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Adaptive-boost molecular dynamics simulation of carbon diffusion in iron
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We have developed an accelerated molecular dynamics (MD) method to model atomic-scale rare events. In this
method, a smooth histogram of collective variables is first estimated by canonical ensemble molecular dynamics
calculations, and then a temperature-dependent boost potential is iteratively constructed to accelerate the MD
simulation. This method not only allows us to observe the rare events but also to evaluate the profile of free
energy and trial frequency along the reaction coordinate. We employed this method to study carbon diffusion in
bcc iron and evaluated carbon’s temperature-dependent diffusivity. The obtained diffusivities agree well with the
experimental measurements. Even at low temperature for which, to the best of our knowledge, no experimental
data are available, the diffusivity can be evaluated accurately. Additionally, we study carbon diffusion inside the
edge dislocation core in bcc iron, and demonstrate the applicability of the method to rare events on a rugged
free-energy surface.
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I. INTRODUCTION

Using the discrete atomic positions r ≡ {r1, . . . ,rN } as
the degrees of freedom and an interatomic potential V (r),
atomistic simulation is a powerful approach for understand-
ing and predicting materials behavior. Molecular dynamics
(MD), a conventional atomistic simulation method, provides
a detailed atomic trajectory r(t) and information regarding
the thermodynamics and “fast” dynamics of solids. However,
MD is not suitable for understanding thermomechanical rare
events with large activation energy barriers because of the
computational cost, which limits MD’s time duration to
∼ns. Many microscopic events of interest in solids, such
as diffusion,1 may occur with an average waiting time of
seconds or more. Therefore, there are strong demands for the
development of methods that can help investigate rare micro-
scopic events. So far, several closely related methods have
been proposed: local elevation,2 conformational flooding,3

umbrella potential,4 hyperdynamics,5 metadynamics,6 bond
boost,7 strain boost,8 etc. By adding a boost potential �V (r) to
the Hamiltonian, the activation-energy barriers for rare events
are lowered and their occurrences are accelerated by a common
factor, which can be estimated based on the transition state
theory (TST).5

II. ADAPTIVE-BOOST METHOD

Here, we have developed a general adaptive-boost formal-
ism based on previous developments.2–8 Given a uncharac-
terized V (r), we first evaluate the smooth histogram ρ(A)
of collective variables (CVs)9,10 A ≡ {A1(r), . . . ,AM (r)} by
MD, and then utilize the smooth histogram (probability
density) of A as the boost potential

�V (r) ∝ kBT ln ρ(A) (1)

in subsequent accelerated MD simulations. In terms of the
formal justification for this dynamics, it is entirely identical

to hyperdynamics,5 with the same estimate for the time-
acceleration factor; but instead of using a fixed boost potential,
�V (r) in our recipe is temperature dependent and iteratively
determined, based on ρ(A), because the predetermination
of a fixed effective boosting function is a hard task in
general. For the choice of A, our method is general as in
metadynamics,10 possibly with additional CV choices such
as the Eshelby ellipsoid strain;8 but unlike metadynamics
we avoid the use of fixed Gaussian potentials, by resorting
to a smooth histogram estimation approach that essentially
“merges” the Gaussian potentials by a density-field estimator,
where advanced mathematical treatment11,12 is possible that
gives a smoother and faster-to-evaluate �V (r).

Consider collective variables A which can be the bond
length,7 bond angle, atomic strain,8 etc., that characterize
a N -particle system. In a canonical ensemble (β ≡ 1/kBT )
described by the Hamiltonian H = V (r) + K( p), where r
and p ≡ { p1, . . . , pN } are the positions and momenta, the
probability density ρ( Â) of these collective variables is

ρ( Â) =
∫ · · · ∫ δ(A(r) − Â) exp(−βH)d r d p∫ · · · ∫ exp(−βH)d r d p

. (2)

The coarse-grained free-energy surface F (A) is

F (A) = −kBT ln ρ(A). (3)

If we add the following boost potential to Hamiltonian, A
should have a flat histogram13 in a canonical ensemble:

�V (r) ≡ �V (A(r)) = �V (A) = kBT ln ρ(A), (4)

which means no ergodicity-breaking traps. The above is
similar to the idea of the multicanonical ensemble Monte Carlo
and MD.14,15

In practice it is impossible to obtain ρ(A) because of the

finite sampling in MD: All we have are discrete samples { Â
k ≡

A(r(k�t))}, where �t is the MD time step and k = 1 . . . K .
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Using sophisticated density-field estimators11,12 with better
performance than straightforward Gaussian smearing, we can

map the discrete data { Â
k} to ρ(A), a smooth histogramic

representation which closely resembles P (A) in some parts of
A space. Then we can define the boost potential �V (A(r)) as

�V (A) =
⎧⎨
⎩

kBT ln
ρ(A)

ρmin
, ρ(A) � ρmin,

0, ρ(A) < ρmin,

(5)

with ρmin chosen such that the cumulative probability outside
of the truncation is, say, Pcut = 5%. We note that in (5),
the normalization of ρ(A) is immaterial (so we do not need
to worry about the height scale of the histogram), but the
practically important parameter is Pcut.

