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Structural, thermal, magnetic, and electronic transport properties of the LaNi2(Ge1−xPx)2 system
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Polycrystalline samples of LaNi2(Ge1−xPx)2 (x = 0, 0.25, 0.50, 0.75, 1) were synthesized and their properties
investigated by x-ray diffraction (XRD) measurements at room temperature and by heat capacity Cp, magnetic
susceptibility χ , and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld
refinements of powder XRD patterns confirm that these compounds crystallize in the body-centered-tetragonal
ThCr2Si2-type structure (space group I4/mmm) with composition-dependent lattice parameters that slightly
deviate from Vegard’s law. The ρ(T ) measurements showed a positive temperature coefficient for all samples
from 1.8 to 300 K, indicating that all compositions in this system are metallic. The low-T Cp measurements yield
a rather large Sommerfeld electronic specific heat coefficient γ = 12.4(2) mJ/mol K2 for x = 0, reflecting a large
density of states at the Fermi energy that is comparable with the largest values found for the AFe2As2 class of
materials with the same crystal structure. The γ decreases approximately linearly with x to 7.4(1) mJ/mol K2 for
x = 1. The χ measurements show nearly temperature-independent paramagnetic behavior across the entire range
of compositions except for LaNi2Ge2, where a broad peak is observed at ≈300 K from χ (T ) measurements up
to 1000 K that may arise from short-range antiferromagnetic correlations in a quasi-two-dimensional magnetic
system. High-accuracy Padé approximants representing the Debye lattice heat capacity and Bloch-Grüneisen
electron-phonon resistivity functions versus T are presented and are used to analyze our experimental Cp(T ) and
ρ(T ) data, respectively, for 1.8 K � T � 300 K. The T dependences of ρ for all samples are well-described over
this T range by the Bloch-Grüneisen model, although the observed ρ(300 K) values are larger than calculated
from this model. A significant T dependence of the Debye temperature determined from the Cp(T ) data was
observed for each composition. No clear evidence for bulk superconductivity or any other long-range phase
transition was found for any of the LaNi2(Ge1−xPx)2 compositions studied.
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I. INTRODUCTION

The search for high-temperature superconductors inten-
sified after the discovery of superconductivity at 26 K in
the compound LaFeAsO1−xFx .1,2 Subsequent studies revealed
even higher superconducting transition temperatures (Tc) upon
replacing La with smaller rare earth elements,3,4 yielding a Tc

of 55 K for SmFeAsO1−xFx .5 These compounds crystallize in
the primitive tetragonal ZrCuSiAs (1111-type) structure with
space group P4/nmm.6 They have alternating FeAs and RO
(R = rare earth element) layers stacked along the c axis.
The Fe atoms form a square lattice in the ab plane and
are coordinated by As tetrahedra, where the coordinating
As atoms lie in planes on either side of, and equidistant
from, an Fe plane. The undoped parent compounds show
coupled structural and antiferromagnetic (AF) spin density
wave (SDW) transitions,7–9 which are both suppressed upon
doping by partially substituting O by F. Such doping results
in a nonintegral formal oxidation state for the Fe atoms. This
suppression of the long-range ordering transitions appears nec-
essary for the appearance of high-temperature superconductiv-
ity, as in the layered cuprate high-Tc superconductors.5,7,8,10–13

The 1111-type self-doped Ni-P analogue LaNiPO becomes
superconducting at temperatures up to about 4.5 K.14,15

Subsequently, the parent compounds AFe2As2 (A = Ca,
Sr, Ba, and Eu) were investigated.2 They crystallize in the
body-centered-tetragonal ThCr2Si2 (122-type) structure with
space group I4/mmm and contain the same type of FeAs
layers as in the 1111-type compounds. In addition, they
show SDW and structural transitions at high temperatures16–25

that are similar to those seen in the 1111-type compounds,

and these are similarly suppressed upon substituting on the
A, Fe, and/or As sites.2 Superconductivity again appears at
temperatures up to 38 K as these long-range crystallographic
and magnetic ordering transitions are suppressed.26–29 The
conventional electron-phonon interaction has been calculated
to be insufficient to lead to the observed high Tc’s, and
strong AF fluctuations still occur in these compounds above
Tc even after the long-range AF ordering is suppressed.2

The consensus is therefore that the superconductivity in
these high-Tc compounds arises from an electronic/magnetic
mechanism rather than from the conventional electron-phonon
interaction.2

The above discoveries motivated studies of other com-
pounds with the 122-type structure to search for new super-
conductors and to clarify the materials features necessary for
high-Tc superconductivity in the AFe2As2-type compounds.
For example, the semiconducting AF compound BaMn2As2

contains local Mn magnetic moments with spin S = 5/2
and Néel temperature TN = 625 K.30–33 We recently doped
this compound with K to form a new series of metallic
AF Ba1−xKxMn2As2 compounds containing the Mn local
magnetic moments,34 but no superconductivity has yet been
observed in this system.34,35 This may be because the TN

was not sufficiently suppressed by the K-doping levels used.
Studies of 122-type compounds in which the Fe and As in
AFe2As2 are both completely replaced by other elements
have also been carried out. For example, LaRu2P2 becomes
superconducting at Tc = 4.1 K.36 SrPd2Ge2 was recently
found to become superconducting with Tc = 3.0 K,37 with
conventional electronic and superconducting properties.38
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The Fe-based phosphides not containing magnetic rare
earth elements such as CaFe2P2,39 LaFe2P2,40 SrFe2P2,40

and BaFe2P2 (Ref. 41) show Pauli paramagnetic behavior.
The 122-type Co-based phosphides exhibit varying magnetic
properties. SrCo2P2 does not order magnetically, although it
has a large Pauli susceptibility χ ∼ 2 × 10−3 cm3/mol that
has variously been reported to exhibit either a weak broad
peak at ∼110 K attributed to “weak exchange interactions
between itinerant electrons” (Ref. 40), or a weak broad
peak at ∼20 K attributed to a “nearly ferromagnetic Fermi
liquid” (Ref. 42). LaCo2P2 orders ferromagnetically at a Curie
temperature TC ≈ 130 K,40,43 and CaCo2P2 is reported to
exhibit A-type antiferromagnetism at TN = 113 K in which
the Co spins align ferromagnetically within the basal plane
and antiferromagnetically along the c axis.44 These differing
magnetic properties of the Co-based phosphides are correlated
with the formal oxidation state of the Co atoms, taking into
account possible P-P bonding.44 Compounds where the Co
atoms have a formal oxidation state of +2, ∼+1.5, and
�+1 show no magnetic order, ferromagnetic order, and
antiferromagnetic order, respectively.44 None of the above
122-type Fe or Co phosphides were reported to become
superconducting.

Among Ni-containing 122-type compounds, superconduc-
tivity has been reported with Tc = 0.62 K in SrNi2As2,45

Tc = 0.70 K in the distorted structure of BaNi2As2,46 Tc =
1.4 K in the orthorhombically distorted structure of SrNi2P2

(Ref. 47), and Tc = 3.0 K in BaNi2P2.48 The Pauli paramagnet
LaNi2P2 is reported not to become superconducting above
1.8 K.49 There are conflicting reports about the occurrence
of superconductivity in LaNi2Ge2 with either Tc = 0.69–
0.8 K,50,51 or no superconductivity observed above 0.32 K.52

Several studies have been reported on the normal state
properties of LaNi2Ge2. de Haas van Alphen (dHvA) mea-
surements at 0.5 K indicated moderate band effective masses
m∗/me = 1.2 to 2.7, where me is the free electron mass.51

Electronic structure calculations were subsequently carried
out by Yamagami using the all-electron relativistic linearized
augmented plane wave method based on the density-functional
theory in the local-density approximation.53 The density
of states at the Fermi energy EF was found to be large,
D(EF) = 5.38 states/(eV f.u.) for both spin directions, arising
mainly from the Ni 3d orbitals, where f.u. means formula
unit. This D(EF) is comparable to the largest values reported
for the FeAs-based 122-type superconductors and parent
compounds.2 Three bands were found to cross EF, with two
Fermi surfaces that were holelike (0.16 and 1.11 holes/f.u.)
and one that was electronlike (0.27 electrons/f.u.), and
therefore with a net uncompensated carrier charge density
of 1.00 holes/f.u. Thus, for the hypothetical compound
ThNi2Ge2, one can assign formal oxidation states Th+4,
Ni+2, and Ge−4. Then, substituting trivalent La for tetravalent
Th yields a net charge carrier concentration of one hole
per formula unit. The electron Fermi surface is a slightly
corrugated cylinder along the c axis centered at the X
point of the Brillouin zone, indicating quasi-two-dimensional
character, similar to the electron Fermi surface pockets in the
FeAs-based 122-type compounds.2 On the other hand, the two
hole Fermi surfaces are three dimensional and are centered
at the X and Z (or M, depending on the definition2) points

of the Brillouin zone. These calculated Fermi surfaces were
found to satisfactorily explain the results of the above dHvA
measurements,51 including the measured band masses. From
a comparison of the calculated D(EF) with that obtained from
experimental electronic specific heat data, Yamagami inferred
that many-body enhancements of the theoretical band masses
are small.53

Hall effect measurements on single crystals of LaNi2Ge2

are consistent with the occurrence of multiple electron and hole
Fermi surfaces, with the weakly T -dependent Hall coefficients
given by a positive (holelike) value RH ∼ +3 × 10−10 m3/C
for the applied magnetic field H parallel to the a axis and a
negative (electronlike) value RH ∼ −2 × 10−10 m3/C for H
parallel to the c axis.54 The thermoelectric power obtained on
a polycrystalline sample of LaNi2Ge2 is negative.55

Herein we report our results on the mixed system
LaNi2(Ge1−xPx)2. For x = 0 or 1, alternating La and NiGe
or NiP layers, respectively, are stacked along the c axis. We
wanted to investigate whether any new phenomena occur with
Ge/P mixtures that do not occur at the endpoint compositions,
such as happens when the parent FeAs-based compounds
are doped/substituted to form high-Tc superconductors. In
addition, Yamagami’s electronic structure calculations for
LaNi2Ge2 discussed above53 indicated some similarities to the
electronic structures of the FeAs-based 122-type compounds.

