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With a model of the d1(t2g)-electron antiferromagnetic Mott insulator a competition of two typical interactions
for orbital states of the t2g-triplet levels has been investigated: The on-site electronic coupling with a local
crystal field (LCF) tends orbitals to order, while the intersite superexchange (SE) induces their fluctuations. Both
interactions coexist in perovskites: The LCF is induced by GdFeO3-type structural deformations. In turn, the
SE originates from virtual electronic hoppings, allowed by the Pauli principle, between nonorthogonal orbital
states of adjacent sites. The dependence of the state of the orbitals (namely, a dispersion of their excitations
and the quadrupole polarization) on a relation between the energy � of the triplet level splitting, caused by
the D3d -symmetry LCF, and the exchange energy JSE is analyzed. Two qualitatively different regimes of the
collective orbital behavior have been established: the induced order and fast fluctuations. It has been found that
a crossover between them occurs when � comes close to JSE, and in the parameter region about � ≈ JSE the
order and fluctuations affect the wave function in a comparable extent. Previous approaches based on either of
the interactions fail in this window. The present study identifies validity ranges of the former theories, embracing
the physics of the orbitals by the unified description.
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I. INTRODUCTION

Orbital quantum numbers of strongly correlated electrons,
residing in the 3d(4d) shell of transition metal (TM) ions, are
important control parameters for complex properties of TM
oxides: their intricate ground states, low-energy excitations,
and phase transitions.1 A realization that the d-orbital variables
should be considered on the same foundations with spin
ones in these materials has stimulated an establishment of
a modern branch of science: orbital physics.2 The canonical
but still challenging subjects of the research are the Mott
insulators with a simple perovskite pseudocubic lattice RBO3

[R3+ and B3+ correspond to a rare-earth (RE) and TM ions,
respectively], where the d electrons are localized by the
strong Coulomb on-site repulsion while their spin and orbital
degrees of freedom survive.1–6 Keeping an energy degeneracy
of the ionic d eigenstates in part, a ligand crystal field of
idealized cubically symmetric oxygen octahedrons retains
for the orbital system some freedom to chose their ground
state. The field splits the d level into a doublet of the eg

wave functions (x2 − y2, 3z2 − r2) directed along the bonds
B-O and a triplet of the t2g orbitals (xy, xz, yz) lying in
the octahedron basal planes. A consequent problem of the
degeneracy resolving belongs to basic issues of orbital theory,
stimulating investigations of mechanisms selecting a peculiar
state from many of such in the system.

Typical relevant interactions of the d electrons in the
perovskites are their intersite superexchange (SE) and the
electric coupling with a local crystal field (LCF) at a TM site,
which is introduced by a deformation of the oxide structure.3–6

In a case of the ions with the active eg orbitals (B = Mn,
Cu, etc.), both interactions create a long-range orbital order,
promoting each other.4,7 Originally, for the systems with the
t2g symmetry (B = Ti, V) the similar picture of a cooperation
between the SE and the LCF orbital orders was suggested.8,9

However, refined analyses have revealed that models, engaging
only one of these orbital interactions—either SE (I), or

LCF (II)—predict fundamentally different behavior of the t2g

orbitals: In the first case, strong vacuum fluctuations stabilize
either quantum disorders [e.g., the orbital liquid10–14 (OL) and
orbital Peierls state15,16] or quantum orders;17,18 while captured
by the static distortions, the d orbitals form classical orders19–22

in the second case.
In last decade the former6,10–18 (I) and the latter5,19–32 (II)

approaches (sometime called schemes32) have been developed
into actual directions of research, reaching remarkable success
in quantitative descriptions of the experimental properties
of t2g oxide materials (titanates,33–40 vanadates41–43) from
the opposing principles (cf., for instance, Refs. 10–12 with
Refs. 19–26). A controversy emerged as to which of them is
more appropriate.5,6 De facto, the SE and LCF interactions
are present in perovskites together,5,6 but their coexistence
and concurrence for the t2g orbital state were not modeled;
as a consequence, it has not been determined when each
of these schemes collapses. The existence of the theoretical
“gap” between these conflicting doctrines hinders an entire
comprehension of the t2g orbital physics.

The present work is a first attempt to obtain a generalized
model, based on both competing interactions, which could
reconcile conflicting scenarios (I) and (II) of the t2g orbital
states, embracing the approaches by a unifying description
and separating them into distinct parametric validity regimes.
To this end, I have investigated how the orbital system organi-
zation adopts the alternative tendencies due to the competition
between the SE and LCF for the t2g state. Also, the universal
approach could reflect a bifacial character of the t2g orbitals,
appearing in the numerous low-temperature experiments: One
set of them detected the robust orbital order,21,35,36,41 while the
other set indicated the powerful quantum fluctuations.37–40,42,43

I have chosen the d1(t2g)-electronic Mott insulator with the
cubic TM sublattice and G-type antiferromagnetic (AFM) spin
arrangement as a representative variant of the problem.

The impressive distinction between the predictions, given
by the “pure”-SE (I) and LCF (II) interaction scheme,
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for the t2g orbital behavior [respectively the quantum OL
phase10–12 and static induced orbital order (IOO) “dictated”
by a distortion19–22], becomes apparent in the research of
the puzzling spin G-type AFM Mott insulator LaTiO3. A
motivation of those numerous studies was to find an orbital
ground state of the d1(t2g) electrons of Ti3+ ions, which
is capable of reconciling the spatial anisotropy of the t2g

orbitals underlying the SE with the cubic symmetry of the
magnetic spectrum33 and absence of a cooperative Jahn-Teller
(JT) transition in the lattice.34 Below, we outline concisely
corresponding approaches (I) and (II).

The first of them (the pure-SE model of the OL) has
been suggested in Ref. 10. The OL is a collective resonance
of the spin/orbital excitations of valence bonds between the
d1 ions in the cubic lattice, which minimizes the energy of
the AFM state through a dynamical lifting of the t2g-triplet
degeneracy with the maintenance of the spacial symmetry
group.10–12 In the Mott insulator with the quasilocalized d

electrons the SE interaction between their spins establishes
in a bond connecting nearest sites. The physical process is a
virtual electron hopping across the charge gap allowed by the
Pauli principle and retaining partially the kinetic energy.44 The
hopping parameters strongly depend on the orbital structure,
and in the case of the degenerate eg or t2g levels the spin and
orbital variables enter the SE models on equal footing and
become mutually coupled.3,45 The intersite exchange by these
quantum numbers introduces fluctuations.

The energy of the SE spin/orbital correlations/fluctuations
could be optimized in diverse fashions, depending on the
symmetry of the active orbitals.3,4,6 A nonequivalence of the
SE interaction for the wave functions of the eg doublet is
responsible for the spontaneous long-range orbital order.3,4

On the contrary, in the t2g system an SE bond involves a
doublet of the equivalent planar orbitals.6,10 The quantum
resonance between such degenerate configurations produces
cooperative states with the fast on-site orbital fluctuations,
lifting off the triplet degeneracy completely. When all the three
t2g orbitals could be operable like for the d1 (Ti3+) ion, the
AFM OL is formed. It is composed of the dynamic bonds
evenly intermixed over the cubic lattice, which entangle spin
and orbital variables.10,12,14 If only a pair of the orbitals remains
SE active in this way, as for the d2 (V3+) ion, the orbital-only
intersite singlets in the spontaneously dimerized bonds become
favorable.16

According to scenario (I), it is just these orbital oscillations,
developed close to the Mott transition, that obstruct the
JT orbital-lattice order in lanthanum titanate.10 The recent
Raman38 and RIXS39 (resonant inelastic x-ray scattering)
measurements corroborate the picture of the fast collective
t2g orbital fluctuations.

In the alternative framework,19–32 the LCF caused by the
lattice distortions controls the orbitals at a TM site instead of
the SE. For the states with the t2g symmetry the interaction with
the GdFeO3-type intrinsic perovskite deformation (GFOD),
trigged by ionic size mismatch effects, is crucial.19

In the GFOD structure a variation of the R-ionic radius
becomes accommodated by cooperative tilts and rotations of
the oxygen octahedra to adjust the energy of the R-O bonds,
the smaller ion affects the crystal more. With the shape of the
octahedra and d-element cubic sublattice remaining relatively

firm, the TM and RE ions were found to be shifted against
each other pronouncedly.5 Namely, in LaTiO3 one of the body
Ti-La diagonals is shorter, suggesting the lowest t2g-electronic
crystal-field state exhibiting the character of the eg wave
function extended toward the R cation.19–22 Such a state is
in agreement with the x-ray21 and NMR35 (nuclear magnetic
resonance) experiments. Having lifted the degeneracy of the t2g

orbitals “disposed” toward it, the GFOD prohibits the JT effect
from carrying this out by means of the spontaneous squeezing
of the octahedra to lower the electron-lattice energy.19,20

Actually, for the t2g electrons the JT mechanism is less efficient
than the GFOD, because lobes of such orbitals are directed
apart from the anionic site.