The boost potential induces a fictitious force Fboost
i on

particle i:

Fboost
i = −∂(�V (A))

∂ r i

= −∂(�V (A))
∂ A

∂ A
∂ r i

. (6)

We should note that this method can also be applied to the
problems involving supercell shape change. For example, by
taking collective variable of supercell shape matrix H and
performing NPT or NσT ensemble MD, we can evaluate the
smooth histogram of H fluctuations and accelerate supercell
deformation. In this case, in addition to the fictitious force on
the internal coordinates of atoms, a fictitious stress tensor will
also appear, which can be evaluated by taking a derivative of
the boost potential with respect to the strain due to change
of H .16

If the free-energy barrier between two local minima i and
j is sufficiently higher than kBT , then within a K-step MD
simulation, the dividing surface between basin i and j is
unlikely to be visited, in which case (5) should give

�V (A) = 0 (7)

on the dividing surface. Then, according to the hyperdynamics
theorem,5 the relationship between the transition period tboost

i→j

from state i to j in accelerated MD calculations and the actual
transition period ti→j can be expressed as

ti→j = tboost
i→j 〈exp[β�V (A)]〉. (8)

The entire algorithm for the adaptive-boost (AB) method is
as follows. First, MD simulation in the canonical ensemble is
performed for K time steps to obtain the initial distribution
ρ(0)(A). If no state transition occurs during this zeroth MD
calculation of K steps, the boost energy �V (1)(A) is calculated
by substituting ρ(0)(A) in (5). Next, �V (1)(A) is added
to the original V (r) to carry out the first accelerated MD
calculations, again in K steps. Then, ρ(1)(A) is obtained. If
no state transition occurs during the first accelerated MD run,
ρ(1)(A) is substituted in (5) to calculate the second boost
potential �V (2)(A), which is to be added onto H + �V (1).
Such adaptive and cumulative boost operations are repeated
until the state transition occurs during the Lth accelerated
MD calculation. The total boost potential used in the Lth
accelerated MD run is

�V L
total(A) =

L∑
l=1

�V (l)(A), (9)

and therefore the time acceleration is evaluated in (8)
using the above �V (A) = �V L

total(A). Certain choices of
mathematical representation11,12 could allow “merging” of
the log-histogramic terms on the right-hand side of (9) to give
smoother and faster-to-evaluate �V (A) = �V (A(r)) than
simple summations of Gaussians.

Near the transition, it may be desirable to apply a “braking”
procedure

�V L
total(A) =

LP−1∑
l=1

�V (l)(A) +
L∑

l=LP

αl�V (l)(A), (10)

where a scaling factor α, 0 � αl < 1, is used for l � LP,
with LP determined by a previous run without braking, in
a “hit-back up 1 step-and-continuously brake” maneuver. If
a sufficient number of adaptive-boost steps are implemented
successively without transition, −�V L

total(A) will become
approximately a replica of the free-energy surface F (A). In
the present method, it is not necessary to define the shape of
the boost potential in advance.5,7,8

III. DENSITY-FIELD ESTIMATORS

An adaptive-boost approach was also used in
metadynamics9 by adding the Gaussian boost potentials
incrementally. However, the advantage of the present recipe
is that we are not tied to any particular functional form
such as the Gaussian, which is arbitrary. It is known in the
electronic-structure calculation community that Gaussian
smearing is a primitive way to obtain the density of states, and
many sophisticated density-field estimators such as Refs. 11
and 12 already exist that offer many practical advantages:
(a) smoothness, (b) more efficient to evaluate, (c) analytically
addable for operations in (9), for instance, using a spline-fitted
representation, and (d) analytically differentiable for operation
in (6).