We report structural studies using powder x-ray diffraction
(XRD) measurements at room temperature, together with
heat capacity Cp, magnetic susceptibility χ , and electrical
resistivity ρ measurements versus temperature T from 1.8
to 350 K for five compositions of LaNi2(Ge1−xPx)2 with
0 � x � 1. Our low-T limit of 1.8 K precluded checking for
superconductivity with Tc < 1 K reported for LaNi2Ge2,50,51

but we did find evidence for the onset of superconductivity
below ∼2 K in two samples of LaNi2P2 from both ρ(T )
and χ (T ) measurements. However, it is not clear from our
measurements whether this onset arises from the onset of bulk
superconductivity or is due to an impurity phase.

Also presented in this paper is the construction of Padé
approximants56 for the Debye and Bloch-Grüneisen functions
that describe the acoustic lattice vibration contribution to
the heat capacity at constant volume CV(T ) of materials
and the contribution to the ρ(T ) of metals from scattering
of conduction electrons from acoustic lattice vibrations,
respectively. These Padé approximants were created in order to
easily fit our respective experimental data using the method of
least squares, but they are of course more generally applicable
to fitting the corresponding data for other materials. The
Debye and Bloch-Grüneisen functions themselves cannot be
easily used for nonlinear least-squares fits to experimental
data because they contain integrals that must be evaluated
numerically at the temperature of each data point for each
iteration. Several numerical expressions representing the
Bloch-Grüneisen57–61 or Debye62 functions have appeared.
However, they replace the integrals in these functions with
infinite series, use very large numbers of terms, and/or use
special functions. These approximations are therefore not
widely used for fitting experimental data. One paper presented
a method for approximating the Debye function using the
Einstein model.63 This method is also of little use for fitting
because it uses a different equation for each temperature range
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and it becomes inaccurate at low temperatures. However, as
we demonstrate, the Debye and Bloch-Grüneisen functions
can each be accurately approximated by a simple Padé
approximant over the entire T range. To our knowledge,
there are no previously reported Padé approximants for either
of these two important functions. The T dependences of
ρ for all samples discussed here are well-described by the
Bloch-Grüneisen prediction, although the observed ρ(300 K)
values are larger than calculated. A significant T dependence
of the Debye temperature determined from the Cp(T ) data was
observed for each composition.

The remainder of this paper is organized as follows. An
overview of the experimental procedures and apparatus used
in this work is given in Sec. II. The construction of the Padé
approximants for the Bloch-Grüneisen and Debye functions
is described in Sec. III and Appendix A. The structural,
thermal, magnetic, and electrical resistivity measurements of
the LaNi2(Ge1−xPx)2 system and their analyses are presented
in Sec. IV and Appendices B and C. A summary and our
conclusions are given in Sec. V.

II. EXPERIMENTAL DETAILS

Polycrystalline samples of LaNi2(Ge1−xPx)2 (x = 0, 0.25,
0.50, 0.75, 1) were prepared using the high purity elements Ni:
99.9+%, P: 99.999+%, and Ge: 99.9999+% from Alfa Aesar
and La: 99.99% from Ames Laboratory Materials Preparation
Center. Stoichiometric amounts of La, Ni, and Ge were first
melted together using an arc furnace under high-purity Ar
atmosphere. The arc-melted button was flipped and remelted
five times to ensure homogeneity. Next, the samples (except
for LaNi2Ge2, which was prepared following the general
procedures outlined in Ref. 64) were thoroughly ground and
mixed with the necessary amount of P powder in a glove box
under an atmosphere of ultrahigh purity He. The powders were
cold-pressed into pellets and placed in 2-mL alumina crucibles.
The arc-melted button of LaNi2Ge2 was wrapped in Ta foil.
The samples were then sealed in evacuated quartz tubes and
fired at 990 ◦C for ≈6 d. Samples containing phosphorus were
first heated to 400 ◦C to prereact the phosphorus.

After the first firing, the phase purities of the samples were
checked using room temperature powder x-ray diffraction
(XRD) with a Rigaku Geigerflex powder diffractometer
and CuKα radiation. The x-ray patterns were analyzed for
impurities using MDI Jade 7. If necessary, samples were
thoroughly reground and repelletized (except for LaNi2Ge2,
which was just rewrapped in Ta foil) and either placed back
in alumina crucibles or wrapped in Ta foil and resealed in
evacuated quartz tubes. Samples were again fired at 990 ◦C for
5–6 d. The LaNi2P2 sample was arc-melted with additional
La and P in order to achieve a single-phase sample. This may
have been necessary because the compound may not form with
the exact 1:2:2 stoichiometry. After arc-melting, part of the
sample was annealed for 60 h at 1000 ◦C. Throughout this
paper, the annealed LaNi2P2 sample will be referred to as
x = 1.00a and the as-cast sample as x = 1.00b, where x is the
composition of LaNi2(Ge1−xPx)2. As seen in the XRD patterns
and fits in Sec. IV A, all final samples were single phase
except for two samples showing very small concentrations
of impurities.

Rietveld refinements of the XRD patterns were carried out
using the FULLPROF package.65 Magnetization measurements
versus applied magnetic field H and temperature T were
carried out using a superconducting quantum interference
device (SQUID) magnetometer (Quantum Design, Inc.). Gel
caps were used as sample holders and their diamagnetic
contribution was measured separately and corrected for in the
data presented here.

The Cp(T ) and ρ(T ) measurements were carried out using
a Quantum Design Physical Property Measurement System
(PPMS). Samples for heat capacity measurements had masses
of 15–40 mg and were attached to the heat capacity puck with
Apiezon N grease for thermal coupling to the platform. The
ρ(T ) measurements utilized a four-probe ac technique using
the ac transport option on the PPMS. Rectangular samples
were cut from the sintered pellets or arc-melted buttons
using a jeweler’s saw. Platinum leads were attached to the
samples using EPO-TEK P1011 silver epoxy. The sample
was attached to the resistivity puck with GE 7031 varnish.
Temperature-dependent ρ measurements were recorded on
both cooling and heating to check for thermal hysteresis. No
significant hysteresis was observed for any of the samples. In
addition, the vibrating sample magnetometer (VSM) option on
the PPMS was used to measure the high-T magnetization of
the LaNi2Ge2 sample up to 1000 K.

III. PADÉ APPROXIMANT FITS TO THE
BLOCH-GRÜNEISEN AND DEBYE FUNCTIONS

A Padé approximant g(T ) is a ratio of two polynomials.
Here, we write these polynomials as series in 1/T according
to

g(T ) = N0 + N1
T

+ N2
T 2 + · · ·

D0 + D1
T

+ D2
T 2 + · · · . (1)

The first one, two, or three and last one, two, or three in
each of the sets of coefficients Ni and Di in g(T ) can be
chosen to exactly reproduce both the low- and high-T limiting
values and power law dependences in T and/or 1/T of the
function it is approximating. This is a very important and
powerful feature of the Padé approximant. Then, the remaining
terms in powers of 1/T in the numerator and denominator
have freely adjustable coefficients that are chosen to fit the
intermediate temperature range of the function. A physically
valid approximant requires that there are no poles of the
approximant on the positive real T axis.

A. Bloch-Grüneisen model

The temperature-dependent electrical resistivity due to
scattering of conduction electrons by acoustic lattice vibrations
in monatomic metals is described by the Bloch-Grüneisen
(BG) model according to66

ρ(T ) = 4R(�R)

(
T

�R

)5 ∫ �R/T

0

x5

(ex − 1)(1 − e−x)
dx, (2)

where

R(�R) = h̄

e2

[
π3(3π2)1/3h̄2

4n
2/3
cellaMkB�R

]
, (3)
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�R is the Debye temperature determined from resistivity
measurements, h̄ is Planck’s constant divided by 2π , ncell

is the number of conduction electrons per atom, M =
(atomic weight)/NA is the atomic mass, NA is Avogadro’s
number, a = (volume/atom)1/3, kB is Boltzmann’s constant,
and e is the elementary charge. These variables map a
monatomic metal with arbitrary crystal structure onto a simple-
cubic lattice with one atom per unit cell of lattice parameter
a. To calculate R(�R) in units of � cm, one sets the prefactor
(h̄/e2) in Eq. (3) to 4108.24 � in SI units and calculates the
quantities inside the square brackets in cgs units so that the
quantity in square brackets has net units of cm. If one instead
has a polyatomic solid, one can map the parameters of that
solid onto those of the monatomic solid described by the
Bloch-Grüneisen model as explained in Sec. IV D below.

