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Theory of laser-induced demagnetization at high temperatures
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Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among
electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization
of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting
baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon
interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent
random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The
dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular,
we show several salient features for understanding magnetization dynamics near the Curie temperature. While
the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics.
We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.
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I. INTRODUCTION

Laser-induced demagnetization1,2 (LID) and heat-assisted
magnetization reversal3 (HAMR) constitute a promising
way to manipulate the magnetization direction by optical
means. While both LID and HAMR involve laser-induced
magnetization dynamics of magnetic materials, there are
several important differences. LID is usually considered as
an ultrafast process where the hot electrons excited by the
laser field transfer their energy to the spin system, causing
demagnetization. The demagnetization time scale ranges from
100 fs to a few picoseconds. For HAMR, the laser field is to
heat the magnetic material up to the Curie temperature so that
the large room-temperature magnetic anisotropy is reduced to
a much smaller value and consequently, a moderate magnetic
field is able to reverse the magnetization. The time scale for
the HAMR process is about a subnanosecond, three orders of
magnitude larger compared to LID.

LID observations have been carried out in a number of mag-
netic materials including transition metals,1,4–6 insulators,7

half-metals,8–10 and dilute magnetic semiconductors.11 A gen-
eral consensus of the laser-induced demagnetization process
is that the high-energy nonthermal electrons generated by a
laser field relax their energy to various low-excitation states of
the electron, spin, and lattice.12 The phenomenological model
for this physical picture is referred to as the three-temperature
model,1,5,9 where the three interacting subsystems (electrons,
spins, lattice) are assumed thermalized individually at different
temperatures, which are equilibrated according to a set of en-
ergy rate equations. By fitting experimental data to the model,
reasonable relaxation times of the order of several hundred
femtoseconds to a few picoseconds have been determined.

Various microscopic theories4,13–16 have been proposed
to interpret these ultrafast time scales of electron-spin and
electron-lattice relaxations. Zhang and Hübner13 proposed that
the laser field can directly excite the spin-polarized ground
states to spin-unpolarized excited states in the presence of
spin-orbit coupling, i.e., the spin-flip transition leads to the
demagnetization during the laser pulse. In this picture, the
demagnetization is instantaneous (≈50–150 fs). Recent nu-
merical simulations17 show that due to a few active “hot spots,”

the instantaneous demagnetization is expected for at most a few
percent of the magnetization, consistent with experimental
arguments.18 Koopmans et al.4,5 suggested that the excited
electrons lose their spins in the presence of spin-orbit coupling
and impurities or phonons through an Elliot-Yafet-type (EY)
spin-flip scattering. Recent numerical evaluations of the EY
mechanism in transition metals14 tend to support this point
of view. Alternatively, Battiato et al.19 recently modeled such
ultrafast demagnetization in terms of superdiffusive currents.
Finally, numerical simulations of the ultrafast demagnetiza-
tion based on the phenomenological Landau-Lifshitz-Bloch
equation have been achieved successfully.20

While these demagnetization mechanisms provide rea-
sonable estimation for the demagnetization time scales, the
theories are usually limited to the temperature much lower
than the Curie temperature and/or make no direct connection
to the highly successful phenomenological three-temperature
model.1,5,9 As it has been recently shown experimentally,7,8

most interesting magnetization dynamics occur near the Curie
temperature.

In this paper, we propose a microscopic theory of the laser-
induced magnetization dynamics under the three-temperature
framework and derive the equations that govern the demagne-
tization at arbitrary temperatures. More specifically, we predict
magnetization dynamics in the critical region.

The paper is organized as follows. In Sec. II, we propose
a model for LID processes. In Sec. III, we describe the spin
system by the Heisenberg model, which is solved by using a
self-consistent random phase approximation. In Sec. IV, the
central dynamic equations for the magnetization are derived.
In Sec. V, the numerical solutions of the equations are carried
out and the connection of our results with the experimental
data of LID and HAMR is made in Sec. VI. We conclude our
paper in Sec. VII.

II. MODEL OF LID

A. Spin-loss mechanisms

One of the keys to understand ultrafast demagnetization is
to identify the mechanisms responsible for the spin memory
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loss. In the case of transition-metal ferromagnets, for example,
the spin relaxation processes lead to complex spin dynamics
due to the itinerant character of the magnetization. Elliott21 first
proposed that delocalized electrons in spin-orbit coupled bands
may lose their spin under spin-independent momentum scat-
tering events (such as electron-electron or electron-impurity
interaction). This mechanism was later extended to electron-
phonon scattering by Yafet and Overhauser.22 Consequently,
the spin relaxation time τs is directly proportional to the
momentum relaxation time τp. Whereas the electron-electron
relaxation time is on the order of a few femtoseconds (fs),23 the
electron-impurity and electron-phonon relaxation time is on
the picoseconds (ps) scale. In semiconductors, bulk and struc-
tural inversion symmetry breaking as well as electron-hole
interactions lead to supplementary spin relaxation mechanisms
such as those by D’yakonov-Perel24 and Bir-Aronov-Pikus,25

which are beyond the scope of this study.
Relaxation processes also apply to collective spin exci-

tations such as magnons. Whereas the electron-magnon in-
teraction conserves the angular momentum, magnon-magnon
interactions and magnon-lattice interactions in the presence
of spin-orbit coupling contribute to the total spin relaxation.
While the former occurs on the magnon thermalization time
scale26 (100 fs), the latter is however at the second order in
spin-orbit coupling and is considered to occur on the 100-ps
time scale. Therefore, in a laser-induced demagnetization
experiment, it is most probable that all the processes mentioned
above take place during the thermalization time scale of the
excited electrons and excited magnons.

