (a), (b) are the plots of ρ+ and ℵ at 100% TD;
(c), (d) are at 1% TD.

0.5, and 1.01. We find that the spin asymmetry profile curves
show a simple sine relationship when 0.5 < ζ � 1. However, if
ζ < 0.5, the curves have complex structures and small ripples
decorate the spin asymmetry distribution (e.g., ζ = 0.1); when
ζ > 1, evanescent waves imply that the polarization of spin
decreases exponentially along z (e.g., ζ = 1.01); Eqs. (5)
and (6) are not applicable for these ranges. Movie 1 in the
Supplemental Material shows sequential evolution of the ρ±
and spin asymmetry ℵ with ζ at a = 20 nm.16

In a more realistic model, the electron wave undergoes
partial transmission at the antiparallel configuration between
spin orientation and magnetization direction of the domain.
Considering this, we find that the probability density dis-
tributions are blurred but nevertheless distinguishable; even
assuming only 1% transmission difference (TD) between two
channels, the intensity contrast and spin polarization drop with
TD by the same order of magnitude (Fig. 4); however, the
quantum spin Talbot effect is still observable.

The above discussions assume a monoenergetic electron
wave. In a real system, to allow for a finite energy spread in
the electron wave, assume an incident distribution of electron
energies Si(E). Under this model, Eq. (4) generalizes to

ℵ(x,z) ≡
∫

Si(E)ℵ(x,z; E)dE∫
Si(E)dE

. (8)

The influence of energy spread on the 2D spin Talbot effect
is calculated by numerical evaluation of ℵ(x,z), assuming
Si(E) to be uniform from λ = 15 nm to 20 nm, with the
results shown in Fig. 5. A dramatic longitudinal modulation of
spin polarization near the grating is observed; consequently,
the spin Talbot distance is also modulated depending on the
energy spread Si(E). In Fig. 5, instead of one peak appearing
within each spin Talbot distance, multiple peaks appear. The
details of the spin asymmetry profile depend on Si(E) and
need to be studied for real situations given known conditions.

FIG. 5. (Color online) Polyenergetic spin asymmetry correspond-
ing to Si(E) = constant in range λ = 15–20 nm, using 800 integral
steps in the numerical integration; a = 20 nm.

Therefore, to verify the quantum spin Talbot effect, a narrow
energy spread is highly desired, or the method itself should
have high energy resolution to distinguish different energy
channels.

III. DISCUSSION

A 2DEG at interfaces such as in a GaAs/AlGaAs het-
erostructure is a candidate for testing the effect due to small
energy spread at the Fermi level. In addition, the high mobility
of electrons (>3 × 106 cm2 V−1 s−1) and their long spin
transportation distance (>100 μm) are suitable properties for
spatial imaging of this effect.5,19–23 The electron de Broglie
wavelength at the Fermi energy is unusually long, around
20–100 nm,21 making it possible to design a suitable magnetic
domain period a and minimize effects caused by nonzero
domain wall width.17,18 Further concern includes suitable
materials for the grating formed by magnetic stripe domains.
The wavelength of electrons in metal is normally less than
1 nm; therefore, diluted magnetic semiconductors such as
MnGaAs might be suitable to form magnetic domain gratings
with similar band structure to AlGaAs/GaAs. Furthermore,
by applying a pulsed spin-polarized electron current along
the grating, the period a might be tunable by domain wall
motion.24,25 This capacity has been demonstrated elegantly
in racetrack technology for 2D and 3D configuration by the
Parkin group at IBM.25 In their case, the Fe18Ni81 nanowire is
applied and the writing speed can be around one nanosecond. It
will be very interesting to have further study on the FM/2DEG
interface properties, in particular, the magnetic properties of
the magnetic nanowire on the surface of GaAs and the spin
injection at the interface.26,27

We have described the properties of a 2DEG system for
testing the effect; however, to carry out real measurements
on the system, a spin-dependent spatial imaging method is
needed. A spatial imaging technique has been elegantly applied
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in spin Hall effect detection in a 2DEG system by scanning
magneto-optic Kerr microscopy (SMOKE).28 SMOKE is
sensitive to spin polarization but with limited spatial resolution
due to Abbe’s law; it is ideal to demonstrate the principle of
the spin-polarized effect on the micron scale.

