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Extremal transmission through a microwave photonic crystal and the observation of edge states
in a rectangular Dirac billiard
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This paper presents experimental results on properties of waves propagating in an unbounded and a bounded
photonic crystal consisting of metallic cylinders that are arranged in a triangular lattice. First, we present
transmission measurements of plane waves traversing a photonic crystal. The experiments are performed in the
vicinity of a Dirac point, i.e., an isolated conical singularity of the photonic band structure. There, the transmission
shows a pseudodiffusive 1/L dependence, with L being the thickness of the crystal, a phenomenon also observed
in graphene. Second, eigenmode intensity distributions measured in a microwave analog of a relativistic Dirac
billiard, a rectangular microwave billiard that contains a photonic crystal, are discussed. Close to the Dirac point,
states have been detected that are localized at the straight edge of the photonic crystal corresponding to a zigzag
edge in graphene.
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I. INTRODUCTION

The experimental realization of graphene,1 a one-atom-
thick sheet of carbon atoms arranged in a honeycomb crystal
lattice,2,3 attracted a lot of interest due to its peculiar electronic
band structure, which exhibits a linear dispersion at low
energies. There, the band structure closely resembles the
spectrum of a relativistic massless spin-one-half particle.4 As
a consequence, even though the Fermi velocity of electrons
in graphene is only c/300 with c the speed of light, the
electronic excitations are governed by the Dirac equation.
The peculiar electronic properties lead to interesting physical
phenomena.4,5

The linear dispersion relation is entirely due to the threefold
rotational symmetry of the hexagonal graphene lattice.6

Therefore graphene with its Dirac spectrum is not an exception.
In general, systems comprising waves that propagate in a
spatially periodic potential with the same symmetry properties
can posses a Dirac spectrum. One example are the so-called
photonic crystals,7 optical analogs of the common ones. It
was shown theoretically in Ref. 8 that under certain conditions
photonic crystals with a triangular lattice geometry, depicted
schematically in Fig. 1, can exhibit the linear Dirac dispersion
relation. The dependence of the frequencies f of propagating
electromagnetic waves on the components (kx,ky) of the
quasimomentum vector exhibits a band structure that is
similar to that for the electronic energies in graphene. The
left-hand side of Fig. 2 shows the first two bands obtained
for a two-dimensional photonic crystal consisting of metallic
cylinders of radius R = 0.25a, where a is the lattice constant.
At the cylinders, the electric field strength vanishes, that is,
obeys the Dirichlet boundary condition. The band structure
was calculated by numerically solving the scalar Helmholtz
equation for the electric field strength using the finite difference
method described in Ref. 9. The two bands touch each other at
the corners of the hexagonal Brillouin zone depicted in Fig. 2
where they have the shape of cones. Thus there the frequencies
of propagating modes depend linearly on the distance of the
quasimomentum from the touch points. The Brillouin zone
comprises two nonequivalent corners K and K′, so-called K

points, that cannot be mapped onto each other by basis vectors
of the reciprocal lattice. The band diagram closely resembles
that of the electronic energies in graphene.10 Accordingly, as
in graphene,11 the touch points are referred to as Dirac points.

The photonic crystal also exhibits a hexagonal configura-
tion. In fact, three neighboring cylinders forming a triangular
cell of the photonic crystal lattice shown in Fig. 1 host
quasibound states12 localized at their center. The cell thus
can be considered as an open resonator and the triangular
lattice can be regarded as being built of coupled resonators,
the voids between the cylinders acting as the atoms forming
the two independent triangular sublattices that generate the
honeycomb structure. In Fig. 1, the voids corresponding to
the two sublattices are marked with blue and red circles,
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FIG. 1. (Color online) Schematic view of the triangular lattice
of metallic cylinders (black). The voids between the cylinders are
marked by colored circles. For graphene, the red (bright) and the
blue (dark) voids correspond to the two atoms that generate the
two independent triangular sublattices. The arrows indicate the two
directions �M and �K considered in the transmission experiments.
The radius of the cylinders equals R = 0.25a, where a is the lattice
constant. The dashed lines indicate the positions of the metallic walls
used in the experiments described in Sec. II B to realize a microwave
Dirac billiard.
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FIG. 2. (Color online) Left: band structure f (kx,ky) of the
triangular lattice shown in Fig. 1 as a function of the quasimomentum
components (kx,ky). It was computed by numerically solving the
scalar Helmholtz equation for the electric field strength imposing the
Dirichlet boundary condition at the metallic cylinders. Shown are the
first and the second bands. Blue (darkest) color corresponds to the
lowest, red (brightest) color to the largest values of f within a band.
The hexagonal Brillouin zone with the two nonequivalent K points K
and K′ is indicated. Right: band structure computed numerically by
varying the quasimomentum vector along the path �MK� defining
the boundary of the irreducible Brillouin zone depicted together with
the Brillouin zone in the inset. Adopted from Ref. 17.