In the present paper, if just one collective variable is
used, the following recipe12 is employed to estimate the one-
dimensional smooth histogram. We define a discrete density
function on x ∈ [0,2π ),

ρ̂(x) ≡
K∑

k=1

δ(x − x̂k), (11)

where x ≡ 2π [1/2K+(1 − 1/K)(A − Âmin)/(Âmax−Âmin)],
x̂k = 2π [1/2K + (1 − 1/K)(Âk − Âmin)/(Âmax − Âmin)],
Âmax = max1�k�K Âk , and Âmin = min1�k�K Âk , and a
corresponding cumulant function

c(x) ≡
∫ x

0
ρ̂(x ′)dx ′. (12)

Define a residual function R(x),

R(x) = c(x) − Kx

2π
. (13)

Here R(x) is a periodic function and can be approximated by

R(x) ≈ R̃(x) =
M∑

n=1

{an[cos(nx) − 1] + bn sin(nx)}, (14)
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with a least-squares fit12 and then smooth histogram can be
obtained by taking the derivative of c̃ ≡ R̃(x) + Kx/2π ,

ρ(x) =
M∑

n=1

{−nan sin(nx) + nbn cos(nx)} + K

2π
. (15)

If more than one collective variable is used, we need to
estimate multidimensional smooth histogram. In such cases,
we employ the following density-field estimator based on the
maximum-entropy method with a polynominal basis set.11 In
L dimensions, the maximum-entropy density field is

ρ(A) ≡ exp

(
−

∑
n

λnψn(A)

)
, (16)

where n = [n1,n2, . . . ,nL], and

ψn(A) = ψn1 (A1)ψn2 (A2) · · · ψnL
(AL), (17)

ψni
(Ai) = A

ni

i (i = 1,2, . . . ,L) and λn is the Lagrange multi-
plier. {λn} can be determined by numerically solving

∫
ψm(A) exp

(
−

∑
n

λnψn(A)

)
d A =

K∑
k=1

ψm( Â
k
),

(18)
∀m � 0,

using, for instance, the Newton-Raphson method.11 Obviously,
when the moments on the right-hand side are updated by
the new data points added, we could use the previous {λn}
as a guess solution, and take advantage of the quadratic
convergence property of the Newton-Raphson method to reach
a unique maximum-entropy density-field solution.

IV. APPLICATIONS

In this section we will use the AB method to investigate
the transport of carbon in bcc iron across a wide range of
temperatures, comparing bulk lattice diffusion with dislocation
core diffusion.

A. Carbon diffusion in bcc iron lattice

To apply the AB method to a real problem, we first evaluated
carbon atom diffusion in bcc Fe. It is known that C atoms
exist at the octahedral sites of the Fe lattice and diffuse
between adjacent O sites1 (Fig. 1). Carbon diffusivity at around
room temperature is about 10−20 cm2/s,17 and therefore the
direct monitoring of the C diffusion using conventional MD is
impossible.

A supercell in which one C atom was inserted in an
α-Fe lattice comprising 432 atoms (6 × 6 × 6 bcc unit cells)
was used as the calculation model. An embedded-atom
model (EAM) potential of the Fe-C system18 was used. The
Nosé-Hoover method19,20 was used for the generation of the
canonical ensemble. The supercell dimensions were adjusted
so that the internal stress is zero and were fixed during the MD
runs. In this model, the activation potential energy barrier for a
C atom jump between O sites was calculated to be 0.86 eV by
using the nudged elastic band (NEB) method.21 This value was
just 1.1 meV higher than that calculated using a 10 × 10 × 10
supercell, indicating that the supercell used in the present study
were sufficiently large. The collective variable was set to be the

C atom

O-site

Fe atom

C atom

O-site

Fe atom

FIG. 1. (Color online) Schematics of C atom hops between
adjacent O sites in α-Fe.

projected distance of C along the [100] direction relative to the
center of mass of all Fe atoms, rC

[100]. That is, hopping of C to the
adjacent two O site in the [100] direction would be accelerated.
ρ(rC

[100]) was represented by using the one-dimensional density
operator with M = 10. The number of MD steps was set
to be K = 104 (at T = 500, 600 K), K = 105 (at T = 300
and 400 K), and K = 106 (at T = 200 K), with �t = 2 fs.
The boost potential �V in each adaptive-boost step (without
braking) at 300 K is shown in Fig. 2. At 300 K, the state
transition occurs during the third accelerated MD run. Using
the resultant ρ(3)(A) and the corresponding �V 4

total, one can
estimate the overall profile of the free energy during C atom
migration between adjacent O sites at 300 K.