B. Demagnetization scenario

To establish our model, we first separate the LID processes
into four steps: (i) generation of nonthermal hot electrons
by laser pumping; (ii) relaxation of these hot electrons into
thermalized electrons characterized by an electron temperature
Te; (iii) energy transfer from the thermalized hot electrons to
the spin and lattice sub-systems; and (iv) heat diffusion to the
environment.

In our model, to be given in the following, we will take
steps (i) and (ii) infinitely fast. In the step (i), a laser pump
excites a fraction of electrons below the Fermi sea to ≈1.5 eV
above the Fermi level. This excitation process is of the order
of a few fs. The photoinduced electron transition is considered
spin conserving and thus does not significantly contribute to
the demagnetization, although the spin-flip electron transition
could occur in the presence of the spin-orbit coupling.13

In step (ii), the strong Coulomb interaction among electrons
relaxes these nonthermal high-energy electrons to form a hot
electron bath, which may be described by a thermalized hot
electron temperature Te. During this electron thermalization
process, strong electron-electron interaction-induced momen-
tum scattering in the presence of spin-orbit coupling leads
to the ultrafast transfer of the spin degree of freedom to the
orbital one.27 In our model, the electron thermalization is con-
sidered instantaneous and any possible femtosecond coherent
processes are disregarded.28 Therefore, due to ultrafast (fs)
momentum scattering, the thermalized hot electrons act as
a spin sink. Under this approximation, the demagnetization
itself, defined as the loss of spin angular momentum, takes

place during the thermalization of the electron bath in the
presence of (either intrinsic or extrinsic) spin-orbit coupling.

Following the definition of the three-temperature model,
we assume that the system can be described in terms of three
interacting baths composed of laser-induced hot electrons,
spin excitations of the ground state (magnons), and lattice
excitations (phonons). The applicability of this assumption
is discussed in Sec. II D. Therefore, the magnetic signal
essentially comes from the collective spin excitation, and it
is assumed that the laser-induced hot electron only contributes
weakly to the magnetization. Consequently, under the assump-
tion that the spin loss occurs during the thermalization time of
the electron and spin systems, the demagnetization problem
reduces to tracking the energy transfer between the spin bath
and the electron and phonon baths.

Our main objective is then to understand step (iii), where
the electrons at a higher temperature transfer their energy to
the spin and lattice subsystems. Under the electron-magnon
interaction, the magnon spin is transferred to the electron
system, and is eventually lost through thermalization of the
electron bath. Through interactions among electrons, spins,
and lattice, the entire system will ultimately reach a common
temperature. Finally, a heat diffusion, step (iv), will expel the
heat to the environment; this last step will be considered via a
simple phenomenological heat-diffusion equation.

To quantitatively determine the energy transfer among
electrons, spins, and lattice in the step (iii), one not only needs
to know the explicit interaction, but also the distribution of the
densities of excitations (electrons, magnons, and phonons).
Within the spirit of the three-temperature model, we consider
that each subsystem (electron, spin, and lattice) is thermalized,
i.e., one can define three temperatures for electrons Te, spins
Ts , and lattice Tl . The justification of this important assumption
has been made in the previous section and can be qualitatively
summarized: (1) For the hot electrons of the order of 1 eV, the
electron-electron relaxation time is τee ≈ 10 fs, which is about
100 times faster than the electron-spin and electron-phonon
interactions.23 (2) The lattice-lattice interaction is about one
order of magnitude smaller than the electron-electron relax-
ation time τll ≈ 100 fs.29 (3) Multiple spin-wave processes are
known to take place in the ferromagnetic relaxation leading to
so-called Suhl instabilities.26 The relaxation time is of the order
of τss ∝ h̄/Tc ≈ 100 fs at least for high-energy magnons26 (for
long-wavelength magnons, the lifetime could be significantly
longer). Thus, it is reasonable to assume that the concepts of
the three temperatures are approximately valid as long as the
time scale is longer than subpicoseconds.

C. Model Hamiltonian

We now propose the following Hamiltonian for LID:

Ĥ =
∑

μ

Ĥμ + Ĥes + Ĥel + Ĥsl, (1)

where Ĥμ (μ = e,s,l) are the electron, spin, and lattice
Hamiltonians, and Ĥμν (μ �= ν) are the interaction among
subsystems. In the remainder of this paper, the hat (ˆ) denotes
an operator. Each term is explicitly described in the following.