Analysis in Refs. 19 and 20 has shown that the shift of
the RE La ions generates the LCF on the TM sites with
the symmetry close to the D3d trigonal distortion.30 The
LCF splits the t2g triplet and statically orders the orbitals in
the ground nondegenerate a1g level screened by the energy
gap � against local doublet excitations e′

g . The trigonal
symmetry of the a1g states of the d1 electrons implies the
uniform AFM SE coupling between their spin = 1/2 for all
the bonds30 in correspondence with the cubic symmetry of
the experimental magnon spectrum.33 Unlike approach (I)
the low-energy physics is expressed by the pure-spin SE
models19,20,23–25 in scheme (II).

The closeness of estimated realistic magnitudes of these
basic orbital interactions, the SE and LCF ones,46 is an
additional, practical reason in favor of the consideration of
their interplay within the unifying theoretical approach.

In the present work I have analyzed how the competition
between the SE and LCF for the t2g orbital degrees of freedom
of the d1 electrons in their AFM spin state could be resolved
at zero temperature. The effective model, incorporating the
coupling of the t2g orbitals to the on-site GFOD-LCF with
the D3d symmetry and the intersite spin-orbital SE interaction
in the cubic lattice as well, has been introduced in Sec. II.
The orbital state has been investigated in a dependence on
the respective scales, � and JSE, of these contributions in the
Hamiltonian, which served as parameters. Increasing of �/JSE

corresponds to enhancing GFOD in the AFM titanates from
the domain of compositions with the relatively large-radius RE
ions (La, Ce, Pr) upon their partial or complete substitution by
the more compact ones (say La to Ce or Pr): In this trend
the amplification of the local trigonal crystal field at a TM
site due to shifts of the RE cations goes hand in hand with
an attenuation of the intersite SE constant for the t2g orbitals
caused by the canting of the Ti-O-Ti bond.5,19,20

Taking the static IOO with the localized orbital states as
an initial approximation, I have revealed a development of
the nonlocal fluctuations due to the spin-orbital SE, treated
as a perturbation. In Sec. III an analytical description of the
collective orbital dynamics has been obtained. In Sec. IV
two different regimes of the extended quantum fluctuations
have been established: one with the IOO-likeness and another
with OL-likeness. A parametric condition segregating them
has been deduced. In Sec. V a parameter of the orbital
order has been calculated, indicating a crossover between
the IOO and OL. A general discussion is presented in
Sec. VI.
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II. ORBITAL MODEL

A. Superexchange interaction

Following the Kugel-Khomskii (KK) approach for low-
energy states of a perovskite Mott insulator with the orbital
degrees of freedom,3,45 I start from a hypothetical cubic lattice,
corresponding to TM ions, where each site i possesses only
one d(t2g) electron. Then in the bond 〈ij 〉 the electronic SE
interaction arises from the virtual transitions to the upper
Hubbard band didj ↔ d2

i(j ) with the amplitude t , while the
low-energy charge excitations are quenched by the strong
on-site Coulomb repulsion U , being the dominant energy
in the issue. For the sake of simplicity, the SE bonds
are considered here in the limit of vanishing on-site Hund
exchange interaction, because usually its relative strength is
small: JH/U � 1.

In the case of the triple degenerate local t2g levels the SE
is described by the spin-orbital KK model,45 which could be
reduced to the form11,12,18

HSE = JSE

∑
〈ij〉γ

A
(γ )
ij

(
�Si

�Sj + 1

4

)
. (1)

Here the parameter JSE (= 4t2

U
> 0) sets the energy scale of

the SE interaction. The operators �S stand for the electronic
spins S = 1/2, and their orbital-dependent intersite coupling
are determined by the operators A

(γ )
ij , acting in the basis of

the cubic harmonics yz, xz, xy (each of them is denoted by
the respective direction a, b, c of the bond γ orthogonal to its
plane). Namely, for the lattice bond c the orbital operator can
be written as

A
(c)
ij = ni,anj,a + ni,bnj,b + a

†
i bib

†
j aj + b

†
i aia

†
j bj , (2)

while the expressions for the other two bonds are obtained
from (2) after cyclic permutations of the indexes a, b, and c.
Also, in Eq. (2) the respective t2g orbital states are represented
by the spinless pseudoparticles (orbitons) ai , bi , ci with the
constraints ni,a + ni,b + ni,c = 1 for their numbers.

The spin and orbital physics of the t2g-KK model is highly
nontrivial. Its internal symmetry favors strong fluctuations,
preventing spin ordering at any nonzero temperature in the
cubic lattice47 by analogy with conventional planar spin
systems.48

At T = 0 the exact ground state of Hamiltonian (1) is
unknown, though it could be approached employing different
approximations.9,10,12,17,18 When the degrees of freedom in
the SE interaction are decoupled into the spin and orbital
sectors, the mean-field analysis in Ref. 9 indicates the KK
model to be close to the quantum critical point between
the ferromagnetic (FM) and AFM spin orderings, and the
subsequent separate treatment of the spin/orbital vacuum
fluctuations stabilizes the FM arrangement.17,18 However, if
the correlated, strongly coupled spin-orbital fluctuations are
taken into account within the model of the OL,10–12 the
antiferromagnetism wins, bringing the better estimation of the
SE energy.10,18

In fact, the staggered spin order is facilitated by the infinite
orbital degeneracy (frustration) of the Néel phase of Hamilto-
nian (1) in the classical limit �Si

�Sj = −1/4, when the orbitals
on each site could be rotated independently without energy

costs.10 The “order-from-disorder” mechanism49 removes this
degeneracy completely, selecting the AFM OL state with
the help of the specific SE quantum fluctuations being very
efficient due to the flat “geometry” of the t2g orbitals.

To follow the way that the frustration becomes resolved
it is instructive to compare the t2g with eg system. In the
last case the regular eg orbital order, forming the directional
chainlike structure, maximizes the SE energy gain from the
AFM spin fluctuations.50,51 The t2g orbitals are, however, not
bond-directed, but planar. As a result, not much fluctuation
energy in the AFM can be gained by any pattern of static t2g

orbital ordering, while their dynamic disordering turns out to
be the advantageous solution.10

In the t2g system the spin “exchange integral” JSEA
(γ )
ij

is confined to an individual pair of the equivalent orbitals
for every SE bond [say only the a and b states are active
for the bond c in Eq. (2)], thus having the extra SU(2)
symmetry in the orbital subspace.10,52 As is known from the
spin SU(2) × orbital SU(2) models,52–56 the main contribution
to the exchange energy is gained in that case due to the reso-
nance between degenerate local configurations (spin singlet ×
orbital triplet and spin triplet × orbital singlet), and the ele-
mentary excitations become collective composite modes with
spin and orbital variables unified by the SU(4) symmetry. In
particular, the ground state of the lattice turns out to be the
nondegenerate SU(4)-isotropic one (singlet),52,53 comprising
every possible configuration of such four-site singlets52,56 in
a fashion of the Anderson’s RVB (resonating valence bonds)
wave functions.57 Acquiring the best possible exchange energy
per bond, these local spin-orbital singlets become perfect
“building blocks” for the vacuum state.52

It was shown in Refs. 10 and 12 that even though a true
SU(4) singlets cannot develop in model (1) because of its
spin-orbital asymmetry, they provide for the t2g system a way
to resolve the frustration, minimizing the exchange energy by
formation of the virtual SU(4) resonances composed of short-
length spin fluctuations accompanied by instant dynamical
orbital bonds. Since the singlets entangle spin and orbital
degrees of freedom, a separate analysis of these variables
is destructive for the resonances.13,14 The OL, being the
quantum phase of the rapidly oscillating orbitals with a gapless
fermionic spectrum in the mean-field description (so-called
χ − J model),10 amplifies this mechanism in three dimensions
of the lattice. Because the OL possesses the invariance against
the cubic space group, the fluctuation-averaged exchange
integrals become equivalent for all the bonds and facilitate
the G-AFM order due to spontaneous breaking of the spin
SU(2) symmetry10,11 of SE interaction (1).

Apparently, the GFOD should inhibit the resonances,
affecting the t2g orbital degeneracy of the SE bonds. However,
the theory of the OL, coexisting with distortions, is lacking,
and there is no information about the magnitude of the LCF,
which suppress the OL completely.

B. Local crystal field

Now we return to scheme (II), where the state of the orbital
is determined by its coupling with the LCF, applied to the
d1(t2g) electron due to the GFOD. For simplicity, we consider
the equivalent LCF with the D3d symmetry at every site i of
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the cubic lattice; such periodicity corresponds to the uniform
“configuration 1” in Ref. 30. The trigonal symmetry splits the
cubic t2g triplet into the singlet ground state with the wave
function a1g = 3z2

[111] − r2 extended along the direction [111]
and the doublet e′

g of the gapped excitations. These orbitals
are represented with the orbitons ψ1,i , ψ2,i , ψ3,i as follows:

a1g : ψ1,i = 1√
3

(ai + bi + ci);

(3)

e′
g :

{
ψ2,i = 1√

2
(ai − bi),

ψ3,i = 1√
6
(2ci − ai − bi).

The pseudoparticles, defined by Eqs. (3), satisfy the local
constraints on their numbers: n1,i + n2,i + n3,i = 1.

