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Effect of impurities on the superheating field of type-II superconductors
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We consider the effect of nonmagnetic and magnetic impurities on the superheating field Hs in a type-II
superconductor. We solved the Eilenberger equations, which take into account the nonlinear pairbreaking of
Meissner screening currents, and calculated Hs(T ) for arbitrary temperatures and impurity concentrations in a
single-band s-wave superconductor with a large Ginzburg-Landau parameter. At low temperatures, nonmagnetic
impurities suppress a weak maximum in Hs(T ), which has been predicted for the clean limit, resulting, instead,
in a maximum of Hs as a function of impurity concentration in a moderately clean limit. It is shown that
nonmagnetic impurities weakly affect Hs even in the dirty limit, while magnetic impurities suppress both Hs

and the critical temperature Tc. The density of quasiparticles states N (ε) is strongly affected by an interplay of
impurity scattering and current pairbreaking. We show that a clean superconductor at H = Hs is in a gapless state,
but a quasiparticle gap εg in N (ε) at H = Hs appears as the concentration of nonmagnetic impurities increases. As
the nonmagnetic scattering rate α increases above αc = 0.36, the quasiparticle gap εg(α) at H = Hs increases,
approaching εg ≈ 0.32�0 in the dirty limit α � 1, where �0 is the superconducting gap parameter at zero
field. The effects of impurities on Hs can be essential for the nonlinear surface resistance and superconductivity
breakdown by strong RF fields.
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I. INTRODUCTION

Type-II superconductors are in the Meissner state if the
applied magnetic field H is smaller than the lower critical
magnetic field Hc1, above which the Gibbs free energy of
a vortex becomes negative. However, the Meissner state can
remain metastable at higher magnetic fields, H > Hc1, up to
the superheating field Hs at which the Bean-Livingston surface
barrier1 for penetration of vortices disappears and the Meissner
screening currents at the surface become unstable with respect
to small perturbations of the order parameter. The field Hs

is, therefore, the maximum magnetic field at which a type-II
superconductor can remain in a true nondissipative state not
altered by dissipative motion of vortices. In addition to the
fundamental interest in what limits Hs in superconductors,
there is a strong interest in the physics of Hs promoted by
recent advances in superconducting Nb cavities for particle
accelerators in which the quality factors Q ∼ 1010–1011 at 2 K
and 2 GHz were observed up to the surface RF fields close to
the thermodynamic critical field Hc � 200 mT of Nb.2 Here
the RF frequency is well below the gap frequency �0/h �
400 GHz for Nb where �0 is the superconducting gap, so the
current pairbreaking in the cavities at low temperatures may
occur under quasistatic conditions.

Calculations of the superheating field Hs and the depairing
current density Jc have a long history, starting from the
pioneering works by Ginzburg,3 de-Gennes,4 and Matricon
and Saint-James,5 who used the Ginzburg-Landau (GL) theory.
It was shown that as the applied field H reaches Hs , the
Meissner screening current density at the surface becomes of
the order of Jc � cHc/4πλ, which makes the superconducting
state unstable. The value of Hs in the limits of large and small
GL parameter κ is given by6–11

Hs = (
√

5/3)Hc, κ � 1, (1)

Hs = 2−1/4κ−1/2Hc, κ � 1. (2)

Here the factor
√

5/3 in Eq. (1) reflects the suppression of
the order parameter by the Meissner currents in the local
limit κ � 1, while the enhancement of Hs by the factor κ−1/2

for κ � 1 results from the proximity effect reduction of the
Meissner pairbreaking localized in a narrow surface layer of
thickness λ � ξ , where λ is the London penetration depth
and ξ is the coherence length. The extensive calculations of
Hs based on the GL equations6–11 have shown that, for κ � 1,
the Meissner state becomes absolutely unstable with respect to
small 2D perturbations of current and order parameter with the
wavelength ∼(ξ 3λ)1/4 along the surface and decaying over the
length ∼√

λξ perpendicular to the surface. Such perturbations
describe the initial stage of penetration of vortex rows with the
period ∼(φ0/Hs)1/2 corresponding to the equilibrium vortex
lattice at the field H = Hs .

Unlike Hs(T ) in the GL region near Tc, the behavior of
Hs(T ) at low temperatures is not well understood, not least
because the calculation of Hs(T ) requires solving the nonlinear
Gor’kov or Eilenberger equations,12 which take into account
pairbreaking effect of Meissner currents. Manifestations of
pairbreaking effects in a clean superconductor at low tempera-
tures can differ from the GL results, as was shown long ago by
Parmenter13 and Bardeen.14 The first calculation of Hs(T ) for
the entire temperature range 0 < T < Tc in the clean limit and
κ → ∞ was done by Galaiko15 who obtained Hs = 0.84Hc at
T → 0 and Hs = (

√
5/3)Hc = 0.745Hc at T → Tc. Catelani

and Sethna16 solved the Eilenberger equations to calculate
the temperature dependence of Hs(T ) for 0 < T < Tc in the
clean limit for κ → ∞ and found a maximum in Hs(T ) at low
T . Such a nonmonotonic temperature dependence of Hs(T )
shows that the behavior of Hs(T ) at low T can hardly be
extrapolated from the GL results near Tc.