In practice, one fits the T dependence of an experimental
ρ(T ) data set by the BG model using an independently
adjustable prefactor ρ(�R) instead of 4R(�R) in Eq. (2)
because accurately fitting both the magnitude and T depen-
dence of a data set cannot usually be done using a single
adjustable parameter �R. One therefore normalizes Eq. (2) by
ρ(T = �R). When T = �R, the integral in Eq. (2) is∫ 1

0

x5

(ex − 1)(1 − e−x)
dx = 0.236 615 9,

yielding

ρ(�R) = 0.946 463 5R(�R). (4)

Equations (2)–(4) then yield the normalized T dependence of
the BG function (2) as

ρ(T )

ρ(�R)
= 4.226 259

(
T

�R

)5

×
∫ �R/T

0

x5

(ex − 1)(1 − e−x)
dx. (5)

This T dependence is only a function of the dimensionless nor-
malized temperature T/�R. Therefore, we define normalized
ρ and T variables as

ρn(Tn) = ρ(Tn)

ρ(�R)
, Tn = T

�R
, (6)

and Eq. (5) becomes

ρn(Tn) = 4.226 259 T 5
n

∫ 1/Tn

0

x5

(ex − 1)(1 − e−x)
dx. (7)

A set of ρn(Tn) data points calculated from Eq. (7) is plotted
in Fig. 1(a). These values were then used as a set of “data” to
fit by a Padé approximant as described next.

In order to construct a Padé approximant function that
accurately represents ρn(Tn) in Eq. (7), the power law
Tn dependences of the latter function must be computed
at high and low temperatures and the coefficients of the
Padé approximant adjusted so that both of these limiting T

dependences are exactly reproduced (to numerical precision).
Then, the remaining coefficients are determined by fitting the
approximant to a set of data obtained by evaluating the function
over the entire relevant temperature range. This procedure is

TABLE I. Values of the coefficients in the Padé approximant in
Eq. (8) that accurately fits the normalized Bloch-Grüneisen function
in Eq. (7).

Coefficient Value

N0 1083.127 77
N1 401.679 91
N2 −16.787 903 6
N3 3.717 146 28
D1 1025.140 90
D2 380.175 373
D3 41.063 139 0
D4 24.580 952 4
D5 0.177 731 204
D6 0.586 502 906
D7 −0.018 365 823 3
D8 0.007 068 443 59

described in Appendix A 1, which constrains the values of D1,
D2, D3, and D8. The resulting approximant is

ρn(Tn) =
N0 + N1

Tn
+ N2

Tn
2 + N3

Tn
3

D1
Tn

+ D2

Tn
2 + · · · + D7

Tn
7 + D8

Tn
8

. (8)

where the fitted coefficients in the Padé approximant (8) are
listed in Table I. The denominator in Eq. (8) was checked for
zeros and all were found not to lie on the positive Tn axis.
This ensures that the approximant does not diverge at any
(real positive) temperature. As seen in Fig. 1(b), the difference
between the BG function and the Padé approximant is less
than 1 × 10−4 at any T in the range 0 < T/�R < 2. By
construction, the Padé approximant must asymptote to the
exact BG T dependences at high and low T , respectively.
Figure 1(c) shows the percent error of the fitted approximant.
This error is largest at low T with a value of ≈3% at
T/�R ≈ 0.1. This is acceptable considering the very small
value of ρn at such low Tn. For the most accurate fit of low-T
experimental data by a power law in T , one would directly fit
experimental data by the power law rather than using the Padé
approximant function.

When fitting experimental ρ(T ) data by the Padé approx-
imant ρn(Tn) in Eq. (8), one fits only the T dependence and
not the magnitude of ρ(T ) by the BG theory because, as noted
above, one cannot in general obtain a good fit of both the
magnitude and the T dependence of a measured ρ(T ) data set
using only the single fitting parameter �R. Thus, one fits an
experimental ρ(T ) data set by

ρ(T ) = ρ0 + ρ(�R) ρn(T/�R), (9)

where ρ0 is the residual resistivity for T → 0. The meaning
of ρn(T/�R) is that one substitutes T/�R for Tn, according to
Eqs. (6), in the Padé approximant function ρn(Tn) in Eq. (8).
The three adjustable parameters ρ0, ρ(�R), and �R are varied
independently to obtain a fit to the data. Once a good fit is
obtained and all three parameters are determined, one can
compare the measured value of ρ(T = �R) with the value
predicted by the BG theory in Eq. (4). Often, the agreement is
not very good even for s or sp metals.66
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FIG. 1. (Color online) (a) Normalized Bloch-Grüneisen electrical
resistivity in Eq. (5) (one in every five points used for fitting
are plotted, open circles) and the Padé approximant fit (solid red
curve), (b) residuals (Padé approximant value minus Bloch-Grüneisen
formula value), and (c) percent error (residual divided by the value of
the Bloch-Grüneisen formula), all versus temperature T divided by
the Debye temperature �R.

B. Debye model

The Debye model67 is widely used for fitting experimental
heat capacity Cp(T ) data taken at constant pressure p arising
from acoustic lattice vibrations. It is sometimes useful to fit
a large T range of experimental Cp data using the Debye
function. Here, we describe the construction of an accurate
Padé approximant function of T that can easily be used in
place of the Debye function (10) for least-squares fitting
experimental Cp(T ) data over an extended T range. It can
also be conveniently used to calculate the T dependence of
the Debye temperature from experimental lattice heat capacity
data over an extended T range.

The lattice heat capacity at constant volume V per mole of
atoms in the Debye model is given by67

CV(T ) = 9R

(
T

�D

)3∫ �D/T

0

x4ex

(ex − 1)2
dx, (10)

where R is the molar gas constant and �D is the Debye
temperature determined from heat capacity measurements.
The CV and T can be normalized to become dimensionless
according to

Cn(Tn) = CV(Tn)

R
, Tn = T

�D
. (11)

FIG. 2. (Color online) (a) Plot of normalized Debye function
in Eq. (12) (one in every two points used for fitting are plotted)
(open circles) and Padé approximant (red line). (b) Plot of residuals
(Padé approximant minus Debye function). (c) Percent error (residual
divided by the value of the Debye function).

Equation (10) then becomes

Cn(Tn) = 9Tn
3
∫ 1/Tn

0

x4ex

(ex − 1)2
dx. (12)

The Cn was calculated for a representative set of Tn values
using Eq. (12). The resulting data are plotted as open black
circles in Fig. 2(a).

As discussed in Appendix A2, the Padé approximant that
fits both the high- and low-T power law asymptotics of Cn(Tn)
in Eq. (12) and has additional terms in powers of 1/T in the
numerator and denominator to fit the intermediate T range is

Cn(Tn) =
N0 + N1

Tn
+ N2

Tn
2 + · · · + N5

Tn
5

D0 + D1
Tn

+ D2

Tn
2 + · · · + D7

Tn
7 + D8

Tn
8

, (13)

where the coefficients are given in Table II. The resulting fit and
error analyses are shown in Fig. 2. The Padé approximant does
not deviate from the normalized Debye function in Eq. (12)
by more than 2 × 10−4 at any T as seen in Fig. 2(b). By
construction, the deviation goes to zero at both low and high
T . The percent error in Fig. 2(c) has its maximum magnitude
of 0.3% at low T , and occurs because Cn(Tn → 0) → 0
and numerical precision becomes an issue there. For another
example of the high accuracy and use of this Padé approximant,
see Fig. 9, where the �D versus T is calculated directly for each
of our samples of LaNi2(Ge1−xPx)2 using the Debye function
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TABLE II. Values of the coefficients in the Padé approximant in
Eq. (13) that accurately fits the normalized Debye function in Eq. (12).

Coefficient Value

N0 226.684 46
N1 64.752 051 1
N2 17.285 710 5
N3 1.052 246 63
N4 −0.035 843 776 1
N5 0.027 925 482 7
D0 75.561 486 7
D1 21.584 017 0
D2 9.539 977 83
D3 1.427 243 1
D4 0.337 538 084
D5 0.034 609 046 3
D6 0.007 440 025 83
D7 −0.000 210 411 972
D8 0.000 119 451 046

in Eq. (10) and compared with that found using the Padé
approximant in Eq. (13); only small differences are found.

To fit experimental Cp(T ) data by the Padé approximant
Cn(Tn) in Eq. (13), one fits both the magnitude and T

dependence of Cp simultaneously using

Cp(T ) = nRCn(T/�D), (14)

where n is the number of atoms per formula unit and �D

is the only fitting parameter. Here, one substitutes T/�D for
Tn, according to Eqs. (11), in the Padé approximant function
Cn(Tn) in Eq. (13). For a metal, one can add to Eq. (14) a linear
specific heat term γ T giving

Cp(T ) = γ T + nRCn(T/�D). (15)

The γ is the Sommerfeld electronic specific heat coefficient
that can be experimentally determined from a prior separate
fit to Cp(T ) data at low T according to67

Cp(T )

T
= γ + βT 2 (16)

as in Fig. 6 below, where βT 3 is the low-T limit in Eq. (A7) of
the Debye heat capacity. In Eq. (15), the only fitting parameter
is �D.