The corresponding Hamiltonian of the interaction between
the orbitals and LCF is given by

HLCF = −�
∑

i

2n1,i − n2,i − n3,i

3
, (4)

where the parameter � > 0 denotes the energy of the trigonal
crystal-field-induced gap. A condensation of the orbitons in the
ground level a1g ≡ ψ

†
1,i |0〉 in each site produces the uniform

static IOO due to the bosonic statistics, employed for fields (3)
here. Again, the intersite SE interaction between the electrons,
occupying the nondegenerate a1g orbitals, creates the G-AFM
spin order.19,30

Treating the ordered orbital and spin variables separately
in the above fashion, the LCF approach effectively decouples
them.20 For this reason, in the present work we study the SE
coupling between this sectors to clarify the nature of the t2g

orbital state. Also, such analysis lets us establish the condition,
when the orbital order becomes unstable against the quantum
fluctuations introduced by the SE, and approximation (II) fails.

Hereafter, the overcondensate excitations ψ
†
2(3),i are de-

scribed with a compact form of interaction (4), where the fields
ψ1,i are eliminated due to the constraints. The diagonality of
operator (4) with respect to index i accounts for the local
character of the orbital excitations pinned to their sites in the
LCF scheme.

C. Interplay between the superexchange and crystal-field
interactions of the orbitals

To investigate the competition of LCF and SE interactions
for the t2g orbital state upon varying a relation between the
magnitudes of � and JSE, I consider the model

H = HLCF + HSE (5)

at zero temperature. Here, HLCF and HSE are given by Eqs. (4)
and (1), respectively.

Qualitatively, the first contribution to Eq. (5) facilitates
the IOO state of the d1(t2g) electrons with the spin AFM
arrangement, whereas the second term promotes the dynamical
OL-like orbital disordering. Hence, the behavior of the t2g

orbital system in the antiferromagnet could be followed
from the evolution of the orbital order.58 To find it, for
Hamiltonian (5) the classical IOO due to the LCF with local
orbital excitations, described by operator (4), is taken as an
initial approximation. Then the spin-orbital interaction HSE is

interpreted as a perturbation, because the spin factor in Eq. (1)
becomes small in the Néel phase: For instance, in the aforesaid
classical limit for the antiferromagnet it vanishes, and in the
linear spin-wave theory 〈�Si

�Sj + 1
4 〉 ≈ −0.05. Consequently,

such analysis is justified not only at JSE/� � 1 but could
be extended even up to the experimentally related situation46

JSE ≈ �.
To investigate quantitatively the effect of the quantum spin-

orbital oscillations, introduced by the SE, the mean fields and
fluctuations about it are defined as follows:

A
(γ )
ij = 〈

A
(γ )
ij

〉 + δA
(γ )
ij , (6)

�Si
�Sj + 1

4 = 〈�Si
�Sj + 1

4

〉 + δ(�Si
�Sj ) ≈ δ(�Si

�Sj ). (7)

According to this, SE operator (1) is separated into three
contributions:

HSE = Hsp + Horb + Hint. (8)

With the first two terms (Hsp + Horb) in Eq. (8) the an-
tiferromagnet, orbitally ordered by the LCF, is treated in
the Hartree-Fock approximation, when the spin and orbital
variables are decoupled. Namely, the intersite AFM spin
interaction is described by the first contribution,

Hsp = JSE

∑
〈ij〉γ

〈
A

(γ )
ij

〉(�Si
�Sj + 1

4

)
, (9)

and the orbital correction is presented by the second one,

Horb = JSE

∑
〈ij〉γ

〈
�Si

�Sj + 1

4

〉
δA

(γ )
ij ≈ 0. (10)

From here on we omit term (10), being unessential in the AFM-
IOO phase because of the aforementioned smallness of the
spin correlator. The last contribution in Eq. (8) introduces the
coupling between the correlated spin and orbital fluctuations
about the Hartree-Fock states in the antiferromagnet:

Hint = JSE

∑
〈ij〉γ

δ(�Si
�Sj )δA(γ )

ij . (11)

Our goal is to establish how interaction (11), treated as a
perturbation in model (5), gaining the form

H = HLCF + Hsp + Hint, (12)

affects the orbital sector, and when the IOO (generated by HLCF

in the antiferromagnet represented by Hsp) becomes defeated
due to the term Hint in Eq. (12).

Toward this end in view we implement expansion (6) of
operator (2) with respect to the orbital fluctuations, being the
virtual transitions from the ordered ground state a1g to the
doublet e′

g owing to spin-orbital coupling (11). This is achieved
in three steps. (i) First, the fields a, b, c are represented through
bosons (3). (ii) Then in the obtained expressions the variable
ψ1 is expanded in the series,

ψ1 = ψ
†
1 =

√
1 − ψ

†
2ψ2 − ψ

†
3ψ3 ≈ 1 − 1

2 (n2 + n3), (13)

at each site i. Relation (13) is just the consequence of the
local constraint for the orbitons and reflects an exhausting of
their condensate due to the spontaneous ψ

†
2(3),i excitations.

(iii) Having substituted the resultant expressions for ai , bi , ci
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into Eq. (2), required decoupling (6) of the orbital operator is
realized as follows:

A
(γ )
ij = 4

9 + δA
(γ )
ij . (14)

Here the first contribution corresponds to the expectation
value, 〈

A
(γ )
ij

〉 = 4/9, (15)

in the state with the perfect IOO, when all the orbitals occupy
the a1g level. Equation (15) provides the first-order estimation
of the AFM spin interaction strength J ≡ JSE〈A(γ )

ij 〉 = 4JSE/9
in (9). Again, in Eq. (14) the fluctuation part reads as

δA
(γ )
ij = A

(γ )
ij (1) + A

(γ )
ij (2), (16)

where the contributions of the first order [A(γ )
ij (1)] and second

order [A(γ )
ij (2)] with respect to the orbital excitations are taken

into account. Namely,

A
(γ )
ij (1) =

3∑
m=2

α(γ )
m (ψ†

m,i + ψ
†
m,j ) + H.c., (17)

with the coefficients α
(a)
2 = −α

(b)
2 = −√

6/9, α(c)
2 = 0, α(a)

3 =
α

(b)
3 = −α

(c)
3 /2 = √

2/9. The lengthy expression for the term
A

(γ )
ij (2) is presented in Appendix A.
In accordance with Eq. (16) spin-orbital interaction (11)

is expanded into the one- and two-orbiton parts Hint(1) and
Hint(2), corresponding to the linear A

(γ )
ij (1) and quadratic

A
(γ )
ij (2) orbital operators:

Hint = Hint(1) + Hint(2). (18)

Here we retain only the lowest order contribution Hint(1) in the
interaction Hint. Then term (11) in Hamiltonian (12) is reduced
to the factored three-particle operator:

Hint = JSE

2

∑
〈ij〉γ

(
sisj + s

†
i s

†
j + ns

i + ns
j

)

×
3∑

m=2

[
α(γ )

m (ψ†
m,i + ψ

†
m,j ) + H.c.

]
, (19)

where the spin-flip processes are represented by the Néel
magnons s

†
i (ns

i = s
†
i si describes their number). [Hint(2) is

obtained in Appendix A. The effects of Hint(1) and Hint(2)
on the orbital state are compared in Appendix B within a
second-order perturbation theory, the role of Hint(2) being
minor.59]

The spin-orbital interaction Hint “shakes” the IOO in the
antiferromagnet, admixing the spontaneous orbital fluctua-
tions ψ

†
2(3),i |0〉 to the vacuum of the orbitons, condensed in

the local a1g levels. This becomes evident from Eq. (19),
containing nonzero matrix elements for the corresponding
transitions from the ground to the exited states. Namely, such
orbital fluctuation on a site i appears simultaneously with
the intersite spin fluctuations on its adjacent bonds (i,j ). In
turn, the exchange of the nearest sites i and j by magnons
creates the orbital excitation on the opposite site j of the bond,
thus promoting tunneling of the orbitons over the lattice. In
this fashion SE coupling (11) transforms the local e′

g-orbital

excitations in the IOO state to the extended ones, correlating
them with the intersite spin flips.

III. ORBITAL GREEN’S FUNCTIONS

The SE-driven collective orbital dynamics is investigated
with Hamiltonian (12), taken in the momentum representation.
Three-particle interaction (19) leads to the system of Dyson
equations for the orbitons, written as

{
Ĝiω,�k =G0

iωÎ + G0
iω Ŝiω,�k (Ĝ + F̂ )iω,�k,

F̂iω,�k =
∗

G0
iω Ŝiω,�k (Ĝ + F̂ )iω,�k.

(20)

Here the following notations have been used: Fourier
components of the normal and anomalous thermal
Green’s functions, defined on the set of Matsubara fre-
quencies iω, are Gmn

iω,�k = 〈−Tτψm,�k,τψ
†
n,�k,0

〉iω and Fmn

iω,�k
= 〈−Tτψ

†
m,−�k,τ

ψ
†
n,�k,0

〉iω (m and n = 2 or 3). They are given

by 2 × 2 matrices Ĝiω,�k and F̂iω,�k in the orbital subspace (Î
is the unit matrix). The zero-order Green’s function, G0

iω =
1/(iω − �), represents the localized orbital excitation, while
the self-energy matrix Ŝiω,�k describes the intersite orbiton
tunneling via the spin flips in the SE bonds due to particle
exchange processes (19).