The electron system is described by a free electron
model Ĥe = ∑

k εkĉ
+
k ĉk where ĉ+

k (ĉk) represents the electron
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creation (annihilation) operator. The equilibrium distribution
is simply the Fermi distribution at Te. The lattice Hamiltonian
Ĥl = ∑

qλ h̄ω
p

kλb̂
+
kλb̂kλ is modeled by simple harmonic oscil-

lators, where b̂+
kλ (b̂kλ) is the phonon creation (annihilation)

operator and λ is the polarization of the phonon. The
phonon distribution at Tl is nkλ = [exp(h̄ω

p

kλ/kBTl) − 1]−1.
The spin Hamiltonian is modeled by the Heisenberg exchange
interaction

Ĥs = −
∑
〈ij〉

Jij Ŝi · Ŝj − gμBHex

∑
i

Ŝz
i , (2)

where Jij is the symmetric exchange integral, Ŝi is the spin
operator at the site i, and Hex is the external magnetic
field applied in the z direction. Unlike the electron and
lattice Hamiltonians, the spin Hamiltonian is not a single-
particle Hamiltonian and the distribution of the spin density
is neither a fermionic nor a bosonic distribution. To describe
the equilibrium distribution of the spin system at arbitrary
temperatures, we will model the equilibrium properties of the
spin system in the next section.

The electron-lattice interaction Ĥel is taken as a standard
form29

Ĥel =
∑
k,qλ

Bqλ(ĉ+
k+qĉkb̂qλ + ĉ+

k−qĉkb̂
+
qλ), (3)

where the Bqλ is the electron-phonon coupling constant. For
acoustic phonons, the coupling constant takes a particularly
simple form29

Bqλ = 2εF q

3

√
h̄

2MNω
p

qλ

. (4)

Here, εF is the electron Fermi energy and M is the mass of the
ion.

The electron-spin interaction Ĥes is modeled by the con-
ventional exchange interaction (sd Hamiltonian)

Ĥes = −Jex

∑
j,k,k′

ĉ+
k eik·rj (σ̂ · Ŝj )ĉk′e−ik′ ·rj , (5)

where we have assumed a constant coupling constant Jex

and σ̂ is the electron spin. When one replaces σ̂ · Ŝj by
σ̂zŜ

z
j + 1

2 (σ̂−Ŝ+
j + σ̂+Ŝ−

j ), the above Hes contains two effects:
the first term is responsible for the spin splitting of the
conduction bands and the second term leads to a transfer of
angular momentum between the spins of the hot electrons and
the spins of the ground state, i.e., spin-wave generation and
annihilation. While the interaction conserves the total spin
angular momentum, the thermalization process of each bath
is not spin conserving as mentioned above. Therefore, this
interaction transfers energy between the electron and spin
baths, which results in the effective demagnetization of the
magnon bath. Consequently, the generation of magnons by
hot electron is a key mechanism in our model (see also Ref. 6).

Finally, the spin-lattice interaction Ĥsl has been attributed to
spin-orbit coupling.30 The energy and the angular momentum
conservations require Ĥsl containing two-magnon (â+

q âq′) and

two-phonon operators (b̂+
k b̂k′). Since the spin-orbit coupling is

already treated as a perturbation, this process is second order
in the spin-orbit coupling parameter and it is expected to be

rather small.30 Thus, Ĥsl is much smaller than Ĥes and Ĥel ,
and we place Ĥsl = 0 throughout the rest of the paper.

To summarize our model, we consider three subsystems
(electrons, spins, and lattice) described by Ĥe, Ĥs , and
Ĥl , respectively. These subsystems have their individual
equilibrium temperatures Te, Ts , and Tl . The heat or energy
transfer among them are given by the interactions Ĥes and
Ĥel . To determine the kinetic equation for three subsystems,
we should first establish the low-excitation properties of the
spin system from Ĥs and relate Ts to the magnetization m(Ts).

D. Materials considerations

As stated in the Introduction, laser-induced demagnetiza-
tion has been observed in a wide variety of materials pre-
senting very diverse band structures and magnetism. From the
materials viewpoint, the present model makes three important
assumptions: (i) laser-induced hot electrons, ground-state spin
excitations, and phonons can be treated as separate interacting
subsystems; (ii) there exists a direct interaction between hot
electrons and collective spin excitations; and (iii) the excited
spin subsystem can be described in terms of spin waves.

Whereas the consideration of a separate phonon bath
is common, the separation between the electron and spin
populations may seem questionable. In systems where the
itinerant and localized electrons can be identified (such as 4f

rare-earth or carrier-mediated dilute magnetic semiconduc-
tors), it seems quite reasonable. However, in typical itinerant
ferromagnets such as transition metals, the magnetism arises
from a significant portion of itinerant electrons. We stress
out that in our model, the separation between electron and
spin baths arises from the fact the electrons we consider are
laser-induced hot electrons near Fermi level (in the range
[εF − kBTe,εF + kBTe]), whereas the spin bath describes the
magnetic behavior of electrons lying well below Fermi level.
The concept of spin waves used in this paper is rather general
and applies to a wide range of ferromagnetic materials.
Although energy dispersion may vary from one material to
another, it is unlikely to have strong influence on the main
conclusions of this work.