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Structure and chemical composition determinations

The starting parameters for the Rietveld refinements of
the powder XRD patterns were those previously reported
for LaNi2P2 (Refs. 68–70) and LaNi2Ge2 (Refs. 53, 64,
71, and 72) that are presented in Table III. All samples in
the LaNi2(Ge1−xPx)2 system were found to crystallize in
the body-centered-tetragonal ThCr2Si2 structure (space group
I4/mmm) as previously reported for the compositions x = 0
and 1, and our refined values for the lattice parameters are
in agreement with reported values, as shown in Table III.
The refinements of the powder XRD patterns are shown in
Figs. 15–18 in Appendix B and the crystal data are listed in
Table III. All samples were also refined for site occupancy and
no significant deviations were found from the value of unity.
However, the Rietveld fits were not very sensitive to changes
in site occupation.

The lattice parameters a and c and the unit cell volume
Vcell are plotted versus composition x in Fig. 3. As the
concentration of P increases, the lattice parameters and unit
cell volume all decrease monotonically, while from Table III
the c/a ratio increases. The composition dependences of
the quantities in Fig. 3 deviate slightly from the linearities
expected from Vegard’s law. From Table III, the zP/Ge c-axis
position parameter of the P/Ge site has a small overall increase
with increasing P concentration.

An interesting effect was observed in the x-ray data
for LaNi2P2. The as-cast sample after arc-melting showed

TABLE III. Crystallographic parameters of the body-centered-tetragonal LaNi2(Ge1−xPx)2 system at room temperature (space group
I4/mmm). Atomic coordinates are La: (0, 0, 0), Ni: (0, 1/2, 1/4), P/Ge: (0, 0, zP/Ge). Listed are the lattice parameters a and c, the c/a ratio,
the unit cell volume Vcell, and the z coordinate of the P/Ge site zP/Ge. The quality-of-fit parameters Rp, Rwp, and χ 2 are also listed.

Compound a (Å) c (Å) c/a Vcell (Å3) zP/Ge Rp (%) Rwp (%) χ 2 Ref.

LaNi1.70(1)P2 4.018(2) 9.485(6) 2.361 153.1 0.3716(2) 68
LaNi2P2 4.010(1) 9.604(2) 2.395 154.5 0.3700(2) 69

4.007 9.632 2.404 154.6 70
(as-cast) 4.0276(3) 9.5073(9) 2.3605(4) 154.22(4) 0.3692(7) 15.7 20.9 4.24 This work
(annealed) 4.0145(2) 9.6471(6) 2.4031(3) 155.47(3) 0.3681(6) 13.2 17.7 3.01 This work

LaNi2(P0.75Ge0.25)2 4.0550(1) 9.7289(3) 2.3992(1) 159.97(1) 0.3685(3) 11.5 16.4 9.05 This work
LaNi2(P0.50Ge0.50)2 4.08132(7) 9.7424(2) 2.38707(9) 162.281(9) 0.3678(2) 10.8 14.4 3.80 This work
LaNi2(P0.25Ge0.75)2 4.1353(4) 9.8012(9) 2.3701(4) 167.61(5) 0.3668(2) 9.40 13.4 6.35 This work
LaNi2Ge2 4.18586(4) 9.9042(1) 2.36610(6) 173.535(6) 0.3678(1) 10.2 13.2 8.66 This work

4.1860(6) 9.902(1) 2.366 173.51 0.3667(2) 71
4.187 9.918 53
4.187(6) 9.918(10) 2.369 173.8 64
4.1848(2) 9.900(1) 72
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FIG. 3. (Color online) (a) Unit cell lattice parameters a and c and
(b) unit cell volume Vcell versus composition x for LaNi2(Ge1−xPx)2.
The error bars are smaller than the symbol size and the solid curves
are guides to the eye.

broadening of the diffraction peaks with large c-axis contri-
butions. After annealing the arc-melted sample for 60 h at
1000 ◦C, those peaks became sharp and shifted to lower 2θ

angles, reflecting an increased c-axis lattice parameter. These
effects are shown on an expanded scale in Fig. 4 for the (105)
and (116) reflections. The c-axis peak broadening may arise
from disorder in the interlayer stacking distances along the
c axis.73

B. Heat capacity measurements

Plots of Cp(T ) for our samples of LaNi2(Ge1−xPx)2 from
1.8 to 300 K are shown in Fig. 5. The heat capacity at
300 K ranges from 118.3–123.0 J/mol K for these samples.
These values are approaching with increasing T the expected
classical Dulong-Petit value CV = 3nR = 124.7 mJ/mol K
for the heat capacity due to acoustic lattice vibrations, where

FIG. 4. (Color online) Comparison of a section of the room
temperature powder XRD pattern of LaNi2P2 before and after
annealing. Numbers above the peaks are their (hkl) Miller indices.

n is the number of atoms per formula unit (n = 5 for our
compounds).

To determine the Sommerfeld electronic specific heat
coefficient γ and a low-temperature value of the Debye
temperature �D for each sample, the lowest-temperature linear
Cp(T )/T data for each sample, plotted in Fig. 6, were fitted
by Eq. (16) and the values of γ and β obtained. A value of �D

can be calculated from each value of β using67

�D =
(

12π4Rn

5β

)1/3

. (17)

FIG. 5. (Color online) Heat capacity Cp versus temperature T

for samples in the LaNi2(Ge1−xPx)2 system (open symbols). Fits
of the data by Eq. (15), which is the sum of electronic and lattice
contributions, are shown as solid curves with the respective color.
For clarity, each plot is offset vertically by 15 J/mol K from the one
below it.
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FIG. 6. (Color online) Heat capacity Cp divided by temperature
T versus T 2 (open symbols) and linear fits (solid curves of
corresponding color) to the lowest-T data by Cp/T = γ + βT 2.
Table IV lists the temperature ranges of the fits and the values of
γ and β obtained.

The values obtained for γ , β, and �D for each sample are listed
in Table IV. A plot of γ versus x in LaNi2(Ge1−xPx)2 is shown
in Fig. 7, where a nearly linear decrease in γ with increasing
x is seen. Using these γ values in Table IV, we then fitted the
data from 1.8 to 300 K in Fig. 5 by Eq. (15) and obtained the
�D fitting parameters listed in Table IV. The fits are shown
as the solid curves in Fig. 5, which are seen to agree rather
well with the respective data. However, small T -dependent
deviations between the data and fit for each sample are seen,
which we address next.

Deviations of a Debye model fit from experimental lattice
heat capacity data are due to the following assumptions and
approximations of the model.

(i) The system is assumed to be at constant volume as
T changes rather than at constant pressure, which is the

0
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FIG. 7. (Color online) Sommerfeld electronic specific heat coef-
ficient γ versus composition x in LaNi2(Ge1−xPx)2 from Table IV.
For x = 1, the datum in Table IV for the annealed sample is plotted.
The error bars are smaller than the data symbols. The line is a guide
to the eye.

experimental condition. This deficiency can be corrected for
if the T -dependent compressibility and thermal expansion
coefficient are known for the compound of interest.

(ii) A quadratic density of phonon states versus energy
is assumed, which terminates at the Debye energy kB�D.
For actual materials, this assumption can only be accurately
applied at temperatures T � �D, which gives the Debye T 3

law [the second term on the right-hand side of Eq. (16)].
(iii) Assumptions are made that the speed of acoustic sound

waves in a material is temperature independent, is isotropic,
and is the same for longitudinal and transverse acoustic sound
waves. In general, these assumptions are too simplistic and the
parameters are temperature dependent.

(iv) The Debye model only accounts for acoustic lattice
vibrations and does not take into account optic lattice vibra-
tions arising from opposing vibrations of atoms with different

TABLE IV. Values of γ and β obtained from the low-T fits of the data in Fig. 6 by Eq. (16) are listed together with the density of states at
the Fermi energy D(EF) in units of states/(eV f.u.) for both spin directions calculated from γ using Eq. (24). Also shown are the �D values
calculated from the low-T β values using Eq. (17) and from a global fit to all the lattice Cp(T ) data from 1.8 to 300 K for each sample. Available
values from the literature are also listed.

Low-T �D �D

Sample fit range γ D(EF) β low-T fit all-T fit
(K) (mJ/mol K2) (eV f.u.)−1 (mJ/mol K4) (K) (K) Ref.