The self-energy is calculated from skeleton diagram (a) in
Fig. 1 in the lowest order. [The effect of correction (b) due to
Hint(2) is evaluated in Appendix B being relatively small.] In
the internal lines the magnon excitation energy, ω�k = 3J (1 −
γ 2

�k )1/2 with γ�k = (ckx
+ cky

+ ckz
)/3, is related to spin-term

(9) of Hamiltonian (12).
As it is shown in Appendix C, matrix elements of the

spin-orbital interaction Hint, “coupling constants” (C5), vanish
in the limit of small magnon momenta, thereby “decoupling”
the extended orbitons and soft spin-modes from each other.
Then in the diagram loop lines the dispersion of the “bare”
magnons could be approximated by the Izing limit, ω�k →
D = 3JSE〈A(γ )

ij 〉, since the main contribution to corresponding
momentum summation (C4) over the Brillouin zone (BZ)
comes from the short-wavelength spin excitations in the
bonds.60 After this, the present problem becomes trackable
analytically: The components of the dynamical corrections,
Ŝiω,�k , are calculated as

Smn

iω,�k = 4DJ 2
SE

(iω)2 − (2D)2
cmn

�k . (21)

(a) (b)

FIG. 1. Corrections (a) and (b) to the orbital excitations due to
the contributions Hint(1) and Hint(2) in the spin-orbital interaction
(18), respectively. Lines (wavy lines) correspond to the magnons
(orbitons).
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Here �k dependencies are determined by the factors

c22
�k = 2

27
(ckx

+ cky
+ 2),

c23
�k = c32

�k = 2

27
√

3
(cky

− ckx
), (22)

c33
�k = 2

81
(6 + ckx

+ cky
+ 4ckz

),

which arise in Eq. (21) due to the matrix elements of the
interaction in the diagram vertices.

Then the orbiton functions, satisfying Eqs. (20), obtain the
following structure:

Gmn

iω,�k =
gmn

iω,�k
diω,�k

, Fmn

iω,�k =
f mn

iω,�k
diω,�k

, (23)

where the numerators are defined by Eqs. (C7) (see Ap-
pendix C) and the denominator is given by

diω,�k =
2∏

l=1

∏
p=+,−

(
iω − ω

p

l,�k
)(

iω + ω
p

l,�k
)
. (24)

Poles ω
p

l,�k of the causal Green’s functions, obtained after the
conventional analytic continuation of expressions (23) from
the Matsubara frequencies, are indexed by l = 1,2, p = +,−
and correspond to four branches of the spectrum of the
collective orbital excitations in the IOO state:

ω±
l,�k =

√
�2 + 4D2

2

×
⎧⎨
⎩1 ±

[
1 − 16�D2(� − �∗αl,�k)

(�2 + 4D2)2

]1/2
⎫⎬
⎭

1/2

.

(25)

Here the momentum dependence is determined by functions

αl,�k = 1

2

⎡
⎣1 + γ�k + (−1)l−1

(
κ�k − γ 2

�k
2

)1/2
⎤
⎦ , (26)

where κ�k = (c2
kx

+ c2
ky

+ c2
kz

)/3. In Eq. (25) the prefactor of
αl,�k reads as follows:

�∗ = 16

27

J 2
SE

D
=

(
4

9

)2

JSE
〈
A

(γ )
ij

〉−1
. (27)

Because 0 � αl,�k � 1 [see Fig. 2(a)], energy (25) of the
bosonic excitations possesses real, non-negative values in all
the points �k of the BZ only if the trigonal splitting

� � �∗. (28)

In this case, the undamped orbiton modes appear in the IOO;
the �k dependence of their frequencies, ω

p

l,�k , is presented in
Figs. 2(b) and 2(c) upon decreasing �.

Dispersion (25) combined with expression (26) is invariant
with respect to transformations of the cubic symmetry group
in the reciprocal space. This acquired property of the orbital
excitations in the local trigonal field is a “fingerprint” of
the cubic symmetry of SE interaction (1) in their collective
dynamics.

FIG. 2. (Color online) Momentum dependence of the orbital
excitation spectrum along the path through the high-symmetry points
� = (0,0,0), R = (π,π,π ), M = (π,π,0), X = (π,0,0), and N =
(π,0,π ). (a) Functions αl,�k defined by Eq. (26): The solid (dashed)
line corresponds to l = 1 (2). The orbiton dispersion, calculated
from Eq. (25) with 〈A(γ )

ij 〉 = 4/9, is plotted in panels (b) and (c) for
the trigonal splitting � = JSE and � = �∗ = (4/9)JSE, respectively;
the energy of the corresponding local e′

g excitation is indicated
by the horizontal dot lines. The lower branch ω−

1,�k (ω−
2,�k) is drawn by

the red (blue) solid line, and the upper one ω+
1,�k (ω+

2,�k) is represented
by the black (green) dashed line.

The spectral density of these excitations is evaluated
in Appendix D from a normal Green’s function (23) as
follows: ρmn

p,l,�k δ(ω − ω
p

l,�k). Here the factors ρmn

p,l,�k are given

by Eq. (D1a), being residues in the poles ω
p

l,�k [Eq. (25)].

The remaining poles, −ω
p

l,�k [see Eq. (24)] with the residues
σmn

p,l,�k [Eq. (D1b)], correspond to related vacuum zero-point

orbital modes with frequencies (25) and spectral density
σmn

p,l,�k δ(ω + ω
p

l,�k). Such collective quantum oscillations of the

ground state develop in the IOO due to the spontaneous e′
g

excitations caused by spin-orbital interaction (19). Signs of
a high-frequency cubic orbiton mode were detected in the
Raman measurements in RTiO3.38

IV. ORBITAL EXCITATIONS

Here we analyze properties of the extended orbital ex-
citations. When assumption (28) for the magnitude of the
LCF holds, the subradical expression in the square brackets
of Eq. (25) becomes non-negative. This implies the relation
ω−

l,�k � ω+
l,�k for the dispersion. Accordingly, the excitations are
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split into two bundles of the branches: a “lower” ω−
l,�k and an

“upper” ω+
l,�k one, as Figs. 2(b) and 2(c) illustrate. Keeping in

mind that α1,�k � α2,�k one obtains the following hierarchy of
energies (25) of the orbital oscillations:

ω−
1,�k � ω−

2,�k � ω+
2,�k � ω+

1,�k. (29)

The family ω−
l,�k (l = 1,2) develops from the localized e′

g

excitations over the initial crystal gap �, when they become
deconfined from their sites owing to the virtual creation of
magnon pairs in the neighboring SE bonds. The respective ex-
tended composite bosonic quasiparticles resemble propagating
orbital excitations “dressed” by clouds of the magnons. They
correspond to orbital waves in the IOO state. The residues
of the poles ω−

l,�k are pronounced: In specific directions of the
reciprocal space the magnitudes ρmm

−,l,�k are about unity (for

a ratio �/JSE = 1 close to the realistic one46), indicating
the coherence of the modes [see panels (a), (b) in Fig. 4 in
Appendix D]. The delocalization of these modified orbitons
reduces their kinetic energy; as a result, the spectrum both
sinks below the parent level � and obtains its dependence on
the momentum [see Figs. 2(b) and 2(c)]. A moderate variation
of the energy of the collective orbital excitations over the BZ
indeed has been observed as in lanthanum and so in yttrium
titanate in the recent RIXS experiments.39

When αl,�k = 1 the two branches ω−
l,�k (l = 1, 2) simultane-

ously reach their minimum,

ω� = 2D

√
�(� − �∗)

�2 + 4D2
, (30)

which is a renormalized gap for the orbital excitations. Gap
(30), stabilizing the orbital order, promptly diminishes with �

and collapses at � = �∗, indicating a lower bound of the IOO
state: Further decreasing of � results in an imaginary value
of ω�. Then the lower energy branches ω−

l,�k become complex
functions, and consequently the wavelike orbital modes decay
as a result of strong SE-driven fluctuations. Such a behavior
points to an instability of the IOO and a different nature of the
extended spin-orbital quasiparticles in the region � < �∗.

A peculiarity of function (26) with l = 1 is that it becomes
α1,�k = 1 for every �k = (k,0,0) [(0,k,0) or (0,0,k)] in the
interval −π � k � π . As a consequence, when � = �∗, gap
(30) of the branch ω−

1,�k simultaneously disappears along the
three coordinate axes of the BZ (in the direction �X and
equivalent ones) [see Fig. 2(c)]. The emergence of such lines
of the soft excitations implies a fragility of the IOO state,
because in the family of cubic planes (100) [(010) or (001)],
which are orthogonal to the corresponding line, the orbitals
obtain an ability to change their phase without energy costs
independently of the others in neighboring parallel planes. As
a result, the intensity of the quantum fluctuations of the ground
state dramatically enhances: For the momenta, extended along
these lines, the residues (D1) diverge as

ρmm

−,1,�k = −σmm

−,1,�k ∼ ω−1
� , (31)

when � approaches �∗.61 Such a trend is apparent in panels
(c) and (d) of Figs. 4 and 5 in Appendix D.