The interaction between hot electrons and magnons is
actually more restrictive since it assumes overlap between
electrons near and far below Fermi level. For example, this
approach does not apply to half-metals (electron-magnon
interaction is quenched by the 100% spin polarization) or
magnetic insulators. Nevertheless, in metallic materials such as
transition metals and rare earth, this interaction does not vanish
and can lead to strong spin-wave generation, as demonstrated
by Schmidt et al.31 in Fe.

III. EQUILIBRIUM PROPERTIES OF THE SPIN SYSTEM

The Heisenberg model for the spin system, Eq. (2), has no
exact solution even in equilibrium. At low temperature, the
simplest approach is based on the spin-wave approximation,
which predicts Bloch’s law for the magnetization m(T ) =
m0 − B(T/Tc)3/2 where Tc is the Curie temperature and B

is a numerical constant.32 As the temperature approaches
the Curie temperature, Bloch’s law fails. Instead, one uses
a molecular mean field to model the magnetization. The
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resulting magnetization displays a critical relation near Tc, i.e.,
m(T ) ∝ (1 − T/Tc)1/2. Since we are interested in modeling
the magnetization in the entire range of temperature, we
describe below a self-consistent random phase approximation,
which reproduces Bloch’s law at low temperatures and the
mean-field result at high temperatures.

We first recall some elementary relations of these spin
operators given in the following:

Ŝ+
i = Ŝx

i + i Ŝy

i , Ŝ−
i = Ŝx

i − i Ŝy

i , (6)

[Ŝ+
i ,Ŝ−

i ] = 2Ŝz
i ,

[
Ŝ±

i ,Ŝz
i

] = ∓Ŝ±
i , (7)

Ŝ+
i Ŝ−

i = S(S + 1) + Ŝz
i − (

Ŝz
i

)2
, (8)

and the spin Hamiltonian [Eq. (2)] can be rewritten as

Ĥ = −
∑
ij

Jij

(
Ŝ−

i Ŝ+
j + Ŝz

i Ŝ
z
j

) − gμBHex

∑
i

Ŝz
i . (9)

Our self-consistent random phase approximation treats the
resulting commutator [Ŝ+

i ,Ŝ−
i ] = 2Ŝz

i ≈ 2m(T ) as a c number,
where m(T ) is the thermal average of Ŝz

i to be deter-
mined self-consistently. If we introduce the Fourier trans-
formation Ŝ±

k = (1/N )
∑

i Ŝ
±
i e−ik·Ri , the above commutator

reads as [Ŝ+
k ,Ŝ−

q ] = 2m(T )δkq and thus by introducing â±
k ≡

Ŝ∓
k /

√
2m(T ), one has a standard boson commutator relation

[âq,â
+
q′ ] = δq,q′ . Similarly, we have [Ĥs,âq] = h̄ωqâq, where

h̄ωq = gμBHex + 2m(T )
∑

q

[J0 − J (q)], (10)

where J (q) = (1/N )
∑

〈ij〉 Jij exp[iq · (Ri − Rj )]. With the
above bosonic approximation, one can self-consistently deter-
mine the magnetization m(T ) and other macroscopic variables
such as the spin energy and specific heat. A particular simple
case is for the spin-half S = 1/2 where the identity

Ŝz = S − Ŝ−Ŝ+ = 1/2 −
∑

q

2m(T )a+
q aq (11)

immediately leads to the self-consistent determination for
m(T ):

m(T ) = 1/2 − 1

N

∑
q

2m(T )

eβh̄ωq(T ) − 1
. (12)

At low temperature, one can approximately replace m(T ) by
1/2 in the right-hand side of the equation and one immediately
sees that the above solution produces the well-known Bloch
relation, i.e., 1/2 − m(T ) ∝ T 3/2. Near the Curie temperature,
one expands eβh̄ωq = 1 + βh̄ωq + (1/2)(βh̄ωq)2 and notice
that ωq is proportional to m(T ) at zero magnetic field [see
Eq. (10)]. By placing this expansion into Eq. (12), the zero-
order term in m(T ) determines the Curie temperature and
the second-order term gives the scaling m2(T ) ∝ (Tc − T ),
i.e., the mean-field result is recovered, m(T ) ∝ (1 − T/Tc)1/2.
Thus, the self-consistent approach captures both low- and
high-temperature limiting cases. In fact, the Green’s function
technique26 has been developed to justify this approximation.