LaNi2P2 (as-cast) 1.81–5.34 7.7(2) 0.086(7) 483(14) 369(2) This work
(annealed) 1.81–7.31 5.87(2) 2.49 0.126(2) 426(3) 365(3) This work

LaNi2(P0.75Ge0.25)2 2.93–8.60 7.4(1) 3.13 0.159(3) 394(3) 348(2) This work
LaNi2(P0.50Ge0.50)2 1.82–7.13 9.3(2) 3.94 0.194(7) 369(5) 326(2) This work
LaNi2(P0.25Ge0.75)2 2.59–6.52 11.27(6) 4.78 0.261(2) 333.9(9) 301(2) This work
LaNi2Ge2 2.93–6.41 12.4(2) 5.26 0.371(9) 297(2) 287(2) This work

14.5 0.273 328 52
12.7(calc) 5.38 53
13.5(obs)a 53

aNo experimental evidence or reference citation was given for this quoted observed value.
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FIG. 8. (Color online) Debye temperature �D versus temperature
T (open symbols) obtained by solving Eq. (10) for each Cp(T ) data
point after subtracting the electronic contribution γ T . The error bars
plotted are calculated using Eq. (18). Solid curves are guides to the
eye.

masses in the unit cell. The contribution of these to Cp(T ) can
be modeled by adding Einstein terms to the fit function.67

Because of these approximations and assumptions of the
Debye model, the lattice heat capacity of a material is never
precisely described by the Debye model over an extended
temperature range such as from 2 to 300 K. The most serious
approximation in our T range is the second approximation.
Within the Debye model, �D is independent of T . One can
therefore perameterize the deviations of a fit from the data by
allowing �D to vary with T .74

The value of �D was calculated for each data point in
Fig. 5 after subtracting the contribution from γ T according to
Eq. (15), using the Debye function in Eq. (10). The resulting
T dependences of �D are shown in Fig. 8, where �D is seen
to vary nonmonotonically and by up to 30% with increasing
T . The plots have a similar shape to that for sodium iodide.75

The �D is expected to be constant at temperatures below
�D0/50 and above �D0/2, where �D0 is the zero-temperature
value of �D.74 Our �D(T ) data qualitatively agree with these
expectations.

Considerable scatter in the �D(T ) data in Fig. 8 occurs at
temperatures above 250 K and also below 7 K (although not as
clearly visible in the figure). In these T ranges, Cp is becoming
nearly independent of T , so in these T ranges, any error in the
value of CV is greatly amplified when �D is calculated. The
error bars on the values of �D(T ) therefore increase signifi-
cantly in these T regions. We now consider such errors and,
for this discussion, ignore the difference between CV and Cp.

The scatter d�D in the derived �D versus T depends on
the statistical error dCV in CV,

d�D = dCV

dCV/d�D
. (18)

This expression was used to obtain the error bars plotted in
Fig. 8. The denominator dCV/d�D was calculated using the
Debye function in Eq. (10).

In order to more clearly see why the error in �D substan-
tially increases above ≈250 K, the high-T approximation in
Eq. (A6) can be used, yielding

CV ≈ 3R − 3R�D
2

20T 2
(T � �D).

Taking the derivative with respect to �D gives

dCV

d�D
≈ −3R�D

10T 2
(T � �D).

Inserting this result into Eq. (18) gives the approximation

d�D ≈ −
(

10T 2

3R�D

)
dCV (T � �D).

This result shows that the error in �D is proportional to T 2 at
high T , which results in a dramatic increase in the scatter and
error in �D(T ) at high T .

Using the low-T approximation in Eq. (A7) and the same
procedure as described above, the error in �D is

d�D ≈ −
(

5�D
4

36Rπ4T 3

)
dCV (T � �D).

Therefore, similar to the situation at high T , a small error in
Cp at low T is greatly amplified when calculating �D(T ).

To verify the applicability of the Padé approximant for
the Debye function developed in Sec. III B, the �D(T ) was
calculated for each data point in Fig. 5 using the Padé
approximant in Eq. (13) instead of by directly using the Debye
function in Eq. (10). The electronic γ T contribution was again
subtracted from the Cp(T ) data first. The difference between
these �D(T ) values and those calculated using the Debye
function in Eq. (13) is plotted versus T in Fig. 9. The values
calculated from the Padé approximant do not deviate by more
than 0.35 K from those calculated using the Debye formula.

FIG. 9. (Color online) Difference ��D between the �D calcu-
lated from the Debye function [Eq. (10)] plotted in Fig. 8 and
calculated from the Padé approximant [Eqs. (13) and (14)]. Solid
curves are guides to the eye. For clarity, each plot is offset vertically
upward by 0.2 K from the one below it. Horizontal dotted lines are at
��D = 0 for the data set with the corresponding color.
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This error is of order 0.1% of �D, which is usually small
compared to the error in �D itself and is negligible compared
to its T dependence. Therefore, the Padé approximant provides
a viable alternative for calculating �D(T ) that does not require
evaluation of the integral in the Debye function (10) or the use
of a look-up table for each data point.

C. Magnetization and magnetic susceptibility measurements

Magnetization versus applied magnetic field M(H )
isotherms were measured for the LaNi2(Ge1−xPx)2 system
for H = 0–5.5 T and the results are plotted in Figs. 19–21
of Appendix C. The M versus T for the samples were
also measured from 1.8 to 300 K at a fixed field H = 3 T
and the resulting susceptibilities χ ≡ M/H are plotted in
Fig. 10(a). As evident from the nonlinear behavior at low
fields in the M(H ) plots and the upturn that follows the
Curie-Weiss-like behavior [χ = C/(T − θ )] in the observed
χ (T ) at low temperatures, we infer the presence of saturating
paramagnetic and/or ferromagnetic impurities in the samples.
In order to determine the intrinsic behaviors, it is necessary
to correct for these impurities. To determine the individual
contributions to the susceptibility data, the M(H ) curves were
fitted by

M(T ,H ) = M0 + χH + f MsatBS

[
gμBH

kB(T − θ )

]
, (19)

where M0 is the saturation magnetization of the ferromagnetic
impurities, χ is the intrinsic susceptibility of the sample, f

is the molar fraction of paramagnetic impurities, g is the
spectroscopic splitting factor of the impurities which was
fixed at g = 2 to reduce the number of fitting parameters,
μB is the Bohr magneton, kB is Boltzmann’s constant, θ is the
Weiss temperature of the paramagnetic impurities (included
for consistency with a possible Curie-Weiss law behavior
at low H/T ), Msat is the saturation magnetization of the
paramagnetic impurities, and BS is the Brillouin function. The
Brillouin function is

BS(x) = 1

2S

{
(2S + 1) coth

[
(2S + 1)

x

2

]
− coth

(
x

2

)}
,

(20)

where

x = gμBH

kB(T − θ )

and the molar saturation magnetization Msat of the paramag-
netic impurities is

Msat = NAgSμB,

where S is the spin of the impurities and NA is Avogadro’s
number.

To determine the values of f , S, and θ for the paramagnetic
impurities, a global two-dimensional surface fit of the M(H )
data from 1–5.5 T taken at both 1.8 and 5 K was done
using Eq. (19) with MATLAB’s Surface Fitting Tool. For this
H range, the ferromagnetic impurities are expected to be
nearly saturated, as assumed by Eq. (19). The parameter values
obtained are given in Table V. Fixing the variables f , S, and
θ at the respective values for each sample, each M(H ) curve

FIG. 10. (Color online) Magnetic susceptibility χ versus temper-
ature T for the LaNi2(Ge1−xPx)2 system. (a) Measured χ ≡ M/H

data (uncorrected). (b) Intrinsic χ obtained after correcting for
both ferromagnetic (FM) and paramagnetic (PM) impurities. Solid
symbols of corresponding shape and color are values of χ found
from fitting M(H ) isotherms.

at higher temperatures was fitted by Eq. (19) in the range
1–5.5 T to obtain values for M0(T ) and χ (T ). The M(H ) fits
are shown in Figs. 19–21 in Appendix C. A plot of M0 versus
T is presented in Fig. 22 in Appendix C and the fitted values
of the intrinsic susceptibility χ are plotted as solid symbols in
Fig. 10(b).

In order to correct the M(T ) data at H = 3 T in Fig. 10(a)
for the paramagnetic impurities, the above values of f ,
S, and θ obtained by fitting the M(H ) isotherms at 1.8
and 5 K were inserted into the last term of Eq. (19) to
calculate their contributions versus T at H = 3 T. These
contributions were then subtracted from the respective M(T )
data that were already corrected for ferromagnetic impurities
to obtain the intrinsic susceptibility of the samples as plotted in
Fig. 10(b). Previously reported values of χ for LaNi2Ge2 are
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TABLE V. Values obtained by simultaneous fitting of the M(H ) isotherms obtained at 1.8 and 5 K. The parameters listed are f [molar
fraction of paramagnetic (PM) impurities], S (spin quantum number of the PM impurities), θ (Weiss temperature of the PM impurities), M0

(saturation magnetization of the ferromagnetic impurities), and χ (intrinsic magnetic susceptibility of the compound). The negative signs of θ

indicate antiferromagnetic interactions between the magnetic impurities.

Sample f (10−5) S θ (K) M0 (G cm3/mol) χ (10−5 cm3/mol)

LaNi2P2 (annealed) 3.89 3.48 −5.88 0.0478 2.92
LaNi2(P0.75Ge0.25)2 2.33 1.92 −1.02 0.1175 5.53
LaNi2(P0.50Ge0.50)2 4.12 2.42 −1.89 0.4128 7.49
LaNi2(P0.25Ge0.75)2 5.73 2.57 −1.54 0.1834 16.0
LaNi2Ge2 2.35 2.43 −1.08 0.0700 19.5

24 × 10−5 cm3/mol at 300 K (Ref. 50) and 28 × 10−5

cm3/mol at 296 K (Ref. 76). The former value is essentially
the same as our value 23.2 × 10−5 cm3/mol at 300 K, as seen
more clearly in Fig. 11, where our χ (T ) data for LaNi2Ge2 are
plotted on an expanded vertical scale for temperatures up to
1000 K.