respectively. The void structure terminates with a zigzag edge
along the �K and with an armchair edge along the �M direc-
tion, respectively. These are the two most common types of
boundaries arising from the hexagonal structure of graphene.

In the vicinity of the Dirac points, the Schrödinger equation
for the electrons in graphene4,13,14 and the Helmholtz equation
governing the electromagnetic wave propagation in the pho-
tonic crystal8 reduce to two copies of the Dirac equation for
massless relativistic spin-one-half particles, one copy holding
around K and the other around K′. Thus photonic crystals can
be used to investigate properties of graphene, as was done in
analog experiments with microwave photonic crystals15–17 and
also with sonic crystals.18 There phenomena directly related
to the linear dispersion relation around a Dirac point were
investigated. We consider here two of them, the extremal
transmission and the formation of edge states.13,19,21 Both are
properties of the waves propagating through a photonic crystal
and crucially depend on the structure of the crystal edges.

The Dirac dispersion relation affects the transport proper-
ties of photonic crystals in a remarkable way. It was shown
theoretically in Refs. 19 and 20 that near the Dirac point
the intensity of electromagnetic waves transmitted through
a photonic crystal is inversely proportional to the thickness
of the crystal. This is different from the ballistic behavior
and the exponential decay observed, respectively, in a band
region and a gap region, but rather reminiscent of the diffusion
behavior of waves traveling through a disordered medium. A
similar behavior was predicted for the conductivity of an ideal
graphene strip.21,22 We present below results on the experimen-
tal investigation of the transmission of electromagnetic waves
traversing a microwave photonic crystal. The measurements
(see Sec. II A) were performed close to a Dirac point, which
was located as described in Ref. 17.

In further experiments (see Sec. II B), we investigated edge
effects4,23,24 on the properties of the wave functions25,26 of a
microwave analog of Dirac billiards. These experiments were

motivated by the results obtained for the spectral properties of
graphene flakes, also called graphene billiards,24 which have
been shown to depend on the geometry of their edges.25–27

For a graphene flake terminated with armchair edges, the
density of states vanishes at the Dirac point such that a gap
opens up in the band structure, whereas zigzag edges yield a
nonvanishing density. Indeed, in the vicinity of the Dirac point,
graphene flakes, which terminate with zigzag edges or with
both armchair and zigzag edges, exhibit edge states, which are
localized close to the zigzag parts of its boundary.28–30 This
property is attributed to the boundary conditions,24,31 which
differ for both types of edges. To check the existence of such
states in photonic crystals of finite size, a triangular lattice
was enclosed by a metallic frame as indicated in Fig. 1 and
the squared wave functions were measured in the vicinity of
a Dirac point. While in graphene flakes electrons are confined
by a potential barrier, the walls of the metallic box prevent
microwaves from leaving the photonic crystal and correspond
to an infinitely high potential barrier in the quantum analog.