For the cases other than S = 1/2, the relation between
Ŝz

i and the number of magnons is more complicated due to
nonconstant (Ŝz

i )2 and thus Eq. (8) can not immediately lead
to a self-consistent equation for m(T ). Instead, one needs to

relate 〈(Ŝz
i )2〉 to m(T ) and the magnon density. Tyablikov33

introduces a decoupling method to approximate 〈(Ŝz
i )2〉 with

m(T ) and the normalized number of magnons

n0 ≡ 1

N

∑
q

〈â+
q âq〉 = 1

N

∑
q

1

exp(βωq) − 1
. (13)

Here, we find that, for arbitrary S, the self-consistent equation
for determining m(T ) is

m(T ) = (S − n0)(1 + n0)2S+1(1 + S + n0)n2S+1
0

(1 + n0)2S+1 − n2S+1
0

. (14)

By replacing S = 1/2, the above equation reduces to Eq. (12).
The magnetic energy can be similarly obtained as34

E = E0 + S − m(T )

2n0

∑
q

h̄ωq(0) + h̄ωq

exp(βωq) − 1
, (15)

where E0 is the ground-state energy and h̄ωq(0) is the spin-
wave energy at T = 0. Once the internal energy is obtained,
the specific heat Cp = ∂E/∂T may be numerically calculated.

m(Ts) is uniquely determined from Eqs. (14) or (12) for s =
1/2, if the spin temperature is known. Thus, the laser-induced
demagnetization is solely dependent on the the time-dependent
spin temperature Ts . Before we proceed to calculate Ts(t) or
m(t), we show the solutions of Eqs. (14) or (12). In Fig. 1,
the reduced magnetization m(T )/S and the specific heat as a
function of the normalized temperature T/Tc with [Figs. 1(a)
and 1(b)] and without [Figs. 1(c) and 1(d)] the magnetic field
are shown. A few general features can be readily identified.
First, the shapes of the magnetization curves for different
spins are very similar. Second, the magnetic field removes the
divergence of the specific heat at the Curie temperature. As
expected, the magnetization reduces to that of the mean-field
result near the Curie temperature and to that of the spin-wave
approximation at low temperatures.

(a) (b)

(c) (d)

FIG. 1. (Color online) Temperature dependence of (a) magne-
tization and (b) specific heat (arbitrary unit) for spin= 1/2, 1, 2,
8 in the absence of the external field; temperature dependence of
(c) magnetization and (d) specific heat for spin= 1/2, 1, 2, 8 in an
external field H/Tc = 0.001.
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IV. DYNAMIC EQUATIONS

The energy or heat transfer among electrons, spins, and
lattice may be captured by the general rate equations

dEe

dt
= −�es − �el, (16)

dEl

dt
= �sl + �el, (17)

dEs

dt
= �es − �sl, (18)

where Ei are the energy densities (i = e,s,l) and the rate of
the energy transfer �ij should be determined by Eq. (1). Since
we have neglected the weaker interaction between spins and
lattice, we set �sl = 0 in the above equations. In the following,
we explicitly derive the relaxation rates of �el and �es from
Eqs. (3) and (5).

A. Electron-lattice relaxation �el

The energy transfer rate between electrons and phonons
does not involve the spin. The Fermi golden rule applied to
Eq. (3) immediately leads to

�el = 4π

h̄

∑
k,q

h̄ωp
q |Bq|2δ

(
εk − εk+q + h̄ωp

q

)
× [

nk+q(1 − nk)
(
1 + np

q

) − nk(1 − nk+q)np
q

]
, (19)

where the first (second) term represents the energy transfer
from (to) the electrons to (from) lattice by emitting (absorb-
ing) a phonon. Note that the electrons and phonons have
different temperatures; otherwise, the detailed balance will
make the net energy transfer zero. The electron and phonon
densities are given by their respective equilibrium temper-
atures at Ts and Tl , i.e., nk = {exp[(εk − εF )/kBTe] + 1}−1

and n
p
q = [exp(h̄ω

p
q /kBTl) − 1]−1. We consider polarization-

independent acoustic phonons, i.e., ω
p
q = vsq where vs is the

phonon velocity. By replacing Bp given in Eq. (4) into Eq. (19),
we have

�el = 4π

h̄

(
2

3
εF

)2
V

(2π )4

me

h̄

me

M

∫ qm

0
q3dq

e
h̄vs q

kB Tl − e
h̄vs q

kB Te

e
h̄vs q

kB Tl − 1

×
∫ +∞

εq

e
ε−εF
kB Te dε(

e
h̄vs q

kB Te e
ε−εF
kB Te + 1

)(
e

ε−εF
kB Te + 1

) , (20)

where we have defined the cutoff energy εq ≡ (q −
2m

h̄2 h̄vs)2 h̄2

2m
, which comes from the δ function, and we have

introduced the maximum phonon wave number in the first
Brillouin zone (this definition is the same for magnons and
Fermi wave vectors) qm = kF = (6π2)1/3/a0. By integrating
over the electron energy ε, we obtain

�el = 4π

h̄

(
2

3
εF

)2
V

(2π )4

me

h̄

me

M

∫ qm

0
q3dq

[
np

q (Te) − np
q (Tl)

]

× kBTe

[
h̄vsq

kBTe

− ln

(
e

h̄vs q

kB Te e
εq−εF
kB Te + 1

e
εq−εF
kB Te + 1

)]
, (21)

where we have defined a Debye temperature θ = h̄vsqm/kB .
The last term of Eq. (21) can be approximated by[

h̄vsq

kBTe

− ln

(
e

h̄vs q

kB Te e
εq−εF
kB Te + 1

e
εq−εF
kB Te + 1

)]
≈ h̄vsq

kBTe

�(2kF − p)