An appearance of massless extended modes with a di-
verged spectral density of low-frequency vacuum fluctuations
signifies an evolution of a system from its one regime to
a qualitatively another. Such a behavior is typical, when a
ground state rebuilds. As we see in the next section, this is
accompanied by a suppression of a parameter of the orbital
order.

The emergence of the aforesaid linear pieces of the gapless
orbitons with an infinite degeneracy of states indicates that
already at � → �∗ one faces the problem of the orbital
frustration, which was removed at � > �∗ in Hamiltonian
(12) due to the applied trigonal crystal field splitting the
triplets. As was obtained in Ref. 12 for pure-SE model (1)
in the space of the degenerate triplets, interaction (11) leads
to a strong coupling between the short-wavelength magnons
and t2g orbital fluctuations. Then a nonperturbative effect of
such coupling results in the bound spin-orbital resonances,
forming the OL phase.12 For the present model, this analogy
suggests that a continuum of low-lying OL-like excitations
supersedes the soft fluctuational modes ω−

1,�k in the orbital
dynamics when � decreases below the scale �∗: The fast
spin-orbital fluctuations lift the infinite orbital degeneracy of
the vacuum, when gap (30) disappears.

Again, in the proximity of the critical scale �∗, when the
IOO fails, the perturbational approach to model (12) becomes
rather superficial. Nevertheless, it bears distinctive marks of
the OL fermionic continuum in the dispersion of the extended
excitations, such as the one-dimensional segments with the
nonzero density of the (almost) gapless states.10 Our estimation
with spectrum (25) yields the reasonable density ρ(0) = 0.11
of the gapless modes when � → �∗ (for 〈A(γ )

ij 〉 = 4/9), which
is about six times smaller than the density of states at the Fermi
level in the genuine OL.10 Such relative reduction of ρ(0)
correctly illustrates the tendency to suppress the low-lying SE-
modes, when the gradually amplifying LCF is superimposed
on the OL.

The instability of the ordered state of the t2g orbitals, tending
to the fluctuations due to the SE interaction, is a consequence
of their peculiar planar geometry. This behavior is in contrast
to the eg system, where the SE coupling between the magnons
and orbitons retains the gap and stabilizes the order in the
orbital sector.50

Regarding the upper branches ω+
l,�k (l = 1, 2) of dispersion

(25), they always possess an open gap 2D [see Fig. 2(b) and
2(c)], which corresponds to the double energy of a spin-flip
in the antiferromagnet. These “spinlike” poles of the Green’s
functions originate from a peculiar mixing of the orbital and
spin variables, when the tunneling orbitons excite the AFM
bonds and virtually “dissociate” into pairs of the magnons due
to interaction (19). The spectral density factors ρmm

+,l,�k for such
orbitons are by some orders of magnitudes less than those for
the lower branches. Thus, the orbital excitations of the p = +
kind decay relatively fast, forming the “shadow bands.”

V. PARAMETER OF THE ORBITAL ORDER

In model (5) the local D3d field introduces a nonequivalence
of the different on-site orbital states, polarizing the t2g triplet,
while the antagonistic SE interaction is aimed to recover
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the triplet isotropy. Therefore, a polarization of the on-site
t2g orbital could be a landmark of the peculiar nature of
the orbital state, indicating a prevalence of one of the two
mechanisms. To define this local characteristic, we rotate the
quantization axes in such a way that the new �̂z is directed
along the cubic diagonal [111], and consider the ground-
state expectation value of the component Qz = (�l2 − 3l2

z )/2
of the t2g-electron quadrupole moment as the orbital order
parameter in this frame.18 For the basis of operators (3) this
quantity,

〈Qz〉 = 〈n1,i − 1
2 (n2,i + n3,i)〉 = 1 − 3

2 〈n2,i + n3,i〉, (32)

is expressed through the filling of the excited e′
g states. The

corresponding occupation numbers are given as follows:

〈nm,i〉 = −T
∑
�kω

Gmm

iω,�ke
+iω0, (33)

when employing the orbiton Green’s function of Hamiltonian
(12).

It is evident from Eq. (32) that the quadrupole polarization
(0 � 〈Qz〉 � 1) is related to an accumulation of the orbitons
in the a1g-crystal level: In particular, 〈Qz〉 = 1 in the limit
of the rigid orbital order. Qualitatively, 〈Qz〉 should diminish
with decreasing of �/JSE, because the a1g condensate 〈n1,i〉
is exhausted due to the virtual e′

g excitations introduced by
the spin-orbital coupling Hint. In the limit of the fast orbital
fluctuations (� = 0) all the triplet levels become occupied
uniformly (〈nm,i〉 = 1/3 for m = 1, 2, 3), and thus, 〈Qz〉 = 0.

In terms of the quadrupole moment operator, interaction (4)
obtains the form

HLCF = −2

3
�
∑

i

Qz
i . (34)

Consequently, order parameter (32) specifies the contribu-
tion 〈HLCF〉 = −2�〈Qz〉/3 of the interaction between the
quadrupole polarization of the local t2g electronic density and
the static D3d crystal field into the ground-state energy of the
model (5):

〈H 〉 = 〈HLCF〉 + 〈HSE〉. (35)

The � dependence of the polarization, 〈Qz〉�, evaluated
from Eqs. (32) and (33) with the Green’s function, calculated
in the second-order perturbation theory relative Hint [taken in
form (18)], is derived in Appendix B and plotted in Fig. 3.
In such an approximation the orbiton–two-magnon coupling
Hint(1) results in a slight decrease of 〈Qz〉 with decreasing
�, whereas the two-orbiton–two-magnon correction Hint(2)
almost does not influence the value 〈Qz〉� (see the thin long-
dash and thin solid line in Fig. 3, respectively).

To trace the evolution of 〈Qz〉 upon decreasing the effective
orbital gap ω�, I calculate the occupation 〈n2,i + n3,i〉 of the
e′
g states from Eq. (33) with the normal Green’s function (23).

Then the relation between orbital order parameter (32) and
intensity of the vacuum fluctuations (D1b) is established as
follows:

〈Qz〉 = 1 − 3

2

∑
l = 1,2
p = +,−

∣∣〈σ 22
p,l,�k + σ 33

p,l,�k
〉
�k∈BZ

∣∣. (36)

0.0 0.5 1.0 1.5

0.5

1.0

JSE

Q
z OL IOO

Δ

FIG. 3. Orbital order parameter as a function of �/JSE at 〈A(γ )
ij 〉 =

4/9. The bold line is the dependence calculated from Eq. (36). The
vertical arrow indicates the value �∗/JSE = 4/9, where orbital gap
(30) closes, providing the scale of the crossover between the regime
of the IOO and OL one. The behavior of 〈Qz〉 below �∗/JSE is
schematically represented by the smooth dash curve. The thin long-
dashed (thin solid) line denotes the quadrupole polarization found in
the second-order perturbation theory relative Hint, keeping only the
three-particle contribution δQ1 (both three- and four-particle terms
δQ1 and δQ2) in 〈Qz〉 [see Eq. (B5)].

The polarization 〈Qz〉, obtained from Eq. (36) at 〈A(γ )
ij 〉 =

4/9, is plotted versus � in Fig. 3 as the bold line. The
progressive decrease of the order parameter with decreasing
�/JSE goes hand in hand with the enhancement of the
zero-point orbital oscillations (see Fig. 5 in Appendix D). The
main effect on 〈Qz〉 is provided by the quantum fluctuations
related to the lowest-energy dispersion branch ω−

1,�k , which

bring the principle contribution in the �k average over the BZ
in Eq. (36).

When � approaches �∗ (the lower bound of the IOO
state), the order parameter rapidly drops. This is related with
divergence (31) of the magnitude σnn

−,1,�k of the fluctuations
in the region, where the gapless orbital excitations appear.
Although at � = �∗ the quadrupole polarization is reduced
substantially, it retains about a half of its original value:
〈Qz〉�∗ = 0.47. It does not vanish completely at this point,
because in Eq. (36) the singularity of the function σ 22

−,1,�k +
σ 33

−,1,�k along the coordinate axes of the BZ is integrable in the
�k space.

VI. DISCUSSION

The pronounced drop of the order parameter 〈Qz〉 at �∗
in Fig. 3 indicates a crossover between two distinct regimes
of collective orbital behavior of model (5). In one of them
[the IOO (� > �∗)] the t2g-triplet degeneracy is lifted by
the GFOD LCF, which orders the orbitals. The contribution
〈HLCF〉 into ground-state energy (35) prevails over the SE
term 〈HSE〉. In turn, the SE enforces the gapped local orbitons,
mediated by the intersite virtual spin fluctuations, to cooperate,
forming the extended bosonic composite modes, protected by
the reduced crystal gap ω�. These generalized orbital waves,
developed in the IOO regime, are not the true Goldstone
bosons, caused by a continuous symmetry breaking. The
related vacuum oscillations admix the e′

g-doublet excitations to
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the basic a1g singlet state, progressively suppressing the on-site
t2g quadrupole moments with decreasing the ratio �/JSE.