II. EXPERIMENTS WITH THE MICROWAVE
PHOTONIC CRYSTAL

Analog experiments with flat, cylindrical microwave cav-
ities have been performed to model generic properties of
quantum chaotic systems and of chaotic quantum scattering
systems.32–38 This is possible in a range f � fmax of the exci-
tation frequency f , where the wavelength is longer than twice
the height of the cavity. There, the electric field vector �E is
perpendicular to the bottom and the top plates of the cavity and
obeys the Dirichlet boundary condition at the side walls of the
cavity. Accordingly, the vectorial Helmholtz equation reduces
to a scalar one, which is mathematically equivalent to the
two-dimensional stationary Schrödinger equation for a nonrel-
ativistic quantum billiard of corresponding shape.32–34 Due to
this analogy, flat microwave cavities are commonly called mi-
crowave billiards. We used microwave photonic crystals con-
sisting of metallic cylinders, which were arranged in a triangu-
lar lattice (see Fig. 1) and squeezed between two metal plates to
model single-particle properties of graphene. At the cylinders,
the electric field strength vanishes, i.e., it obeys the Dirichlet
boundary condition. Thus, for frequencies f < fmax, the setup
corresponds to a quantum multiple-scattering system. The
experiments are described in Secs. II A and II B, respectively.

A. Extremal transmission at the Dirac frequency

For the experimental investigation of the transmission
properties of a photonic crystal with a Dirac spectrum, we
used the setup shown in Fig. 3. The photonic crystal consisted
of 960 cylinders with radius R = 5 mm and height h = 8 mm.
To ensure a good electrical contact and thus reproducibility of
the measurement, each cylinder was screwed to the top and
the bottom plate. The resulting photonic crystal contained 40
rows of 24 cylinders and had side lengths of, respectively,
400 and 859 mm. The height of the cylinders defined the
maximal frequency fmax = 18.75 GHz up to which the system
was two dimensional. A two-dimensional horn antenna was
used as emitting antenna and a waveguide antenna received
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FIG. 3. Experimental setup (not to scale). The photonic crystal
consisted of 960 copper cylinders arranged in a triangular lattice.
A microwave horn antenna with an opening angle of 2�θ = 28◦

was used as emitting antenna and the signal transmitted through
the crystal was received by a waveguide antenna. The crystal was
placed symmetrically with respect to the antennas and oriented such
that normal incidence of the emitted waves coincided with the �K
direction, in distinction to the experiments described in Ref. 17 where
it corresponded to the �M direction.

waves transmitted through the crystal. Both were tightly
screwed to the top plate and attached to waveguide-to-coaxial
adapters. The transmission spectra were obtained with an
Agilent PNA-L N5230A vectorial network analyzer (VNA). It
measures the ratio of the power Pb of the signal received at the
waveguide antenna and the power Pa of that emitted from the
horn antenna and their relative phase. The modulus square of
the scattering matrix element Sba from antenna a to antenna b

is given as

|Sba(f )|2 = Pb

Pa

. (1)

The horn antenna emits a beam with divergence 2�θ , where
�θ = 14◦ with respect to the direction indicated by the
arrow in Fig. 3, which impinges the crystal situated in its
near field. The orientation of the crystal was chosen such
that normal incidence coincided with the �K direction (see
Fig. 2). In contrast, in the experiments described in Ref. 17 it
corresponded to the �M direction.

The transmission spectra shown in Fig. 4 were taken for
different configurations of the experimental setup. First, the
transmission spectrum was measured for the setup with 40
rows and then, step by step one row was removed from each
armchair edge of the crystal. The three panels show exemplar-
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FIG. 4. Examples of transmission spectra measured with the
setup shown in Fig. 3 in �K direction through a lattice with,
respectively, 8, 18, and 36 rows of cylinders. The dashed line marks
the Dirac frequency.

ily the spectra measured for crystals consisting of 8, 18, and 36
rows of cylinders, respectively. In all spectra, the transmission
is suppressed below 11.8 GHz. There, the band structure
exhibits a gap (see right panel of Fig. 2), and electromagnetic
waves cannot propagate in the photonic crystal. Furthermore,
the transmission spectra show a characteristic dip around the
Dirac frequency fD = 13.797 GHz, which was determined
experimentally in Ref. 17 and is marked in Fig. 4 with a dashed
line.