The χ (T ) data in Fig. 10 show that the samples in
the LaNi2(Ge1−xPx)2 system exhibit nearly temperature-
independent paramagnetism over the composition region x =
0.25–1. This trend does not extend to LaNi2Ge2 (x = 0),
for which a broad maximum appears to occur at ≈300 K,
which is close to the upper temperature limit of the SQUID
magnetometer. In order to determine whether a maximum in
χ near 300 K does occur, M(H,T ) data for the sample of
LaNi2Ge2 were measured using a VSM from T = 300 to
1000 K. The M(H ) isotherm data are plotted in Fig. 21(b)
of Appendix C and the χ (T ) ≡ M(T )/H data at H = 3 T
are plotted in Fig. 11. The magnetic contributions due to the

FIG. 11. (Color online) Expanded plot along the vertical axis of
the magnetic susceptibility χ versus temperature T for LaNi2Ge2

up to 1000 K after correction for paramagnetic and ferromagnetic
impurity contributions. The data below 350 K were measured with
a SQUID magnetometer and the data above 300 K were measured
with a VSM, both at applied fields of 3 T. Inset: Expanded plot of the
SQUID data at low temperatures. The small downturn below about
10 K is most likely spurious, arising from an imperfect correction for
the paramagnetic impurities.

sample holder and paramagnetic impurities are corrected for
in the plots.

The data in Fig. 11 clearly show that a broad peak
occurs in χ (T ) of LaNi2Ge2 at about 300 K. The plot in
Fig. 10(b) shows the peak plotted on a less expanded vertical
scale. The cause of this peak is not clear, but may be due
to low-dimensional antiferromagnetic correlations.77 Further
investigation is needed. The inset in Fig. 11 shows an expanded
view of the low-temperature behavior. Due to its smooth
nature, the small downturn in the data below about 10 K is
most likely spurious due to a slight error in correcting for the
susceptibility contribution of the paramagnetic impurities in
the sample.

The onset of superconductivity was observed in both the
annealed and as-cast samples of LaNi2P2 at 2.6 and 2.2 K,
respectively, from zero-field-cooled (ZFC) magnetization
measurements in a field of 20 Oe. Figure 12 shows these low-
field χ (T ) ≡ M(T )/H measurements. It is not clear whether
the data represent the onset of bulk superconductivity in
LaNi2P2 or if the diamagnetism arises from a superconducting
impurity phase. The ρ(T ) data in Fig. 13 below do not clarify
this issue.

FIG. 12. (Color online) Zero-field-cooled (ZFC) low-temperature
measurement of the magnetic susceptibility χ versus temperature T

for LaNi2P2 with applied field H = 20 G.
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We now analyze the normal state χ of the samples. The
magnetic susceptibility of a metal consists of the sum of the
spin and orbital contributions

χ = χ spin + χorb. (21)

In the absence of local magnetic moments, the spin contribu-
tion χ spin is the Pauli susceptibility χPauli of the conduction
electrons. One can estimate χPauli using2

χPauli = g2

4
μ2

BD(EF) (T = 0), (22)

where g is the spectroscopic splitting factor and D(EF) is the
density of states at the Fermi energy EF. Setting g = 2 gives

χPauli = (3.233 × 10−5)D(EF), (23)

where χPauli is in units of cm3/mol, D(EF) is in units of
states/eV f.u. for both spin directions, and f.u. means formula
unit.

To calculate χPauli, one can obtain an estimate of D(EF)
from the Sommerfeld electronic linear specific heat coefficient
γ according to

γ = γ0(1 + λep),

where67

γ0 = π2k2
B

3
D(EF) = 2.359D(EF) (24)

is the bare Sommerfeld coefficient in the absence of electron-
phonon coupling, λep is the electron-phonon coupling constant,
and in the right-hand equality of Eq. (24), D(EF) is in units
of states/eV f.u. for both spin directions and γ0 is in units of
mJ/mol K2. Taking λep = 0 yields

χPauli = (1.370 × 10−5)γ, (25)

where χPauli is in units of cm3/mol and γ is in units of
mJ/mol K2. The values of D(EF) and χPauli obtained using
Eqs. (24) and (25), respectively, and using the γ values given
in Table IV, are listed in Table VI.

The orbital susceptibility consists of three contributions

χorb = χ core + χVV + χLandau, (26)

TABLE VI. Contributions to the magnetic susceptibility χ . The
parameters listed are the observed value χobs of χ averaged over the
temperature range measured and the contributions from the Pauli spin
susceptibility χPauli and the orbital core susceptibility χ core, Landau
susceptibility χLandau, and Van Vleck susceptibility χVV. All values
are in units of 10−5 cm3/mol.

Sample χ obs χPauli χ core χLandau χVV

LaNi2P2 (as-cast) 1.49 10.5(3) −18.8 −3.50(1) 13.3(4)
LaNi2P2 (annealed) 2.82 8.04(3) −18.8 −2.68(1) 16.3(4)
LaNi2(P0.75Ge0.25)2 5.28 10.1(2) −19.3 −3.37(7) 17.9(3)
LaNi2(P0.50Ge0.50)2 7.32 12.7(3) −19.7 −4.2(1) 18.5(4)
LaNi2(P0.25Ge0.75)2 14.36 15.44(8) −20.1 −5.15(3) 24.7(1)
LaNi2Ge2 21.01 17.0(3) −20.5 −5.7(1) 30.4(4)

where χ core is the diamagnetic contribution from the atomic
core electrons, χVV is the paramagnetic Van Vleck suscepti-
bility, and χLandau is the diamagnetic Landau susceptibility
of the conduction electrons. The Landau susceptibility is
approximated by78

χLandau = −1

3

(
me

m∗

)2

χPauli.

For our samples, it is assumed that m∗ = me, therefore χLandau

can be calculated from the χPauli obtained above. An estimate
of χ core was obtained from the sum of the Hartree-Fock
diamagnetic atomic susceptibilities.79 Using the observed
average value of the susceptibility (χobs) over the temperature
range 2–300 K and the calculated sum of the values χPauli,
χ core, and χLandau, the Van Vleck susceptibility is calculated
from Eqs. (21) and (26) via

χVV = χobs − (χPauli + χ core + χLandau).

The values obtained in the manner described for χPauli, χ core,
χVV and χLandau are listed in Table VI.

D. Electrical resistivity measurements

The ρ versus T data for our LaNi2(Ge1−xPx)2 samples are
plotted in Fig. 13(a). The magnitudes of the data may not
be reliable due to the polycrystalline nature of the samples
and the resulting grain boundary scattering. Such scattering
is expected and found to be smallest for the samples of
LaNi2Ge2 and LaNi2P2 that were cut from arc-melted buttons
and therefore had a higher density than the other samples cut
from sintered pellets. The values of ρ at 1.8 and 300 K are listed
in Table VII along with previously reported values from the
literature.51,55,80,81 The positive slopes of the ρ(T ) data indicate
that all samples are metallic. The maximum resistivities at 1.8
and at 300 K both occur for x = 0.50 where the disorder on
the Ge/P sublattice is largest, as might have been anticipated,
so this may be an intrinsic effect.

As seen in the expanded plot at low temperatures down to
our low-T limit of 1.8 K in Fig. 13(b), there appears to be
an onset of superconductivity occurring at ≈2.1 K for both
the annealed and as-cast samples of LaNi2P2, consistent with
the above measurements of the low-field magnetic shielding
susceptibilities in Fig. 12. It is not known if these results
indicate the onset of bulk superconductivity or whether they
are due to a superconducting impurity phase.

The T dependence of ρ was fitted by Eq. (9), which includes
our Padé approximant for the Bloch-Grüneisen function.
From these fits shown in Fig. 13(a), estimates of the Debye
temperature (�R), ρ at the Debye temperature [ρ(�R)], and
residual resistivity (ρ0) were obtained as listed in Table VII.
The �R for the LaNi2(P0.25Ge0.75)2 sample is lower than
the values for the adjacent compositions. We speculate that
this arises from inaccuracies introduced by the polycrystalline
nature of the samples.

The �R obtained from ρ(T ) measurements is usually
different from that obtained by heat capacity measurements
(�D), although in some cases agreement was found.74 For our
samples in the LaNi2(Ge1−xPx)2 system, while the magnitudes
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FIG. 13. (Color online) (a) Electrical resistivity ρ versus tem-
perature T for the LaNi2(Ge1−xPx)2 system (open symbols). Solid
curves of corresponding color are least-squares fits by Eq. (9), which
includes the Padé approximant in Eq. (8) that is used in place of the
normalized Bloch-Grüneisen function in Eq. (7). Values of the fitting
parameters obtained are listed in Table VII. (b) Expanded plots at low
temperatures of ρ(T ) for as-cast and annealed LaNi2P2.

of �R differ considerably from sample to sample, both sets of
�R and �D data in Tables VII and IV, respectively, indicate
an overall decrease in the Debye temperature with increasing
Ge content.