When � approaches the scale �∗ and then goes below
it, the substantial SE fluctuations defeat the IOO state in the
antiferromagnet, breaking down the orbital gap ω�. Again,
the infinitely degenerate massless excitations appear in the
dispersion, being an analog of the orbital frustration in the
approach of Khaliullin and Maekawa10 for the pure-SE AFM
model. The orbiton-magnon SE coupling becomes strong
between sites in the gapless many-particle continuum.12 Then
a formation of virtual bonds with fast spin-orbital fluctuations
à la the intersite singlet resonances, as in Ref. 10, could be
the efficient way to reduce total energy (35) of model (5)
through the SE channel, when � < �∗. The enhancing orbital
fluctuations further depress the quadrupole polarization 〈Qz〉,
which becomes small, and the corresponding energy 〈HLCF〉
diminishes below 〈HSE〉 in this regime. The related approx-
imation for the resonances interacting with the distortions
could be the fermionic χ − J model of the OL,10 with its
low-lying quasiparticles affected by the local D3d crystal field
as a perturbation. In this respect, the effect of the LCF on
the OL resembles the Pauli paramagnetism, when a static
magnetic field is applied to the Fermi liquid. To be more
specific, the induced quadrupole polarization, remaining in
the OL, could be regarded as a result of the following virtual
process: The crystal field of the GFOD instantly “picks up”
the orbitons from the spin-orbital resonances into the on-site
states with nonzero 〈Qz〉, and then, the localized orbitons are
reabsorbed into the OL. Again, the gradual suppression of
the quadrupole moments by the collective t2g fluctuations (see
Fig. 3) resembles the quenching of the local spin moments
without a symmetry breaking in the Kondo lattice, when they
are screened by quantum oscillations of the spin density of
the itinerant electrons. The quantitative description of the OL
regime (� < �∗) of model (6) remains for a future analysis.

The scale �∗ of the crossover could be evaluated from
Eq. (27). One obtains the lower bound estimation, �∗/JSE =
4/9 ≈ 0.44, with the first-order approximation (15) for the
expectation value 〈A(γ )

ij 〉.62 More refined treatments of a
vicinity of the transition could apparently somewhat enlarge
�∗(∼ 1/〈A(γ )

ij 〉), because the enhancing fluctuations tend to

reduce the mean field 〈A(γ )
ij 〉: For instance, in the OL state,10

〈A(γ )
ij 〉 = 0.16 is about three times smaller than the estimation

given by Eq. (15) for the classical orbital order. The other
reasonings suggest that the crossover appears when the energy
gains due to the orbital fluctuations (〈HSE〉) and polarization
(〈HLCF〉) match each other. Employing the value 〈HSE〉/JSE =
−18χ2 ≈ −0.93, obtained in the OL state,10 and assuming
〈Qz〉 ≈ 1/2 at the border between these regimes, one gets
the upper bound estimation �∗/JSE ≈ 2.7 [with χ being
the parameter of the SU(4) resonance]. Thus, the condition
� ≈ �∗ ≈ JSE is the likely criteria for the crossover between
the OL and IOO physics of model (5), where a concurrence of
the SE with the LCF term governs the orbital effects.

In the present study, theoretical model (5) omits the on-
site Hund-exchange coupling of the t2g electrons in the SE
process d1

i d1
j ↔ d2

i(j ). Within a properly detailed SE approach
(I) the AFM orbital-disordered phase was found to remain
robust against a weak perturbation, originating from this

local coupling with the realistic constant JH/U ≈ 0.12.6,18

The Hund effect partially enhances of the nearest-neighbor
spin-triplet–orbital-singlet correlations in the lattice. The
related intersite orbital-singlet fluctuations cooperate with
the underlying spin-orbital resonances, further reducing (by
≈30%) the energy 〈HSE〉 of the OL AFM state.18 Estimations
for suitably corrected model (5), implemented in Appendix E,
conform with this physics and indicate that the corresponding
effect on the scale of the crossover is small: The magnitude of
�∗ increases by ≈15%–20%, suggesting a slight widening of
the � range of the orbital-fluctuation regime (OL).

Again, in the crossover region, � ≈ JSE, the magnitudes of
�/JSE are not too far from those evaluated in genuine titanates,
say in LaTiO3.46

A technique for direct measurements of orbital states has
still not been developed. They are studied only through indirect
effects, introducing ambiguity in estimations for the orbital
variables. In titanates with R = La, Y, the static orbital po-
larization has been established from the splitting of the 47,49Ti
NMR signal due to an on-site hyperfine coupling between
the nucleus spins and the electron quadrupole moments.35,40

In these experiments the resonance was observed about
frequencies ωRes ≈ 20 MHz, which are six orders of magnitude
less than the orbital fluctuation rates.63 As compared with
such rapid processes, the NMR response was measured over
a “wide time window”∼1/ωRes, corresponding to a period
of the nucleus moment precession. The nucleus resonance
detects a quasistatic hyperfine field due to the mean orbital
polarization.35,40,64 Thus, an information about the orbital
oscillations could be either hidden or defaced after averaging
over such a wide observation window. In Refs. 10 and 65 a
principle ability to resolve the SE orbital fluctuations have been
proved for observations with “narrow time window,”reached
in the high-frequency Raman and RIXS measurements. The
corresponding effect appeared in a form of the broad peak
about 0.25 eV in experiments for titanates with R = La,
Y.38,39,66 The RIXS even made it possible to reveal the
collective orbital dynamics; however, an uncertainty in the
measured dispersion of excitations was about their magnitude,
that is, too large.39 Nevertheless, the above data definitely
indicated the marked dualistic character of the t2g orbitals,
combining the quantum fluctuations and the static polarization
in their nature.

Model (5) suggests the similar orbital bifacial states, which
combines both features: quadrupole polarization and fluctu-
ations. Response functions (23) of Hamiltonian (5) describe
the states in a dependence on the frequency, covering both
the low- and the high-frequency experimental “windows.”In
particular, a scale of the energies 2ω−

l,�k of the two-orbiton
excitations corresponds to the location of the above-mentioned
Raman peak at 235 meV.38,67 Thus, in this respect, the model
generalizes the (I) and (II) schemes.

VII. CONCLUSION

An approach has been suggested for a description of the
orbital degrees of freedom of the d1(t2g) electrons in the
perovskite Mott insulators: The model has been introduced,
which unified both typical interactions, coexisting in the
materials. One of them was the intersite SE, inducing the
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fluctuations of the planar orbital. The other was the LCF
due to the GdFeO3-kind structure deformation, which split
the t2g triplet, thereby arranging the orbitals. The cubic
lattice with the AFM SE bonds and on-site D3d -LCF,
created by the GFOD, has been chosen as a prototype of the
perovskite.

The related problem of the competition between the LCF
an SE interactions for the orbitals has been resolved in
the limit of the vanishing Hund on-site electronic exchange
coupling. A new way of organizing of these degrees of freedom
has been obtained in the lattice: the bifacial orbital states,
unifying the induced polarization and quantum fluctuations.
Their dependence both on the magnitude � of the triplet
splitting and the SE constant JSE has been established. The
transition from the classical order to the fast fluctuations has
been followed. The two qualitatively different regimes, IOO
(� > �∗) and OL (� < �∗), as well as the transitional region
(crossover) between them have been revealed. The crossover
appears when the parameters � and JSE are comparable. The
Hund-exchange correction to the transition scale �∗ has been
estimated to be small. In the IOO regime the orbital order
is stable, and the collective oscillations resemble the waves,
involving the orbital and spin variables simultaneously. The
dispersion of these orbital modes, spectral characteristics of
the fluctuations, and the quadrupole order parameter have been
calculated in the Born approximation. When the renormalized
crystal gap ω� is depressed, the fluctuations overcome, and the
system progressively transforms into the opposite, OL regime,
possessing the remnant quadrupole polarization due to the
moderate LCF.

Both preceding approaches, employing either of the in-
teractions (LCF or SE), is found to fail in the crossover
range, while they are appropriate in the corresponding regime
(IOO or OL) as an initial approximation. Therein, the present
investigation generalizes the previous theories, bridging the
“gap” between them and identifying their validity regions.
Thus, my theory provides the more comprehensive description
of the orbital states, reconciling the ordering and fluctuations,
while the LCF and SE schemes emphasized either of these
aspects.

Again, the suggested approach is suitable to clarify the
d electron physics in the family of titanates, RTiO3: The
resembling dualism was observed in these compounds, which
revealed the orbital polarization35 and fluctuations38,39 in the
opposite frequency “windows.”Apparently, the approach is
also related to other t2g systems, for example, vanadates,
exhibiting the effects of the GFOD structure15,41 together with
the developed orbital fluctuations42,43 as well. In RVO3 the
issue of the interplay between these interactions demands a
specific solution and will be the subject of a future work.
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APPENDIX A: FOUR-PARTICLE ORBITON-MAGNON
INTERACTION Hint(2)

The contribution Hint(2) to spin-orbital interaction (18) is
related to the quadratic orbital operator, which reads

A
(γ )
ij (2)=

3∑
m,n=2

(
α(γ )

x,nmxmn
ij +α(γ )

y,nmymn
ij + α(γ )

z,nmzmn
ij

)
. (A1)

Here the bosonic pairs are defined as follows:

xmn
ij = ψ

†
m,iψn,j + H.c.,

ymn
ij = 1

2 [(ψ†
m,iψn,i + ψ

†
m,jψn,j ) + H.c.], (A2)

zmn
ij = ψ

†
m,iψ

†
n,j + H.c.,

which are denoted by the index ζ = x,y,z. Also, in Eq. (A1)
the numeric coefficients,

α
(a)
ζ,nm = unm

ζ , α
(b)
ζ,nm = (−1)n+munm

ζ ,
(A3)

α
(c)
ζ,nm = vnm

ζ ,

are expressed through elements of the respective matrices

ux = 1

9

(
3

√
3√

3 5

)
, vx = 2

9

(
3 0
0 1

)
,

uy = − 1

18

(
5

√
3√

3 7

)
, vy = −2

9

(
2 0
0 1

)
, (A4)

uz = − 1

18

(−3
√

3√
3 −1

)
, vz = 2

9

(
1 0
0 0

)
.