(22)

for h̄ωq � kBTe, where �(x) is the step function. Therefore,
the relaxation rate becomes

�el = 1

h̄

(
2

3
εF

)2 9π

2V

me

M

θ

TF

[
G4

(
Te

θ

)
− G4

(
Tl

θ

)]
(23)

and Gn(x) = xn+1
∫ 1/x

0 tndt/(et − 1).
Interestingly, for Te,Tl � θ , the relaxation rate reduces to

�el = 1

h̄

(
2

3
εF

)2 9π

8V

me

M

(
Te − Tl

TF

)
. (24)

Thus, the relaxation rate is simply proportional to the differ-
ence between the electron and lattice temperatures (�el ∝ Te −
Tl); this is the assumption made in the earlier three-temperature
model.1

B. Electron-spin relaxation �es

The interaction between the electrons and spins given by
Eq. (5) may be simplified by using the self-consistent random
phase approximation, i.e., we replace Ŝz

i by its thermal average
m(Ts) and Ŝ±

q = √
2m(Ts)a∓

q . The electron-spin interaction
can then be rewritten as

Ĥes = − Jex√
N

√
2Sm(Ts)

∑
kq

(ĉ+
k−q↑ĉk↓âq + ĉ+

k+q↓ĉk↑â+
q ),

(25)

where we have dropped the m(T )σz term since it does not
involve the energy transfer between the electron and the spin.

The second-order perturbation immediately leads to the
electron-spin relaxation

�es = 2π

h̄

2Sm(Ts)

N
J 2

ex

∑
k,q

h̄ωqδ(εk − εk−q − h̄ωq)

× [
nk↓(1 − nk−q↑)

(
1 + ns

q

) − nk−q↑(1 − nk↓)ns
q

]
,

(26)

where ωq is the magnon frequency given by Eq. (10), the
electron distribution is nkσ = {exp[(εk − εF )/kBTe] + 1}−1,
and the magnon distribution is ns

q = [exp(h̄ωq) − 1]−1. Note
that the electron subsystem is considered unpolarized due to
the strong spin relaxation occurring during thermalization. In
Eq. (26), the first (second) term represents the electron emitting
(absorbing) a magnon. For the long wavelength, the magnon
dispersion [Eq. (10)] is simply h̄ωq = μBHext + αkBTcq

2a2
0

where α ≈ 1. Following the same procedure as the previous
section, we find

�es = 4π

h̄
2SM(Ts)J

2
ex

V

(2π )4

m2

h̄4

×
∫ qm

0
q dq(h̄ωq)2

[
ns

q(Te) − ns
q(Ts)

]
. (27)
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If the magnetic field is zero, the integration over q can be
immediately carried out and we approximately have (discard
the numerical constant α)

�es = (6π2)10/3J 2
exm

3(Ts)

2h̄V

(
Tc

TF

)2

×
[
G2

(
Te

DTc

)
− G2

(
Ts

DTc

)]
, (28)

where Gn(x) has been defined below Eq. (23) and the
temperature-dependent spin stiffness is D = m(Ts)q2

ma2. An
important result of this paper is that �es is proportional
to m3(Ts) and thus it is vanishingly small near the Curie
temperature. Furthermore, since Te/Tc and Ts/Tc are always
comparable to 1, the electron-spin relaxation rate given by
Eq. (28) is not proportional to Te − Ts , which is quite different
from the previous three-temperature model.1

C. Specific heats of subsystems

As the right sides of the rate equations (16)–(18) are
expressed in terms of three temperatures Te, Ts , and Tl , we need
to relate the energy change of each system to the temperatures,
i.e., we should define the heat capacities Ci for each subsystem
dEi = CidTi . The specific heat depends on the material details.
To be more specific, we consider the Ni metal that has been
experimentally investigated most extensively.

Specific heat of the electrons. In a free-electron picture, the
specific heat of an electron gas is Ce = 1

2πnekB(Te/TF )[1 −
3π2/10(Te/TF )2 − · · ·], where ne is the electron density and
TF is the Fermi temperature.35 However, this approximation is
usually poor in the case of transition metals. In our model, we
assume that the electron specific heat remains proportional to
the temperature Ce = γeTe where γe ≈ 1.5 × 103 Jm−3 K−2

is taken from experiments,36 which is smaller than the one
assumed earlier.1

Specific heat of lattice. The phonon energy is derived
from the Debye model Ep = ∫

d3q h̄ω
p
q n

p
q (T ). This yields

Cl = 3NAkBFD(TD/T ), where NA is the Avogadro number
and FD = ∫ TD/T

0 x4ex/(ex − 1)2dx is the Debye function. This
form of the lattice specific heat is consistent with Pawel et al.36

Specific heat of the spins. We determine the spin specific
heat from the numerical derivative of the spin energy Eq. (15),
as explicitly calculated in Sec. III. In Figs. 1(b) and Fig. 1(d),
we have already shown the temperature dependence of the spin
specific heat with and without the external field.