Like the Debye model, the BG model makes several
assumptions and approximations in order to obtain an analytic
formula for ρ(T ):

(i) A strong approximation is that the lattice vibrations have
a Debye spectrum.

(ii) Another strong approximation is that Umklapp con-
duction electron scattering processes are ignored. Umklapp
scattering is expected to be T dependent in our T range.82

(iii) Only longitudinal phonons are assumed to contribute
to electron-phonon scattering.

(iv) The calculation is carried out at constant volume instead
of at constant pressure as in experiments.

(v) The conduction electron energy is assumed not to
change due to scattering off phonons.

(vi) The phonons are assumed to be in thermal equilibrium.
As a result of these assumptions and approximations, the

T dependence of �R is much stronger than that of �D.82

Zimon concluded, “the actual observed value of �R does not
have any great significance.”82 Thus, �R is less meaningful
than �D. Furthermore, differences between �R and �D

are not unexpected, given the different assumptions of the
BG and Debye models enumerated here and in Sec. IV B,
respectively.

Now we compare our experimental result for the magnitude
of ρ(300 K) for the annealed sample of LaNi2Ge2 with the
value predicted by the Bloch-Grüneisen theory. We chose to
use the ρ data for this compound for comparison with the
theory because it has the lowest residual resistivity of our five
samples. The BG theory describes monatomic materials. In
order to use this theory to predict the resistivity of polyatomic
compounds such as LaNi2Ge2, it is necessary to slightly
modify Eq. (3) as

R(�R) = h̄

e2

[
π3(3π2)1/3h̄2

4n
2/3
cellakB�R

(
1

M

)
ave

]
, (27)

TABLE VII. Values of the Debye temperature determined from resistivity ρ measurements (�R), the resistivity at the Debye temperature
[ρ(�R)], and the residual resistivity (ρ0) obtained from least-squares fits of the ρ(T ) data in Fig. 13(a) by Eq. (9). Also listed are ρ values at
∼2 K and at 300 K, and literature values parallel to the c axis (ρc) and parallel to the a axis (ρa) of a single crystal. The systematic errors in
our ρ values due to uncertainties in the geometric factors are of order 10%.

Sample �R (K) ρ(�R) (μ� cm) ρ0 (μ� cm) ρ(∼2 K) (μ� cm) ρ(300 K) (μ� cm) Ref.

LaNi2P2

(as-cast) 211(2) 44.9(3) 83.15(3) 83 148 This work
(annealed) 265(3) 109.(1) 26.0(1) 25 152 This work

LaNi2(P0.75Ge0.25)2 242(1) 85.8(4) 191.51(5) 191 300 This work
LaNi2(P0.50Ge0.50)2 208(1) 102.5(7) 249.79(9) 249 401 This work
LaNi2(P0.25Ge0.75)2 119(7) 37.(2) 95.9(3) 95 189 This work
LaNi2Ge2 148(5) 38.(1) 6.8(2) 6.1 85 This work

0.4 51
∼1 ∼26 (ρa), ∼38 (ρc) 80
∼5 ∼80 81

∼1–2 ∼43 55
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where the variables have the same meaning as before, except

(
1

M

)
ave

= NA

n

n∑
i=1

1

Mi

(28)

is the average inverse mass of the atoms in a f.u., n is
the number of atoms per f.u., and Mi is the atomic weight
of element i. In this case, a = (Vcell/nZ)1/3 because there
are Z = 2 f.u. of LaNi2Ge2 with n = 5 per body-centered
tetragonal unit cell with volume Vcell = a2c where a and c are
given in Table III.

The number of carriers per f.u. in LaNi2Ge2 predicted
by band structure calculations53 is 1.54. Therefore, ncell =
1.54/5 = 0.308 carriers/atom because the carriers are modeled
as being evenly distributed among the five atoms in the f.u. As
described previously, to calculate R(�R) in units of � cm
in Eq. (27), the prefactor h̄/e2 is set to 4108.24 � and the
part in the square brackets is calculated in cgs units. Using
�R = 148 K from Table VII, R(�R) is calculated to be
3.763 μ� cm. Inserting this result into Eq. (2) for T = 300 K,
ρ(300 K) is predicted to be 7.53 μ� cm. This value is about a
factor of 10 smaller than the experimental value of 79 μ� cm
[after subtracting ρ(1.8 K)] from Table VII, which is a large
disagreement in magnitude even though the T dependence
for ρ for LaNi2Ge2 was well fitted by the BG theory. This
large disagreement is typical of the BG theory as applied to
transition metals and alkaline-earth metals66 and illustrates
why it is necessary to use an adjustable prefactor ρ(�R) in
Eq. (9) in addition to the fitting parameter �R in order to fit
both the magnitude and T dependence of experimental data
using the Bloch-Grüneisen model.

The reason for the enhanced electron-lattice resistivity in
transition metals with both s and d bands crossing the Fermi
energy is that the s electrons carry most of the current due
to their much lower effective mass than the d electrons, and
electron-phonon scattering from an s band into a much higher
density of states d band acts as a conduction electron sink,
thus strongly enhancing the resistivity due to electron-phonon
scattering.82

V. SUMMARY AND CONCLUSIONS

Single- or nearly single-phase polycrystalline samples of
LaNi2(Ge1−xPx)2 with the compositions x = 0, 0.25, 0.50,
0.75, and 1 were synthesized and their properties measured.
Rietveld refinements of the powder XRD patterns showed
that all samples have the tetragonal ThCr2Si2 structure with
space group I4/mmm. The refined crystal data are presented
in Table III. A possible stacking disorder was observed along
the c axis in the as-cast sample of LaNi2P2 as revealed by the
c-axis line broadening in Fig. 4.

Electrical resistivity ρ measurements showed a positive
temperature coefficient for all samples from 2 to 300 K,
indicating that all compositions in this system are metallic.
Consistent with this result, the low-T Cp measurements yield
a rather large Sommerfeld electronic specific heat coefficient
γ = 12.4(2) mJ/mol K2 for x = 0 reflecting a large density
of states at the Fermi energy comparable to the largest values
found for the AFe2As2 class of materials with the same crystal

structure.2 The γ decreases approximately linearly with x to
7.4(1) mJ/mol K2 for x = 1.

New Padé approximants for the Debye and Bloch-
Grüneisen functions were presented. They have the distinct
advantage of being able to precisely reproduce the power law
dependences at both the low- and high-T limits of the function
they are approximating. The Padé approximants presented
here for each of CV(T ) and ρ(T ) cover the entire T range
and have a good balance of high accuracy and low number
of terms. The T dependences of ρ for all samples were
well-fitted by the Bloch-Grüneisen model and values of the
Debye temperature �R were obtained (Table VII), although
the measured ρ magnitudes were larger than calculated on the
basis of this model. Fitting the T dependences of Cp revealed
significant T dependences of the Debye temperatures �D.

Magnetization and magnetic susceptibility measurements
of our LaNi2(Ge1−xPx)2 samples revealed nearly temperature-
independent paramagnetic behavior (except for LaNi2Ge2),
with increasing susceptibility as the Ge concentration is
increased. For LaNi2Ge2, a broad peak was observed in χ (T )
at ≈300 K. A possible explanation is that the peak arises
from the onset of strong antiferromagnetic correlations in a
quasi-two-dimensional magnetic system.77 There may be a
correlation here between the χ (T ) behavior and the corrugated
electron cylinder Fermi surface found by Yamagami53 that
was mentioned in the Introduction. However, the heat capacity
data were well fitted from 1.8 to 300 K for all samples by an
electronic γ T term plus a lattice contribution described by the
Debye model as shown in Fig. 5 and Table IV, with no clear
evidence for an additional magnetic contribution in LaNi2Ge2.

An interesting finding is the onset of a superconducting
transition at T ≈ 2.2 K in both the annealed and as-cast sam-
ples of LaNi2P2. This onset was observed in both the resistivity
and magnetic susceptibility measurements. However, it is not
clear if these onsets are due to bulk superconductivity or
to an impurity phase. Apart from the broad peak in χ (T )
for LaNi2Ge2 and the potential bulk superconductivity in
LaNi2P2, there were no other signs of structural, magnetic,
or superconducting transitions down to 1.8 K in the samples.
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APPENDIX A: PADÉ APPROXIMANTS

1. Bloch-Grüneisen model

In order to construct a Padé approximant function that
accurately represents another function, the power law T de-
pendences of the latter function must be computed at high and
low temperatures and the coefficients of the Padé approximant
adjusted so that both of these limiting T dependences are
exactly reproduced (to numerical precision). For the BG
function at high T , �R/T � 1 in Eq. (7). Therefore, the
integrand in Eq. (7) can be expanded in a Taylor series about
x = 0 as

x5

(ex − 1)(1 − e−x)
≈ x3 − x5

12
+ O(x7) (x � 1).
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Equation (7) then becomes

ρn(Tn) ≈ AT 1
n + 0 T 0

n + BTn
−1 + O

(
T −3

n

)
(T � �R),

(A1)
A = 1.056 565, B = −0.058 698 04.