Having expanded the spin factor in Eq. (11) in terms of the
Holstein-Primakoff bosons si we obtain the corresponding
two-orbiton–two-magnon interaction:

Hint(2) = 1

2
JSE

∑
〈ij〉γ

(
ns

i + ns
j + s

†
i s

†
j + sisj

)
A

(γ )
ij (2), (A5)

where A
(γ )
ij (2) are given by Eq. (A1), and ns

i = s
†
i si .

APPENDIX B: QUADRUPOLE MOMENT IN THE SECOND
ORDER PERTURBATION THEORY

In this Appendix I evaluate the quadrupole polarization
from Eq. (32) in the second-order perturbation theory with
respect to the interaction Hint, given by Eq. (18). Then the
related orbiton Green’s functions are calculated as follows:

Gmn

iω,�k = 1

iω − �
+ 1

(iω − �)2

[
Smn

iω,�k(1) + Smn

iω,�k(2)
]
. (B1)

Here the correction Smn

iω,�k(1) = Smn

iω,�k [see Eq. (21)] is obtained
with the diagram in Fig. 1(a), originating from the three-
particle coupling Hint(1) [Eq. (19)]. Again, the four-particle
interaction Hint(2) [Eq. (A5)] produces the next term, Smn

iω,�k(2),
given by the diagram in Fig. 1(b) in the following form:

Smn

iω,�k(2) = J 2
SELmn

−iω − (� + 2D)
+

J 2
SERmn

�k
iω − (� + 2D)

, (B2)
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where

Lmn = (
δmnu

ml
z uln

z + 1
2vml

z vln
z

)
pmln, (B3a)

Rmn
�k = 2δmn

(
uml

x uln
x + uml

y uln
y

) + vml
x vln

x + vml
y vln

y

+ [
ckx

+ (−1)m+ncky

] (
uml

x uln
y + uml

y uln
x

)
+ ckz

(
vml

x vln
y + vml

y vln
x

)
. (B3b)

The summation over the index l = 2,3 is taken in Eqs. (B3),
umn

ζ (ζ = x,y,z) are defined by Eqs. (A4), and Eq. (B3a)
contains the factor

pmln = (1 − δmn) (δml + δln) + 1
2δmn (3δml + 1) . (B4)

When orbiton functions (B1) are employed, quadrupole
polarization (32) is calculated as follows:

〈Qz〉 = 1 − δQ1 − δQ2, (B5)

where the contribution

δQj = −3

2
T
∑
ω

3∑
m=2

e+iω0

(iω − �)2

〈
Smm

iω,�k(j )
〉
�k∈ZB

(B6)

corresponds to the coupling Hint(j ). Here the average is
taken over the BZ, and j = 1(2) identifies the orbiton–two-
magnon (two-orbiton–two-magnon) channel. Having substi-
tuted Eqs. (21) and (B2) into (B6), we obtain the respective
corrections:

δQ1 = 4

9

J 2
SE

(� + 2D)2
, δQ2 = 3

8
β

J 2
SE

(� + D)2
, (B7)

where

β =
3∑

m=2
Lmm = 13/108. (B8)

The � dependencies, 〈Qz〉�, at 〈A(γ )
ij 〉 = 4/9, calculated from

Eqs. (B5) with (B7), are plotted in Fig. 3, taking into account
as only the first term δQ1, and so both contributions δQ1 and
δQ2 (see Sec. V for the discussion).

APPENDIX C: BORN APPROXIMATION

The orbiton propagators, being the solutions of Dyson
equations (20), have the following matrix form:

Ĝiω,�k = ĝiω,�k
Diω,�k

, F̂iω,�k = f̂iω,�k
Diω,�k

. (C1)

In particular, the function in the denominator,

Diω,�k =
3∏

n=2

[
(iω)2 − �2 − 2�Snn

iω,�k
] − (

2�S23
iω,�k

)2
, (C2)

is expressed through the elements of the “mass operator” Ŝiω,�k ,
and the respective matrix numerators of Eqs. (C1) are given as

ĝiω,�k = f̂iω,�k + (iω + �)
{
[(iω)2 − �2 − �S+

iω,�k]Î

+ (iω − �)S23
iω,�kσx − �S−

iω,�kσz

}
, (C3a)

f̂iω,�k = [(iω)2 − �2]Ŝiω,�k − 2�Î det Ŝiω,�k, (C3b)

where S±
iω,�k = S22

iω,�k ± S33
iω,�k , and σx(z) is the Pauli matrix.

The diagram in Fig. 1(a) results in the following orbiton
self-energy part:

Smn

iω,�k =
∑

�p
g

(m)
�p,�k+ �p g

(n)
�p,�k+ �p

2ε̃�k, �p
(iω)2 − ε̃2

�k, �p
. (C4)

Dynamical corrections (C4) are expressed through energies
ε̃�k, �p = ω �p + ω�k+ �p of corresponding pairs of the spin excita-
tions with the dispersion ω�k = 3J (1 − γ 2

�k )1/2 and the matrix
elements

g
(n)
�k, �p = V an × [

η
(n)
�q N�k, �p + (

η
(n)
�k + η

(n)
�p
)
M�k, �p

]
(C5)

of spin-orbital interaction (19), taken in the momentum
representation. Here the following definitions are employed:
The interaction parameter is V = 2

√
6JSE/9, the coefficients

are a2 = 1, a3 = −2/
√

3, the form factors of the SE bonds,
η

(n)
�k , read as

η
(2)
�k = 1

2

(
ckx

− cky

)
,

(C6)
η

(3)
�k = 1

4

(
ckx

+ cky
− 2ckz

)
,

and �q = �k − �p. Again in Eq. (C5), the terms N�k, �p = u�kv �p +
v�ku �p and M�k, �p = u�ku �p + v�kv �p combine the Bogoliubov
magnon transformation coefficients, u�k = [(s + 1)/2]1/2 and
v�k = −[(s − 1)/2]1/2sgnγ�k , where s = (1 − γ 2

�k )1/2.
Vertex functions (C5) of the spin-orbital coupling vanish at

small magnon momenta due to factors (C6), and it is the short-
wavelength magnons which are important for the problem. In
this respect, the situation is analogous to the pure-SE model.10

Thus, in a similar way to Ref. 10, the orbital dynamics could
be approached, treating the magnons in the Izing limit in the
orbital self-energy, because contributions from soft-magnons
are suppressed in �p-sum (C4) due to the matrix elements.

Then the model becomes tractable, and orbital self-energy
(C4) and propagators (C1) are calculated analytically in
respective form (21) and (23). In more detail, the denominator
of Green’s functions (23) is given by Eq. (24), and the
corresponding numerators are now written as

gmn

iω,�k = giω,�k δmn + 4DJ 2
SE(iω + �)2[(iω)2 − 4D2]cmn

�k ,

(C7a)
f mn

iω,�k = f�k δmn − 4DJ 2
SE[(iω)2 − �2][(iω)2 − 4D2]cmn

�k ,

(C7b)

with cmn
�k defined by Eqs. (22). Again, in Eqs. (C7) the first

terms,

giω,�k = (iω − �)(iω + �)2[(iω)2 − 4D2]2 − f�k

− 64

27
�DJ 2

SE(iω + �)[(iω)2 − 4D2](1 + γ�k),

f�k = 2

(
16

27

)2

�D2J 4
SE

[
2γ�k + 1

2

(
3γ 2

�k − κ�k
) + 1

]
,

(C8)

combined with γ�k and κ�k = (c2
kx

+ c2
ky

+ c2
kz

)/3 are cubically

symmetric in the �k space, while the second contributions to
numerators (C7) violate this symmetry. Anticipating things,
the extended e′

g fluctuations, deduced from functions (23),
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obtain a dispersion, ω±
l,�k [Eq. (25)], markedly reducing the

crystal gap from the original value, �, to the effective one, ω�

[Eq. (30)].
To verify the Izing-approximation results, I have also

calculated the orbital spectrum from the poles of initial Green’s
functions (C1), taken in their retarded form, when the magnon
dynamics is treated carefully in self-energy part (C4). The
low-frequency orbiton dispersion, obtained numerically, was
found to indeed closely follow the dependencies ω−

l,�k; in
particular, the bottom of the dispersion resembles a plateau
along the same axes, (kx,0,0), (0,ky,0), and (0,0,kz). The
residual coupling of the orbitons to the long-wavelength spin
fluctuations stimulates a slightly more rapid decrease of the
orbital gap as compare to Izing-limit value (30): For example,
the gap becomes ≈0.85 ω�, when � = 0.55.