D. Summary

We summarize below the dynamic equations that govern
the time dependence of the three subsystem temperatures after
the laser pumping:

Ce(Te)
dTe

dt
= −�el(Te,Tl) − �es(Te,Ts) + P (t), (29)

Cl(Tl)
dTl

dt
= �el(Te,Tl) − Tl − Trm

τl

, (30)

Cs(Ts)
dTs

dt
= �es(Te,Ts), (31)

where we have used dEμ/dt = Cμ(Tμ)dTμ/dt and we have
discarded the spin-phonon interaction. In Eq. (29), we have

inserted P (t) representing the initial laser energy transfer to
the electrons, and in Eq. (30), we have included a phenomeno-
logical heat diffusion of phonons to an environment that is set at
the room temperature Trm; this term becomes significant only
at long time scale (subnanoseconds). The functions �ij are

�el = Wel

[
G4

(
Te

θD

)
− G4

(
Tl

θD

)]
, (32)

�es = Wesm
3(Ts)

[
G2

(
Te

DTc

)
− G2

(
Ts

DTc

)]
, (33)

where the constants Wel and Wes are given in Eqs. (24) and
(28), and D = (6π2)1/3m(Ts).

V. NUMERICAL RESULTS

In this section, we numerically solve our central equations
(29)–(33) for a number of plausible material parameters.
Our particular focus will be on the difference between
our model and the previous three-temperature model. Since
the demagnetization is mainly controlled by the interaction
between electrons and spins, we choose a set of different
Jex : a large Jex representing transition metals (e.g., Ni, Fe,
and Co) and a weak Jex for some ferromagnetic oxides
and dilute magnetic semiconductors. Equations (29)–(31) are
solved by using the following procedure. First, we assume
that the laser instantaneously heats the electron bath to
Te(0) while the spin and lattice temperatures remain at the
room temperature Ts(0) = Tl(0) = Trm. With these initial
conditions, we compute these temperatures after t > 0 where
the laser source has been turned off P (t > 0) = 0. If we only
consider the time scale smaller than 100 ps, we may drop the
heat-diffusion term in Eq. (30).

In Fig. 2, we show the typical temperature profiles after
a low-intensity laser pumping. In general, the electron-spin

FIG. 2. (Color online) Time dependence of the temperatures of
the electrons, spins, and lattice after irradiation by a low-intensity
laser with Te(0) = 0.7Tc, and Ts(0) = Tp(0) = Trm = 0.47 Tc, and
Tc = 620 K. The inset shows the minimum magnetization (or maxi-
mum spin temperature) occurs at about 260 fs. The other parameters
are Jex = 0.15 eV, εF = 8 eV,, M/m = 105, and a0 = 0.25 nm.
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FIG. 3. (Color online) Time-dependent magnetization as a func-
tion of time in logarithmical scale for various exchange parameters at
a fixed laser fluence. The parameters are the same as those of Fig. 2.

interaction is stronger than the electron-phonon interaction at
low temperature, and spin and electron temperatures equili-
brate within subpicoseconds. It takes an order of magnitude
longer to reach the equilibrium between lattice and the
electrons. Also shown in the inset is the time-dependent
magnetization, which illustrates the fast demagnetization and
slow remagnetization. In Fig. 3, we show the temperature
dependence of magnetization for different Jex . As expected,
the demagnetization time scales with the inverse of Jex , while
the remagnetization is independent of Jex since the latter is
controlled by the electron-lattice interaction.

A much more interesting case is the high intensity of
laser pumping. In this case, the spin temperature raises to
the Curie temperature in 0.1–0.2 ps as shown in Fig. 4. Due

FIG. 4. (Color online) Time evolution of three-temperature model
for a large laser-fluence case Te(0) = 1.6. The critical slowing down
of the spin system is identified as the plateau in the figure. The
inset defines a slowdown time τd . The smaller inset shows the
magnified region in the vicinity of the maximum temperature. The
other parameters are same as those in Fig. 2.

FIG. 5. (Color online) Log2-log2 plot of τd versus the reduced
temperature for Jex = 0.1 and 0.2. The exponents are δ = 0.43 and
0.34, respectively. The parameters are the same as those in Fig. 4.
The dashed line is for eye guidance.

to vanishingly small magnetization at the Curie temperature,
the energy transfer between electrons and spins becomes
negligible and thus the spin temperature stays constant for an
extended period of time (a few ps). The electron temperature,
however, continues to decrease due to the electron-lattice
interaction, which is not affected by the dynamic slowdown
of the spins. Interestingly, after the electron temperature drops
below the spin temperature, the spin system begins to heat
the electron system and thus the electron temperature behaves
nonmonotonically as seen in Fig. 4.