To reveal the 1/L scaling, with L denoting the crystal
thickness, of the transmitted power |Sba(f )|2 predicted near
the Dirac point, we show in Fig. 5 the quantity (L/a)|Sba(f )|2
versus L/a for three different frequencies. In all three panels,
the filled circles are the experimental data. They are joined
by dashed lines to guide the eye. The solid curves depict the
average behavior. The top panel shows (L/a)|Sba|2 versus L/a

for f = 13.18 GHz, where the transmission is nonvanishing.
In this frequency, regime L|Sba|2 grows linearly with L, that
is, the transmission |Sba|2 itself does not depend on L, as
expected in band regions. The oscillations around the mean
are attributed to standing waves arising between the antennas
and the interfaces of the photonic crystal. The bottom panel
of Fig. 5 shows the variation of (L/a)|Sba|2 with L/a for
f = 18.7 GHz. This frequency lies within a stop band. As
expected the transmission decreases exponentially with the
crystal thickness L. The middle panel shows (L/a)|Sba|2
versus L/a at the Dirac frequency fD = 13.797 GHz. The
average behavior of L|Sba|2 is constant over a wide range of
the crystal thickness. Thus, the transmission of plane waves
excited with the Dirac frequency and traveling in directions
close to the �K direction, i.e., with |�k||| ≈ 0, where �k|| is the
wave vector component parallel to the interface of the crystal,
scales with 1/L. This is similar to the diffusion behavior of
waves propagating through a random medium. As was pointed
out in Ref. 39, this phenomenon of extremal transmission is due
to the linear Dirac dispersion relation. Indeed, in the vicinity of
a Dirac point, the local density of states vanishes only exactly
at the Dirac frequency, whereas in a band gap, it is zero for
a finite range of excitation frequencies. As a consequence,
the observability of the 1/L scaling crucially depends on the
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FIG. 5. The product of the transmission |Sba(f )|2 through the
photonic crystal and its thickness L in units of the lattice constant
a as function of L for different frequencies, from top to bottom for
13.18, 13.797, and 18.7 GHz. The filled circles are experimental data.
They are joined with dashed lines to guide the eye. The solid lines
result from the fits of a linear, a constant, and an exponential function,
respectively, to the data points.

orientation of the photonic crystal with respect to the incident
plane waves. When emitting plane waves excited with the
Dirac frequency in �M direction, as was done in previous
experiments,15,17 the band structure has a partial band gap (see
right panel of Fig. 2). Accordingly, the transmission |Sba|2
decreases exponentially with the crystal thickness L, that is,
the decay length of the evanescent waves is finite. In contrast,
it is infinite when exciting the Dirac point, e.g., by sending
plane waves at the Dirac frequency in �K direction onto the
crystal.

The 1/L scaling near a Dirac point has been predicted for
photonic crystals in Ref. 19. For its revealment the solutions
of the Helmholtz equation in free space were matched at the
interface of the crystal to those of the Dirac equation, which
is applicable inside the photonic crystal in the vicinity of
the Dirac point. Furthermore, conservation of |�k|||, that is,
Snell’s law, and of the flux through the boundary had to be
taken into account. In Fig. 6, we show the data of the middle
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FIG. 6. Double-logarithmic plot of the transmission |Sba(f )|2
through the photonic crystal as function of L at the Dirac frequency
fD = 13.797 GHz. The filled circles are experimental data. The
solid line shows the prediction for the average behavior obtained
by evaluating Eqs. (4)– (6) of Ref. 20. The fit of Eq. (2) describing
the oscillations18 yields the empty squares. They are joined with a
dashed line to guide the eye.