Besides SMOKE, imaging electron flow in a 2DEG at
the nanoscale has been achieved based on a scanning probe
method.22,29 But this can not be applied to verify the effect
at GaAs/AlGaAs interfaces. However, scanning tunneling
microscopy with a spin polarized tip (SP-STM) could be ideal
for investigating the electron-spin-polarized Talbot effect on
surfaces,30–32 as it provides both spin contrast and atomic
resolution. To our knowledge, we have yet to see the signature
of the spin Talbot effect from the results of SP-STM. Recently,
spin-dependent quantum interference within a Co magnetic
nanostructure by SP-STM has been reported.32 Inspired by
this experiment, we believe SP-STM could be used to see the
effect on an atomically flat surface;33,34 electrons scattered by
a grating formed by an antiferromagnetic atomic chain on an
atomically flat surface could be an ideal system. Assuming
a = 0.65 nm and λ = 0.325 nm, ZT = 2.4 nm from Eq. (5);
therefore, a 300 nm atomically flat surface may provide an
ideal platform to detect the effect, considering the space
required to connect electrodes for applying current. One of the
advantages of SP-STM is its energy resolution in dI/dV spin-
asymmetry spectra to differentiate energy channels caused
by nonzero energy spread.32,33 A first-principles calculation
needs to be carried out to consider the impact of surface
band structures on the spin Talbot effect. This opens the
possibility to create a long-distance spin correlation through
Talbot self-imaging.32

Regarding applications of the QSTE in spintronics devices,
a non-spin-polarized electron Talbot interferometer has been
experimentally achieved in vacuum.15 Given the spin Talbot
pattern obtained, it is straightforward to form a quantum
spin Talbot interferometer (QSTI) (Fig. 6). The QSTI will be
sensitive to the magnetization orientation of magnetic quantum
dots if they are located within the wave fronts of the incoming
beam. This is useful to read out the spin state of quantum dots
and spin correlations.

With electrodes connected at two gratings (G1 and G2)
(Fig. 7), the quantum spin Talbot transistor (QSTT) device
can be constructed. By calculating the spin transmission
probability T±(λ,S) from Eq. (2) as an approximation, we

S

FIG. 6. (Color online) Schematic picture represents the deforma-
tion of spin Talbot pattern caused by the spin-dependent scattering at
quantum-dot pairs in front of a grating.

(a)

(b)

FIG. 7. (Color online) (a) Schematic picture of spin Talbot
resistor device. (b) Characteristic spin Talbot resistance depends on
grating distance and λ.

obtain

T (λ,S) = 1

4
+ 2

π2
+ 4

π2
cos

2πS

ZT (λ)
, (9)

where S is the distance between G1 and G2. The QSTT
resistance curve is adjustable; it varies from single to multiple
peaks depending on the ratio of S to λ. This formula is
calculated by neglecting the electrical field applied in between
the two gratings. By further considering the effect of an electric
field, a modification in the previous equation will include an
Airy function Ai(S).35–37

The nonspin electron Talbot effect has been verified by
experiments in vacuum.15 For the QSTE, one concern is
the deflection due to the Lorentz force; however, it can be
neglected due to ultrathin magnetic gratings (a few nm thick)
and very low energy electrons. The deflection angle of an
electron beam due to the Lorentz force is θ = eBλt/h, where
e is the charge of electron, λ is the wavelength of electron,
and t is the thickness of the magnetic grating. Assuming t = 1
nm, λ = 10 nm, and B = 1 T, θ is about 76 μm. This small
deflection can be completely neglected at the nanometer scale
and is much smaller than typical Bragg angles for electron
diffraction, which are in the range of mrad. In the suggested
systems, there is no applied magnetic field, and the spin
lattice is caused by the spin-dependent distribution of electron
density. The spin-flip processes such as Majorana flips are
minor effects and have no direct impact on the QSTE effect.

It is necessary to distinguish the gratings which operate
in the Raman-Nath or the Bragg regimes as thin and thick
gratings, respectively.38 Klein and Cook introduced a
parameter Q, defined as 2πλL/	2n0 (where L is the grating
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thickness, λ is the wavelength of the electron, 	 is the grating
spacing, and n0 is the mean refractive index) to distinguish
between the two regimes: If Q < 1, Raman-Nath operates;
Q > 10 corresponds to the Bragg regime. In our case, given
L = 1 nm, λ = 100 nm, and assuming n0 = 1, Q = 0.0628 <

1. Therefore, the thickness of the grating should be thinner to
avoid the Bragg regime.

Furthermore, the Talbot effect is a near-field effect. One
interesting question will occur immediately, for the far-field
situation: Can the QSTE survive? The answer is no. This far-
field regime has been addressed for the nonspin electron Talbot
effect in McMorran’s work in vacuum.15 According to their
calculation, for the QSTE case, the smearing out of the spin
asymmetry is expected. The second fact is the limited spin
coherence distance in the 2DEG of around 10–100 μm which
is also not favorable for the far field.

IV. CONCLUSION

In conclusion, we propose an electron-spin-polarized Talbot
effect using electron waves scattered from a periodic magnetic

nanostructure. We find that the spin asymmetry varies with
distance from the grating, creating a spin-polarized replica of
the structure a Talbot length away. This length is controllable
by adjusting the electron wavelength λ and the grating period
a. Experiments have been suggested to verify this effect.
The success of the experiment will provide a new route to
actualize periodic spin state distributions in two-dimensional
space in solid devices. The quantum spin Talbot transis-
tor and interferometer are suggested for future spintronics
applications.
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