The dynamic slowdown of the spin temperature shown in
Fig. 4 is a general property of critical phenomena. Due to
the disappearance of the order parameter [the magnetization
m(T ) in present case], the effective interaction reduces to zero
at the critical point. In Fig. 5, we show the time interval
(labeled in the inset of Fig. 4) for the critical slowdown as

FIG. 6. (Color online) Magnetization as a function of time with
and without the magnetic field. The parameters are same as those in
Fig. 4.
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FIG. 7. (Color online) Log2(τd ) versus the initial electron tem-
perature for two values of Jex with (open symbols) and without
(filled symbols) the magnetic field. Te(0) is normalized initial electron
temperature.

a function of the maximum spin temperature Tm for a given
laser-pumping power. As it is expected, the critical slowdown
shows a power law τd ∝ [1 − Tm/Tc]−δ with the exponent δ

depending on Jex . In the case of very high intensity of the laser
pumping, Tm can be very close to Tc and the magnetization
dynamics can be extremely slow. In the presence of the external
field, however, the spin system does not have a sharp phase
transition anymore and the critical slowdown is removed, i.e.,
one recovers the fast magnetization dynamics. In Fig. 6, we
compare the magnetization dynamics with and without the
magnetic field. The magnetic field suppresses the dynamic
slowdown.

Finally, Fig. 7 shows the exponential dependence of τd on
the initial electron temperature, which is directly related to the
pumping laser fluence.

VI. DISCUSSION

A. Connection with experiments on LID

We now comment on the connection of our theory to the
existing experimental results. The LID experiments performed
on transition-metallic ferromagnets1,4,6 are usually at low
laser-pumping power. In these experiments, the previous
phenomenological three-temperature model provides an es-
sential interpretation of demagnetization: the laser-induced
hot electrons transfer their energies to spins and lattice.
As discussed in Sec. II, in our model, the demagnetization
(i.e., loss of spin memory) occurs during the instantaneous
thermalization of the interacting baths. Therefore, the demag-
netization (remagnetization) time scale is governed by energy
transfer between the baths: the demagnetization is given by
the electron-spin interaction while remagnetization time is
determined by the electron-phonon interactions.

For transition metals, the electron-spin interaction is at least
several times larger than the electron-phonon interaction. Thus,
the demagnetization is faster than the remagnetization. For
half-metals and oxidized ferromagnets, the demagnetization
is usually longer due to a reduced electron-spin interaction.

When the temperature increases, the demagnetization time
could be significantly increased;8 this is due to the weakening
of the effective electron-spin interaction with a reduced
magnetization. As the temperature approaches the Curie
temperature, Ogasawara et al.7 observed that in all their
samples, the demagnetization time could be enhanced by one
order of magnitude.

The influence of the pump intensity on the demagnetization
time can be similarly understood. As we have shown, a large
pumping intensity creates high-temperature electrons, which
heat the spin temperature to the Curie temperature. Thus, the
temperature and the pumping intensity dependence of the de-
magnetization involve the exact physics of critical slowdown.

B. Connection with HAMR

HAMR involves heating ferromagnets to an elevated tem-
perature so that a moderate magnetic field is able to overcome
the magnetic anisotropy for magnetization reversal. Since the
time scale in HAMR processes is of the order of nanoseconds,
the dynamics studied here can be viewed as ultrafast, i.e.,
all three temperatures have already reached equilibrium for
HAMR dynamics. Even for the temperature close to the Curie
temperature, the dynamics slowdown remains “ultrafast” for
HAMR as long as a moderate magnetic field is present. Thus,
the HAMR dynamics could be performed in two distinct time
scales: a fast dynamics within 10 ps, which determines the
longitudinal magnetization m(T ), and a slow dynamics from
subnanoseconds to a few nanoseconds, which determines the
direction of the magnetization by the conventional Landau-
Lifshitz-Gilbert equation. The detail calculations for HAMR
dynamics will be published elsewhere.

VII. CONCLUSION

We have proposed a microscopic approach to the three-
temperature model applied to laser-induced ultrafast demag-
netization. The microscopic model consists of interactions
among laser-excited electrons, collective spin excitations, and
lattice. Under the assumption of instantaneous spin memory
loss during the baths thermalization, the demagnetization prob-
lem reduces to energy transfer between the thermalized baths.

A self-consistent random phase approximation is developed
to model the low excitation of the spin system for a wide
range of temperatures. A set of dynamic equations for the
time-dependent temperatures of electrons, spins, and lattice are
explicitly expressed in terms of the microscopic parameters.
While the resulting equations are similar to the phenomenolog-
ical three-temperature model, there are important distinctions
in the temperature-dependent properties. In particular, the
magnon softening plays a key role in demagnetization near
Curie temperature, where a significant slowdown of the spin
dynamics occurs. We have also shown that for sufficiently
high temperatures (above the Debye temperature), the dynamic
properties are governed by only a few parameters: the Curie
and Fermi temperatures, the electron-spin exchange integral
Jex , and the electron-phonon coupling constant Bq. The
magnetization dynamic near the Curie temperature is rather
universal. Our numerical study of these equations illustrates
that, due to the reduction of the average magnetization as
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a function of the spin temperature, both pump intensity
and sample temperature are responsible for a relative long
demagnetization (several picoseconds). An external magnetic
field can suppress the critical dynamic slowdown.
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