panel of Fig. 5 in a double-logarithmic plot together with the
prediction for their average behavior (full line) obtained by
evaluating Eqs. (4)–(6) of Ref. 20. Here, the range of angles
±�θ of the propagation direction with respect to the �K
direction of the waves impinging the crystal is �θ = 14◦.
This yields for the range ±� of the displacement of the wave
vector �k from the K point at K, that is, of |�k|||, the value
� = �θπfD/c � (π/3)a−1. For log10(L/a) � 0.7 the data
follow the solid line. Hence, since the thickness of a layer
equals a/2 (see Fig. 1), at least 10 layers are needed, in order
that the average transmission |Sba|2 through the crystal shows
the 1/L scaling predicted for L/a > 1/(a�) = 3/π . It has
been observed before in two-dimensional sonic crystals18 and
in photonic crystals consisting of dielectric rods.15 There, in
addition, oscillations of the transmission were found for an
arrangement of the crystal with respect to the wave source
as in Fig. 3 and attributed to the scattering between the
valleys at K and K′. Oscillations are also visible in the
double-logarithmic plot of the transmission shown in Fig. 6.
They are, however, not as pronounced as those presented
in Refs. 15 and 18. In distinction to these experiments,
successively two rows, instead of one row of cylinders were
removed for the measurement of the data presented in Figs. 5
and 6. Nevertheless, the period of the oscillations is well
reproduced by the equation15 (dashed line)

|Sba|2=A
a

L
(1− exp[−L�])(1+g + g cos[|K|L − �]),

(2)

where A, g, and � are fitting parameters. The fit of Eq. (2) to
the data yielded A = 0.015, g = −0.55, and � ≈ π/3.

B. Edge states in a rectangular Dirac billiard

A motivation for the experiments presented in this section
were the results obtained for the spectral properties of graphene
flakes4,23–26 and Ref. 40. There, Berry and Mondragon consid-
ered the Dirac equation for massless spin-one-half particles
confined to a two-dimensional domain by introducing an
infinite-mass term along its boundary, i.e., a so-called neutrino
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FIG. 7. (Color online) Photograph of the Dirac billiard with the
top plate removed. The photonic crystal with a triangular lattice
geometry is enclosed by a rectangular brass frame with side lengths of,
respectively, 218 and 420 mm. It consisted of 273 copper cylinders of
radius R = 5 mm and height h = 8 mm had a lattice constant a = 4R

and was squeezed between two copper plates. The two white crosses
mark the positions of the antennas.

billiard. Close to the Dirac frequency, the propagation of
electromagnetic waves in a photonic crystal can be effectively
described by the Dirac equation. Thus enclosing a microwave
photonic crystal by a metallic frame, where the electric
field strength obeys the Dirichlet boundary condition and
the outgoing current vanishes, corresponds to introducing an
infinite-mass term in the associated Dirac equation. Accord-
ingly, below f = fmax this provides an experimental setup for
the investigation of properties of relativistic quantum particles
put inside an infinitely high potential barrier. The reflection
of electromagnetic waves at the walls of the metallic box
leads to an excitation of states in both the valleys at K and
K′ of the associated band structure. Their coupling depends
on the edge structure. Therefore, in distinction to neutrino
billiards, such systems are governed by two Dirac equations,
which are coupled depending on the shape of the metallic
box enclosing the crystal.13,26 They are generally called Dirac
billiards.25,27 Figure 7 shows a photograph of the experimental
realization of a rectangular Dirac billiard, where the top plate
has been removed. The photonic crystal had the same lattice
constant a = 4R and consisted of 273 copper cylinders with
the same radius R = 5 mm and height h = 8 mm as in the
scattering experiment described in Sec. II A. It is surrounded
by a brass frame with side lengths of, respectively, 218 and
420 mm. In the experiments, all cylinders and the frame were
squeezed with screws between the top and bottom plates to
ensure an optimal electrical contact. To measure transmission
spectra, wire antennas of 1 mm diameter were lowered into the
resonator through 3-mm-wide drillings in the top plate. They
reached only 2 mm into the interior of the cavity to minimize
the disturbance of the electric field modes excited there. The
positions of the antennas are marked by white crosses in
Fig. 7.