At low temperatures, �R/T → ∞ and the upper limit to the
integral in Eq. (7) can be set to ∞. The integral in Eq. (7) is
then∫ ∞

0

x5

(ex − 1)(1 − e−x)
dx = 5!ζ (5) ≈ 124.431 331,

where ζ (z) is the Riemann zeta function. Inserting this result
into Eq. (7) yields

ρn = CTn
5 (T � �R), C = 525.8790. (A2)

There are no additional terms in powers of Tn in the Taylor
series expansion of ρn(Tn) about Tn = 0 because it is not
possible to express the exponentials in the integral in Eq. (7)
as Taylor series in 1/x about 1/x = 0.

Based on the above low- and high-T expansions of the
normalized BG function, the coefficients of the Padé approx-
imant are now chosen so that the limiting T dependences
of the approximant exactly match the required power law T

dependences in Eqs. (A1) and (A2). In addition, intermediate
power terms were added in pairs (one in the numerator and
one in the denominator) until there were enough for the
approximant to accurately fit the intermediate temperature
range of the BG function. The resulting approximant has the
form

ρn(Tn) =
N0 + N1

Tn
+ N2

Tn
2 + N3

Tn
3

D1
Tn

+ D2

Tn
2 + · · · + D7

Tn
7 + D8

Tn
8

,

which is Eq. (8) in the text.
In order that Taylor series expansions of the Padé approxi-

mant (8) at high and low T correctly reproduce the coefficients
of the limiting T dependences of the normalized BG function
in Eqs. (A1) and (A2), some of the coefficients Ni and Di in
Eq. (8) are not independent. Expanding Eq. (8) as a Taylor
series in 1/Tn about 1/Tn = 0 gives

ρn(Tn) = N0

D1
T 1

n + −D2N0 + D1N1

D1
2 T 0

n

+ D2
2N0 − D1D3N0 − D1D2N1 + D1

2N2

D1
3 Tn

−1

+O
(
Tn

−2
)
. (A3)

Equating the coefficients in Eq. (A3) with the respective
coefficients in the high-T Taylor series expansion of the
normalized BG function in Eq. (A1) yields

D1 = N0

A
, D2 = N1

A
, D3 = AN2 − BN0

A2
. (A4)

The Taylor series expansion of the approximant (8) about
Tn = 0 is

ρn = N3

D8
Tn

5 + O
(
Tn

6
)
.

Equating the coefficient of this T 5 term with that of the Bloch-
Grüneisen function in Eq. (A2) yields

D8 = N3

C
. (A5)

Using the four constraints in Eqs. (A4) and (A5), one can
exactly reproduce the Tn

1, Tn
0, and Tn

−1 dependences of
the high-T expansion in Eq. (A1) and the Tn

5 dependence
of the low-T expansion in Eq. (A2) for the normalized BG
function.

A table of values generated from Eq. (7) and plotted
in Fig. 1(a) was least-squares fitted by Eq. (8) using the

FIG. 14. (Color online) Room temperature powder XRD pattern
(red open circles) of LaNi2P2, Rietfeld refinement fit (solid black
line), difference profile (lower solid blue line), and positions of Bragg
peaks (vertical bars). The two panels show the XRD pattern obtained
(a) before and (b) after annealing the sample.
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FIG. 15. (Color online) Room temperature powder XRD pattern
(red circles) of LaNi2(P0.75Ge0.25)2, Rietfeld refinement fit (solid black
line), difference profile (lower solid blue line), and positions of Bragg
peaks (vertical bars).

constraints in Eqs. (A4) and (A5) for D1, D2, D3, and D8.
The final values of the coefficients in the Padé approximant
(8) are listed in Table I.

2. Debye model

At high temperatures 1/Tn � 1, the integrand in Eq. (12)
can be expanded in a Taylor series about x = 0, yielding

x4ex

(ex − 1)2
= x2 − x4

12
+ O(x6).

FIG. 16. (Color online) Room temperature powder XRD pattern
(red circles) of LaNi2(P0.50Ge0.50)2, multiphase Rietfeld refinement
fit (solid black line), difference profile (lower solid blue line), and
positions of Bragg peaks (vertical bars; upper: LaNi2(P0.50Ge0.50)2,
lower: Ni5Ge3). The refinement reveals that the phase composition is
99.6 mol% LaNi2(P0.50Ge0.50)2 and 0.4 mol% Ni5Ge3.

FIG. 17. (Color online) Room temperature powder XRD pattern
(red circles) of LaNi2(P0.25Ge0.75)2, Rietfeld refinement fit (solid black
line), difference profile (lower solid blue line), and positions of Bragg
peaks (vertical bars).

After evaluating the integral in Eq. (12) using this approxima-
tion, the Cn(Tn) becomes

Cn(Tn) = ET 0 + 0 T −1 + FTn
−2 + O

(
Tn

−4
)

(T � �D),

(A6)

where

E = 3, F = − 3

20
.

FIG. 18. (Color online) Room temperature powder XRD pattern
(red circles) of LaNi2Ge2, multiphase Rietfeld refinement fit (solid
black line), difference profile (lower solid blue line), and positions of
Bragg peaks (vertical bars; upper: LaNi2Ge2, middle: La2O3, lower:
Ni19Ge12). The refinement indicates that the phase composition of
the sample is 93.9 mol% LaNi2Ge2, 5.7 mol% La2O3, and 0.4 mol%
Ni19Ge12.
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In the limit of low temperatures 1/Tn → ∞, the integral in
Eq. (12) can be evaluated with an upper limit of ∞ to obtain

Cn(Tn) = GTn
3 (T � �D), G = 12π4

5
. (A7)

This T 3 dependence of the lattice heat capacity at low
temperatures is universal and is known as the Debye T 3 law.
Similar to the Bloch-Grüneisen function, it is not possible to
obtain additional terms in the Taylor series expansion of Cn(Tn)
in Eq. (12) about Tn = 0.

Since the Padé approximant must follow Eqs. (A6) and (A7)
at high and low temperatures, respectively, the approximant
was set up in the form

Cn(Tn) =
N0 + N1

Tn
+ N2

Tn
2 + · · · + N5

Tn
5

D0 + D1
Tn

+ D2

Tn
2 + · · · + D7

Tn
7 + D8

Tn
8

,

which is Eq. (13) in the text.

FIG. 19. (Color online) Magnetization M versus applied field H

isotherms (symbols) at the listed temperatures for LaNi2P2 (a) before
and (b) after annealing. The solid curves of the corresponding colors
are fits by Eq. (19).

The number of intermediate power terms was increased in
pairs (one in the numerator and one in the denominator) until
the final fitted approximant accurately matched the Debye

FIG. 20. (Color online) Magnetization M versus applied field H

isotherms (symbols) at the listed temperatures for LaNi2(Ge1−xPx)2

samples with (a) x = 0.25, (b) x = 0.50, and (c) x = 0.75. In each
figure, the solid curves of the corresponding colors are fits by Eq. (19).
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FIG. 21. (Color online) Applied field H isotherms (symbols) at
the listed temperatures for LaNi2Ge2 (a) using a SQUID magne-
tometer and (b) using a VSM magnetometer. The solid curves of the
corresponding colors are fits by Eq. (19).

function in the intermediate T range. Using the same procedure
as described in Sec. III A, the high- and low-T limits of the
Debye function in Eqs. (A6) and (A7) and the corresponding
Taylor series expansions of the Padé approximant (13) yield
the constraints

D0 = N0

E
, D1 = N1

E
, D2 = −FN0 + EN2

E2
, D8 = N5

G
.

(A8)

FIG. 22. (Color online) Saturation magnetization of ferromag-
netic impurities M0 in the LaNi2(Ge1−xPx)2 samples versus temper-
ature T . The data at 350 K are extrapolated. The data for x = 0.5
suggest the presence of a ferromagnetic impurity phase with a Curie
temperature of ≈100 K. The solid lines are guides to the eye.

These constraints on D0, D1, D2, and D8 guarantee that
the Tn

0, Tn
−1, and Tn

−2 terms in the high-temperature series
expansion and the Tn

3 term in the low-T expansion of the Padé
approximant (13) exactly match to within numerical accuracy
the corresponding terms in the Taylor series expansion of the
Debye function in Eqs. (A6) and (A7), respectively.

The Debye function data in Fig. 2(a) were least-squares
fitted by the Padé approximant in Eq. (13) using the constraints
in Eqs. (A8). After fitting, the denominator of the approximant
was checked for zeros and all were found to be at nonreal Tn.
This ensures that the approximant does not diverge at any
(real positive) temperature. The final coefficients in the Padé
approximant are listed in Table II.

APPENDIX B: RIETVELD REFINEMENT FIGURES

In this Appendix, the Rietveld refinement Figs. 14–18
referred to in Sec. IV A are shown.

APPENDIX C: MAGNETIZATION VERSUS FIELD
ISOTHERMS

In this Appendix, the M(H ) isotherms in Figs. 19–21
and the dependence of the ferromagnetic impurity saturation
magnetization on temperature in Fig. 22 that are discussed in
Sec. IV C are shown.
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