Such likeness of the results is explainable, because intersite
interaction (19) stems from the exchange in the bonds, mainly
involving the short-wavelength magnons.

APPENDIX D: SPECTRAL DENSITY OF THE ORBITAL
FLUCTUATIONS

An intensity of the orbital fluctuations could be evaluated
from the residues, ρmn

p,l,�k and σmn

p,l,�k , in the corresponding

poles, ωp

l,�k � 0 and −ω
p

l,�k � 0, of the retarded normal Green’s

function G
mn(R)
ω,�k derived from Eq. (23). They are calculated as

follows:

ρmn

p,l,�k = gmn

ω
p

l,�k,
�k
∏
p′l′

(
ω

p

l,�k + ω
p′

l′,�k
)−1∏̇

p′l′

(
ω

p

l,�k − ω
p′

l′,�k
)−1

, (D1a)

σmn

p,l,�k = gmn

−ω
p

l,�k ,
�k
∏
p′l′

(
ω

p

l,�k + ω
p′

l′,�k
)−1∏̇

p′l′

(
ω

p′

l′,�k − ω
p

l,�k
)−1

.

(D1b)

The factors, having p′ = p and l′ = l simultaneously, are
omitted in the products labeled by a dot in Eqs. (D1), expressed
through matrix elements (C7a) and dispersion (25).

The spectral density of the orbital wave and related zero-
point mode with the frequency ω

p

l,�k are given as ρmn

p,l,�k δ(ω −
ω

p

l,�k) and σmn

p,l,�k δ(ω + ω
p

l,�k), respectively, when the IOO is

stable at � � �∗.
The residues ρmm

−,l,�k (σmm

−,l,�k), obtained from Eqs. (D1) for the

lower-energy branches ω−
l,�k , are plotted in Fig. 4 (5) against

the momentum. Their marked anisotropy in the �k space reflects
the competition between the LCF and SE for the planar t2g

orbitals. The residues for the higher-energy branches (p = +)
are skipped here, because they are by some orders of magnitude
smaller than those for the lower (p = −) branches. See Sec. IV
for a detailed discussion of the orbital fluctuations.

APPENDIX E: INFLUENCE OF THE HUND COUPLING ON
THE ORBITAL STATE

The cubic-lattice Hamiltonian of the SE interaction H
ij

SE
between the nearest-neighbor d1(t2g) ions is given by Eq. (1) in
Ref. 18, which takes into account the Hund exchange coupling
(JH � U ) in the on-site virtual d2(t2g) states. Its relevant
spin-orbital contribution HSE, coming into operation in orbital

FIG. 4. Momentum dependence of the residue ρmm

−,l,�k [see

Eq. (D1a)] in the pole ω−
l,�k of the retarded orbiton Green’s function

G
mm(R)
ω,�k (m = 2,3) at 〈A(γ )

ij 〉 = 4/9. The solid (dashed) line corre-
sponds to the index l = 1 (2). The data in panels (a) and (b) are
calculated with the triplet splitting � = JSE, when the orbital gap
is open; again, those in panels (c) and (d) are obtained with the
parameter � = �∗ + 10−5JSE, which approaches the scale �∗ when
the gap disappears. The path goes through the same points as in Fig.
2 including Z = (0,0,π ).

model (5), retains the form of KK SE term (1), where the spin
exchange integral is modified as follows: JSEA

(γ )
ij → JSEÃ

(γ )
ij .

The adjusted orbital operator,

Ã
(γ )
ij = 1

2 (r1 + r2)A(γ )
ij − 1

3 (r2 − r3)B(γ )
ij

− 1
4 (r1 − r2)(ni + nj )(γ ), (E1)

FIG. 5. Momentum dependence of the residue σmm

−,l,�k [see

Eq. (D1b)] in the pole −ω−
l,�k of the retarded function G

mm(R)
ω,�k

(m = 2,3). The respective notations and parameter values are the
same as in Fig. 4.
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provides the model with a dependence on the Hund-coupling
strength η = JH/U via the coefficients r1 = 1/(1 − 3η), r2 =
1/(1 − η), and r3 = 1/(1 + 2η). In Eq. (E1) the term A

(γ )
ij

stands for previous operator (2), while B
(γ )
ij and n

(γ )
i are written

as

B
(c)
ij = ni,anj,a + ni,bnj,b + a

†
i bia

†
j bj + b

†
i aib

†
j aj ,

(E2)
n

(c)
i = ni,a + ni,a

for the bonds along the direction c. Expressions for the bonds
a and b are obtained by replacing of the orbiton pairs (a,b) by
(b,c) and (c,a) in Eqs. (E2), respectively.

We employ the approach developed in Sec. II C. Then the
expansion of orbital operator (E1) into the mean field 〈Ã(γ )

ij 〉
and fluctuation δÃ

(γ )
ij , corresponding to the e′

g excitations about
the a1g IOO state due to the SE interaction, is calculated as

Ã
(γ )
ij = α0,η

〈
A

(γ )
ij

〉 + α1,ηA
(γ )
ij (1). (E3)

Here the initial expectation value 〈A(γ )
ij 〉 and linear operator

A
(γ )
ij (1) are given by Eqs. (15) and (16), respectively, while

their “Hund corrections” have the following form:

α0,η = 1 − 5
2η

1 − 2η
, α1,η = 1 − 7

4η

1 − 2η
. (E4)

In the IOO regime of the antiferromagnet, the model for the
orbital dynamics is reduced to Hamiltonian (12), where the
parameters of the terms Hsp and Hint (respectively the magnon
bandwidth D = 3J and orbiton-magnon coupling constant
JSE) become renormalized as follows:

Hsp : D → Dη = α0,ηD,
(E5)

Hint : JSE → Jη = α1,ηJSE.

Then the orbital Green’s functions, excitation spectrum,
and polarization 〈Qz〉 are directly deduced from foregoing
Eqs. (23), (25), and (36), respectively, after substitution of the
corresponding parameters in conformity with rule (E5). The
lengthy explicit expressions are skipped here.

The Hund corrections to the orbital states of model
(5) are found to be small: A representative value18 of η

about 0.12 results in α0,η ≈ 0.92 and α1,η ≈ 1.04; that is,
orbital operator (E3) rescales by 5%–10%. This estimation
quantifies deviations of the intersite exchange integral, orbiton

dispersion, and orbital order parameter from the initial ones,
when the Hund coupling is included.

The gap of the orbiton dispersion is obtained to vanish
along �k = (0,0,kz) and equivalent directions in the BZ, when
the trigonal splitting � approaches the modified lower bond
of the IOO regime �∗

η. The scale is found as

�∗
η = α2

1,η

α0,η

�∗, (E6)

where its initial evaluation �∗ (= 4
9JSE ≈ 0.44JSE) is provided

by Eq. (27) and indicated by the arrow in Fig. 3. With realistic18

η, relation (E6) yields �∗
η/�

∗ ≈ 1.17; that is, �∗
η ≈ 0.52JSE.

This implies a slight increase (by ≈15%–20%) of the lower-
bond estimation of the scale �∗ of the crossover from the
IOO toward the orbital-disordered regime, when the Hund
electronic correlations are included in model (5).

Again, in the pure-SE scheme the ground-state energy E0

of the AFM state with the fast orbital fluctuations is calculated
per lattice bond as follows: E0/JSE ≈ 6χ2 ≈ −0.31,10 and
E0(η)/JSE ≈ −0.33(r1 + r2)/2,18 when the Hund interaction
is neglected and included, respectively. This suggests that the
upper-bond estimation of the crossover scale (discussed in
Sec. VI) also tends to increase with increasing JH when η �
1, because �∗

η/�
∗ ≈ E0(η)/E0 ≈ (r1 + r2)/2 > 1. Namely,

�∗
η/�

∗ ≈ 1.35 when η = 0.12, implying the rough upper-
bond evaluation �∗

η ≈ 3.6JSE.
The physics behind the related tendency toward a small

widening of the � range of the orbital-disordered regime
in the phase diagram could be the following: Violating the
spin-SU(2) symmetry, the AFM arrangement partially unbal-
ances the spin-orbital configurations of the SU(4) resonances,
introducing intersite short-range orbital-triplet correlations
into the OL ground state.10 In turn, the competing small
perturbation of the SE bonds due to the Hund-effect promotes
the nearest-neighbor spin-triplet–orbital-singlet correlations,
thus stimulating intersite orbital-singlet fluctuations in the
OL.6 Adopted into the collective OL-like resonances, these
virtual short-range singlets could provide more SE-energy
gain from the orbital fluctuations, being the plausible origin of
the aforesaid reduction of E0 in the AFM orbital-disordered
state.18 It should be mentioned here that the channel of the
orbital-singlet fluctuations dominates in the case of d2(t2g)
systems (vanadates), where the Hund interaction becomes
substantial.6,16,43
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78, 2799 (1997); J. Phys. Condens. Matter 10, L555 (1998); for the
resent progress in this research see W. Brzezicki and A. M. Oleś,
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