The top panel of Fig. 8 shows a measured transmission
spectrum of the Dirac billiard. The positions of the resonance
maxima yield the eigenvalues of the Dirac billiard. The stop
bands below 11.8 GHz and between 18 and 20 GHz are
well pronounced. As in the scattering experiment described
in Sec. II A we observe a dip around the Dirac frequency
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FIG. 8. Top panel: transmission spectrum measured between
two wire antennas. Bottom panel: magnification of the spectrum
in a region around the Dirac frequency. The arrows mark the
resonance frequencies for which the measured electric field intensity
distributions are shown on Fig. 9. The labels of the resonances refer
to the panels in Fig. 9.

fD = 13.797 GHz, which is marked with an arrow. The bottom
panel of Fig. 8 shows a magnified section of the transmission
spectrum around the Dirac point. The spectrum contains
sharp resonances and many overlapping ones. The latter
render the extraction of the complete sequence of resonance
frequencies impossible. However, complete sequences of the
resonance frequencies are needed for the study of their
fluctuation properties. This corroborates the necessity of the
measurement of the spectra at superconducting conditions41,42

in order to reduce dissipation of microwave power in the
walls of the metallic cylinders and the resonator enclosing
it, yielding considerably diminished widths of the resonances.
Still, in the vicinity of the Dirac frequency, the density of
the resonances is low such that they can be resolved. In fact,
there the local density of states tends to zero linearly with
the distance |f − fD| of the excitation frequency f from the
Dirac frequency fD .2,4,6,17 Note that only in this frequency
range the properties of the microwave Dirac billiard are well
described by the Dirac equation, that is, only there it can
simulate a Dirac billiard. The associated frequency range has
been determined in Ref. 17 using the relation between the
local density of states and reflection spectra measured with
one antenna placed in the interior of the photonic crystal. It
extends from f � 13.3 to 14.3 GHz. In this range of separated
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resonances, the corresponding squared wave functions could
be measured and their properties, such as the occurence of edge
states predicted for graphene billiards,24 were investigated.

The wave functions of a quantum billiard are directly related
to the electric field strength distributions in the corresponding
microwave billiard at the resonance frequencies.34 Thus their
intensities can be determined experimentally by measuring the
electric field intensity distributions. This was done with the
help of the so-called perturbation body method,32,43,44 which
is based on the Maier-Slater theorem.45 A small perturbation
body is inserted into the cavity. This induces a shift of the
resonance frequencies the size of which depends on the electric
and magnetic field strengths at the position of the perturbation
body. Since we are only interested in the intensity distribution
of the wave functions of the corresponding Dirac billiard, we
used a perturbation body made from magnetic rubber.46 In
order to obtain the spatial distribution of the electric field
strength, the perturbation body was moved in the closed cavity
in 2-mm steps between the 13 rows of cylinders, which are
parallel to the long sides of the billiard. This was done with
an external guiding magnet, which was placed on a computer
controlled positioning unit. For each position the transmission
between the two antennas marked in Fig. 7 was measured.

Figure 9 shows exemplarily ten electric field intensity dis-
tributions measured at resonance frequencies around the Dirac
frequency. The labels of the panels correspond to the associated
resonances in Fig. 8. The intensity patterns shown in panels
(a) and (j) are extended over the whole area of the microwave
billiard. The structure of these intensity distributions resembles
that of modes of the corresponding empty rectangular quantum
billiard with one excitation parallel to the short billiard edge
and several parallel to the long one. They are similar to the
wave functions shown in Fig. 3(b) of Ref. 27. The intensity
distributions shown in panels (c)–(i) are localized close to a
long edge of the rectangular billiard, i.e., there the intensity
is highest and it is much smaller in the interior, especially,
in panels (e)–(h). At the long sides, the photonic crystal
terminates with straight edges, at the short sides with zigzag
edges. These are close to, respectively, the zigzag edges and
the armchair edges in the corresponding graphene billiard
defined by the void structure of the photonic crystal. An
example is shown in Fig. 1, where the two sublattices are
depicted as red and blue dots, respectively. States that are
localized near a short edge of the microwave billiard were not
observed,16 whereas altogether 16 corresponding to a sequence
of resonances around the Dirac frequency were found to be
localized near a long edge. This is in good agreement with
the results for the associated rectangular graphene billiard.24