Next, we calculated the diffusivity based on the frequency
of the C atom jump between adjacent O sites at each
temperature. The average C atom jump frequency ν̄ = t̄−1

O→O
can be calculated from the average period required for jump
between adjacent O sites, t̄O→O. t̄O→O was obtained for five
jump events between adjacent O sites, and then divided by 2
to take into account the fact an O site is surrounded by four

0.0

O-site

-2.0       -1.5         -1.0         -0.5        0.0          0.5         1.0          1.5          2.0
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V]

rC
[100] [Å]
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FIG. 2. (Color online) Boost energy �V l
total (l = 1,2,3,4) used in

lth accelerated MD runs at T = 300 K.
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TABLE I. Acceleration factor at each temperature.

Temperature (K) t̄O→O (ns) t̄boost
O→O (ns) t̄O→O/t̄boost

O→O

200 1.48 × 1016 1.02 × 10−1 1.45 × 1017

300 3.24 × 108 5.64 × 10−2 5.72 × 109

400 7.08 × 104 8.22 × 10−2 8.78 × 105

500 2.48 × 102 8.12 × 10−3 3.07 × 104

600 4.64 4.72 × 10−3 9.78 × 102

equivalent O sites, two in [100] and two in [001], illustrated in
Fig. 1. The diffusivity D is given by

D = 1
6 ν̄d2, (19)

where d ≈ 1.44 Å is the distance between adjacent O sites.
Table I shows the average jump period at each temperature, as
calculated using (8). At 200 K, the time-acceleration factor we
obtained is 1.45 × 1017.

Figure 3 shows the temperature dependence of the diffu-
sivity obtained by the AB method for T = 200–600 K and
by conventional MD for T = 600–800 K. The calculation
results are in good agreement at 600 K. Furthermore, the
AB results match well with the experimental measurements.
The activation enthalpy for diffusion is 0.90 eV, as calculated
from the slope of the linear least-squares approximation of
the accelerated and normal MD calculation results plotted for
the temperature range 200–800 K. This value is consistent
with the experimental values of 0.77–0.90 eV, and the density
functional theory (DFT) calculation result of 0.86 eV.18

Next, we adopted three CVs A = {r [100]
C ,r

[010]
C ,r

[001]
C } to

perform accelerated MD calculations with a greater number

10-4
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D[
cm

 /s
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5 4.5 4 3.5 3 2.5 2 1.5 1
1000/T [1/K]

T [K]
400200 600 1000300

FIG. 3. (Color online) Temperature dependence of C diffusivity
in α-Fe. Solid circles and solid triangles indicate the diffusivity
calculated by the adaptive-boost method and conventional MD
method, respectively. The line was calculated from these plots by
using the least-squares method. Other plots indicate experimental
values (Refs. 22–26).

0.7[eV]

0.5[eV]

0.3[eV]

[100]

[001]

[010]

Fe atom

O-site

FIG. 4. (Color online) Boost energy isosurface of �V 20
total at 400 K.

Black clouds indicate the positions of Fe atoms. Arrows indicate the
C atom jump sequence.

of degrees of freedom. ρ(A) was represented using the
polynominal basis density-field estimator with L = 3 and
1 � ni � 5 (i = 1,2,3). The temperature was set to 400 K.
Figure 4 shows the boost energy isosurface for a boost energy
of �V 20

total. A C atom at a certain O site tends to move
within the plane in the direction of the four equivalent O
sites adjacent to the C-atom-containing site and not in the
direction perpendicular to the plane. Therefore, �V has a
penny shape that is distorted in the in-plane directions. In
this case, we calculated D from the changes in the C atom’s
three-dimensional spatial coordinates, by using the Einstein
equation

D = lim
t→∞

1

6t
〈|rC(t) − rC(0)|2〉. (20)

We tracked the C atom motion during 3.0 × 106 ns by
performing accelerated MD calculations and calculated D

from (20) to be 4.47 × 10−13 cm2/s. This value was consistent
with that obtained at 400 K for one degree of freedom (shown
in Fig. 3), D = 4.88 × 10−13 cm2/s.