There, 14 consecutive states around the Dirac point, which
are all localized along a zigzag edge, so-called edge states, are
predicted. Note that the boundary conditions of the microwave
billiard and the corresponding graphene billiard differ. For the
latter, the wave functions vanish on one sublattice at a zigzag
edge, and on both at an armchair edge, whereas for the former,
they are zero along the side walls, which are arranged slightly
apart from the edges of the graphene billiard (see Fig. 1). In
spite of these differences, both systems exhibit edge states
corresponding to consecutive resonance frequencies around
the Dirac frequency, which all are localized near a zigzag edge.
They remind of the edge states observed experimentally28–30
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1.00.0 0.5
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13.893 GHz13.850 GHz

14.038 GHz13.950 GHz
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(e) (f)

(g) (h)
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FIG. 9. (Color online) The electric field intensity distributions
measured at the resonance frequencies in Fig. 8. These are marked
with arrows and the labels ranging from a→j. The blue (darkest) color
corresponds to the lowest, the red (brightest) to the highest intensity.

in graphene flakes, where electrons are confined by a potential
barrier that, in distinction to that along the boundary of the
Dirac billiard, is of finite height, and recently also in a magnetic
photonic crystal.48

III. SUMMARY

In summary, we have observed experimentally the anoma-
lous 1/L scaling behavior of the transmission of electromag-
netic waves through a photonic crystal, which were excited
at the Dirac frequency and sent onto the crystal in directions
close to the �K direction, that is, near a conically shaped
singularity of the photonic band structure. Furthermore, we
implemented an experimental setup representing a microwave
analog of a Dirac billiard, that is a relativistic quantum billiard.
We have observed experimentally, in the vicinity of the Dirac
point, states localized at edges of the Dirac billiard, which
are similar to the edge states occurring at zigzag edges in
graphene flakes. These similarities between the properties of
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waves propagating through a photonic crystal and those of
graphene corroborate experimentally that not only the linear
dispersion relation but also the unusual properties of graphene
associated with it are entirely due to the symmetry properties
of its lattice. Furthermore, this demonstrates that microwave
billiards containing a photonic crystal provide an experimental
setup for the investigation of properties of Dirac billiards of
different shapes and with varying boundary conditions. These
systems are particularly suited for the investigation of the
spectral properties of Dirac billiards since the measurements
can be performed with superconducting microwave billiards
at liquid helium temperature. The aim is the study of the

effect of the shape of a Dirac billiard and the edge structure
of the enclosed photonic crystal on its spectral properties.
Another interesting aspect concerning properties of the wave
functions is the scarring phenomenon that has been predicted
numerically in graphene flakes with the shape of a stadium.47

ACKNOWLEDGMENTS

The authors thank E. Bogomolny and T. Tudorovskiy for
stimulating discussions, and the LPTMS in Orsay for its
hospitality. This work has been supported by the DFG within
the SFB 634.

*dietz@ikp.tu-darmstadt.de
†richter@ikp.tu-darmstadt.de
1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2P. R. Wallace, Phys. Rev. 71, 622 (1947).
3H.-P. Boehm, R. Setton, and E. Stumpp, Pure Appl. Chem. 66, 1893
(1994).

4A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

5C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
6J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
7S. Joannopoulos, J. D. Johnson, R. Meade, and J. Winn, Photonic
Crystals. Molding the Flow of Light, 2nd ed. (Princeton University
Press, Princeton and Oxford, 2008).

8S. Raghu and F. D. M. Haldane, Phys. Rev. A 78, 033834
(2008).

9E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J.
Temkin, J. Appl. Phys. 91, 960 (2002).

10M. Katsnelson, Mater. Today 10, 20 (2007).
11K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature
(London) 438, 197 (2005).

12P. Gaspard and S. A. Rice, J. Chem. Phys. 90, 2255 (1989).
13L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
14T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
15S. R. Zandbergen and M. J. A. de Dood, Phys. Rev. Lett. 104,

043903 (2010).
16U. Kuhl, S. Barkhofen, T. Tudorovskiy, H.-J. Stöckmann, T.
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