B. Comparison with hyperdynamics

We also followed the original hyperdynamics method5 to
calculate the carbon diffusivity at 400 K, for comparison with
the AB method. The boost energy in hyperdynamics �V (r) is
defined as follows:5

�V (r) = �V cos(r) + �V �ε(r), (21)

where

�V cos(r) = h

2

[
1 + ε1

/(
ε2

1 + g2
1p/d2

)1/2]
(22)

and

�V �ε(r) =
{
a[1 − 3q2 + 2q3], q � 1,

0, q > 1.
(23)

The ε1 and ε2 are the two lowest eigenvalues of the Hessian
matrix; Hij (r) = ∂2V (r)/∂xi ∂xj (xi is a component of vector
r) and q = (ε2 − ε1)/�ε. g1p is the projection of the gradient
vector, g = ∂V (r)/∂ r , onto the lowest-eigenvalue eigenvector
of the Hessian matrix. We use steepest-descent minimization
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TABLE II. Carbon diffusivity at 400 K calculated by hyperdy-
namics with different h(=a). No jumps were observed for h � 0.25
eV within 3000 hyperdynamics steps.

h(=a) (eV) D (cm2/s)

0.1
0.2
0.25
0.28 8.66 × 10−12

0.3 4.51 × 10−12

0.35 1.50 × 10−13

0.4 1.02 × 10−14

Exp. (Ref. 24) 1.41 × 10−13

AB method 4.47 × 10−13

to find ε1, ε2, and g1p.5 d and �ε were set to be d = 0.6 Å
and �ε = 0.1 eV, respectively. The parameters h and a, which
determine the boost potential height, should be carefully cho-
sen to have effective acceleration. We simply take h = a, and
perform a 3000-step hyperdynamics run using different boost
scales h(=a). Computational wall-clock time for the 3000-step
hyperdynamics run with, say, h = 0.3 eV was ten times longer
than the 3-CV AB MD run. Calculated carbon diffusivities by
using the Einstein equation are listed in Table II. For lower
h (�0.25 eV), no carbon jump between adjacent O sites
was observed within 3000 hyperdynamics steps. For higher
h (=0.4 eV), diffusivity is significantly underestimated
because of overboost which violates the assumptions of
hyperdynamics (saddle points cannot be boosted; one can-
not transform an uphill energy pathway to downhill, or
even too shallow an uphill energy pathway so that the
transition-state rate theory starts to break down). Thus, the
efficiency of hyperdynamics strongly depends on the param-
eters h,a. However, defining these parameters in advance
is not an easy task when the free-energy surface is totally
unknown.

A possible strategy to perform accelerated MD simulations
more efficiently is to hybridize between “free-form” AB and
“fixed-form” hyperdynamics in the following way. At the
beginning, when nothing is known about the system, one could
run AB to bootstrap the bias potential form �V (now expressed
in analytical polynomials instead of the sum of Gaussians)
for this particular atomic environment. One could develop an
automated computational geometry algorithm to classify the
local geometry as “carbon at lattice O site,” and associate
this geometrical classifier with �V in a database. Next, one
could perform AB calculation for carbon inside the dislocation
core (to be shown next), carbon in a phase boundary, etc., to
expand the database: For each typical atomic environment,
one stores the corresponding AB-bootstrapped �V in the
database. The highly compact form of �V in the polynomial
basis would allow efficient storage. Such a bootstrapped {�V }
database not only allows one to visualize the physics of
diffusion, but would also accelerate subsequent simulations
in the following way. For instance, when we simulate more
complex thermomechanical processes where thousands of
diffusional hops need to happen for the microstructure to
evolve significantly,27 one could first try to match the local
atomic environment with those stored in the database. If

a highly matching environment is found (after considering
translational and rotational transforms), one could use the
stored �V form (probably somewhat scaled in amplitude
and arguments) as the initial boost potential, without the
bootstrapping from zero. With such “fixed-form” �V from
the catalog as the initial guess, one could still perform AB
on top of it, as AB is a highly robust algorithm and can
stop and restart arbitrarily, to compensate for the small but
finite difference with the database environment. This unique
�V may be further stored in the database along with the
alternate environment. This way, one may be able to accelerate
simulation of diffusive processes in inhomogeneous materials,
where the stress field and local chemistry may modulate
diffusion.27

C. Carbon diffusion near the edge dislocation core in bcc iron

In this section, we apply the AB method to a more complex
problem, carbon atom diffusion inside the edge dislocation
core in bcc Fe. The free-energy profile was previously
unknown. An α-Fe 3960-atom simulation cell is used, which
comprises six (112̄) atomic layers with a periodic condition in
[112̄], having one edge dislocation along [112̄] at the center of
the layers and one interstitial carbon atom at a stable site in the
dislocation core (dashed circle in Fig. 5). The surface atoms in
(1̄10) and (111) were fixed after relaxation of the initial atomic
structure.

First, we performed normal MD at 200 K for 3.8 ns
(1.9 × 105 MD steps) without any boost. Figure 5 indicates
the carbon atom trajectory for 3.8 ns. After a while the carbon
atom was trapped in a stable site in the dislocation core which
corresponds to the site labeled “c” in Fig. 6(b), and did not
escape from “c” within a time duration of 3.8 ns.

FIG. 5. (Color online) Trajectory of the C atom during 3.8 ns
(1.9 × 105 MD steps) near the dislocation core at 200 K estimated by
normal MD. Black clouds indicate the positions of the Fe atoms. The
vertical dotted line and dashed circle indicate the dislocation line and
initial position of the C atom, respectively.
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FIG. 6. (Color online) Boost energy isosurfaces of (a) �V 7
total and

(b) �V 19
total. Black clouds indicate the positions of the Fe atoms. The

vertical dotted line and dashed circle indicate the dislocation line and
the initial position of the C atom, respectively. The labels a–e indicate
the long-stay sites. The small red dots in (b) indicate the center of the
long-stay sites.

Next, we performed an accelerated MD calculation using
the AB method. The same initial atomic arrangement was used
as that of the previous normal MD calculation. We chose CVs
A = {r [111]

C ,r
[11̄0]
C ,r

[112̄]
C }. The temperature was set to 200 K.

The number of MD steps was set to be K = 105. ρ(A) was
represented using the polynominal basis density-field estima-
tor with N = 3 and 1 � ni � 5 (i = 1,2,3). Figures 6(a) and
6(b) show the boost energy isosurfaces for boost energies of
�V 7

total and �V 19
total, respectively. We found long-stay sites

[labeled a–e in Fig. 6(b)] aligning in the [1̄1̄1] direction,
which is not entirely parallel with the dislocation line direction
[112̄], and several short-stay sites in between the neighboring
long-stay sites. This site alignment is consistent with the MD
analysis at high temperature by Tapasa et al.28 We calculated
the average time for C atom migration between the long-stay
sites (b → a, a → b, c → d, d → e) from Eq. (8) to be 0.53 s.
This physical time scale of carbon migration is significantly
longer than the accessible time scale of normal MD. We also
calculated activation free energies between the long-stay sites
to be 0.3–0.4 (eV) and between the short-stay sites to be
0.1–0.2 (eV) from the AB-bootstrapped �V .

FIG. 7. (Color online) Potential energy change along the mini-
mum energy path connecting the long-stay sites a–e.

Then, to validate the details of the potential energy change
along the diffusion path, we employed the NEB analysis.29

Figure 7 shows the potential energy change along the minimum
energy path connecting the sites a–e that were found in
the accelerated MD. We can observe “long-stay sites” and
several “short-stay sites” between the long-stay sites, and these
potential barrier heights are consistent with the free-energy
barrier heights obtained from the accelerated MD.

We have also calculated the carbon atom trap energy in
the edge dislocation core to be 0.96 eV, which is the energy
difference between the “c” site in the edge dislocation core and
the O site in the regular bcc lattice. This trap energy means that
the edge dislocation is a path for C atom diffusion in bcc Fe.
We should note that since the dislocation line is not parallel
to the local direction of carbon diffusion, coordinated motions
of dislocation glide and carbon diffusion are necessary for a
continuous carbon diffusion along the edge dislocation.28

V. CONCLUSION

In summary, a smooth histogram-based adaptive acceler-
ated MD method is developed to model rare microscopic
events. Single-particle displacement is found to be a sufficient
“collective variable” for boosting carbon interstitial diffusion,
where the adaptive-boost potential takes on a single-particle
effective potential form based on finite-temperature occupa-
tion, which philosophically is the antithesis of the Einstein
vibration model of solids and destabilizes Einstein-Debye-
Waller vibrations around local minima. The time-acceleration
factor achieved is as high as 1.45 × 1017 in adaptive-boost
simulations at 200 K, allowing one to “observe” diffusion
in a dynamical simulation that may even go beyond the
reach of normal laboratory experiments. Furthermore, we
demonstrate carbon diffusion inside the edge dislocation core
in bcc Fe by using AB MD simulation, and shows that the
carbon atom encounters significantly lower migration barriers
(0.3–0.4 eV) than in the lattice (0.90 eV), as well as enjoys a
significant segregation enrichment benefit characterized by the
trap energy of 0.96 eV. Thus, even with moderate dislocation
density in a ferritic steel grain, there should be a critical
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temperature below which carbon transport by dislocation core
diffusion dominates over lattice diffusion.
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