The effect of impurities on Hs(T ) outside the GL region
has not been addressed. This problem is of interest because
the clean limit in s-wave superconductors at T � Tc is a
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rather singular case: for T = 0, the Meissner currents do not
affect the superfluid density ns until the superfluid velocity
vs = J/nse reaches the critical value, vs = vc = �00/pF ,
where pF is the Fermi momentum and �00 = �0(0) is
the modulus of the order parameter 
 = � exp(iϕ) at zero
superfluid velocity and T = 0.13,14 For vs > vc, the gap in the
quasiparticle spectrum disappears and ns(vs) rapidly drops to
zero in a narrow region vc < vs < 1.08vc.

17,18 Thus, unlike
the d-wave superconductors, the s-wave superconductors at
T � Tc do not exhibit the nonlinear Meissner effect caused
by the dependence of ns(J ) on the current density,19–22 and the
superheating field is reached at the superfluid velocity vs > vc,
which corresponds to a gapless state.23 The latter has important
consequences for the low-frequency (ω � �0) impedance
of clean superconductors because at H = Hs = 0.84Hc the
surface resistance Rs becomes of the order of Rs in the normal
state, unlike the exponentially small Rs ∼ ω2 exp(−�0/kBT )
in a fully gapped state at H � Hs .24,25 The effect of the RF
Meissner currents on the quasiparticle spectrum can result in
a strong dependence of the surface resistance on the RF field
amplitude with H > T Hc/�0.26

For κ � 1, the field Hg at which the gap in the quasiparticle
density of states N (ε) closes at T = 0 can be calculated
from the London equation Hg = 4πλJc/c, where Jc = nevc,
λ = (mc2/4πne2)1/2, n is the total electron density, −e is the
electron charge, m is the band effective mass, and c is the speed
of light. Here the linear London screening of H (x) = H0e

−x/λ

remains valid as long as the superfluid density is independent
of J , that is, the Meissner current density J = (c/4π )∂H/∂x

is smaller than Jc. This yields Hg = c�00/eλvF , which can be
expressed in terms of Hc = [4πN (0)]1/2�00, where N (0) =
m2vF /2π2h̄3 is the density of states per one spin orientation for
an isotropic parabolic band, and vF = (3π2n)1/3h̄/m. Hence,

Hg = (2/3)1/2Hc ≈ 0.816Hc. (3)

Since Hs = 0.84Hc,15 the gapless state in the clean, large-κ
limit occurs in a narrow field range, 0.97Hs � H < Hs .

The goal of this work is to address the pairbreaking effect
of impurities on Hs . Indeed, while nonmagnetic impurities
do not affect Tc, �0, and Hc at zero superfluid velocity,27,28

these impurities become pairbreakers in the current-carrying
state,18 which, for example, manifests itself in the nonlinear
Meissner effect.19–22 Thus, the extent to which nonmagnetic
impurities would affect Hs needs to be understood. The effects
of impurities on the quasiparticle density of state N (ε) at
H = Hs and the conditions under which impurities can restore
the gap in N (ε) at H = Hs are important for the understanding
of the nonlinear surface resistance at high fields and the
limits of superconductivity breakdown under low-frequency
RF fields. We will also consider the superheating field in
thin film multilayers consisting of alternating superconducting
and dielectric layers thinner then λ. The parallel Hc1 of such
multilayers is greatly enhanced, which enables probing the
pairbreaking limits in parallel magnetic fields. It was suggested
to use these multilayer coatings to increase the RF breakdown
fields of superconducting cavities in particle accelerators.29

The paper is organized as follows.

In Sec. II we solve the Eilenberger equations for a super-
conductor with uniform current and analyzed the nonlinear
dependencies of � and J on the superfluid velocity in the
presence of impurities. In Sec. III we obtained equations for
Hs(T ) in the entire temperature range 0 < T < Tc for κ � 1
and arbitrary concentrations of nonmagnetic and magnetic
impurities. We solved the equations for Hs numerically and
analyzed the dependencies of Hs on the magnetic and non-
magnetic scattering rates. The range of parameters in which
Hs can be optimized by varying the impurity concentration
was found. In Sec. IV we consider the effect of impurities on
the quasiparticle density of states at 0 < H < Hs , particularly
the emergence of the gap in N (ε) as the concentration of
nonmagnetic impurities increases. Section V is devoted to the
calculation of nonlinear screening of strong DC field and Hs

in multilayers. In Sec. VI we discuss our results and their
implications for a nonlinear surface resistance at high RF fields
and superconductivity breakdown in cavities.

II. THEORY

A. Eilenberger equations

In this work we use the Eilenberger equations for a single-
band s-wave superconductor with magnetic and nonmagnetic
impurities:12

(2ωn + v · D)f = 2
g + 1

τ−
g〈f 〉 − 1

τ+
f 〈g〉, (4)

where 
 is the order parameter, v is the Fermi velocity, ωn =
πT (2n + 1) are Matsubara frequencies, T is the temperature,
D = ∇ + 2πiA/φ0, φ0 is the flux quantum, and A is the vector
potential. We use the units for which h̄ = kB = 1 unless stated
otherwise. The time constants τ+ and τ− are defined by

1

τ±
= 1

τ
± 1

τm

, (5)

where τ is the electron scattering time on nonmagnetic
impurities and τm is the spin-flip scattering time on magnetic
impurities. The angular brackets 〈· · ·〉 = ∫

SF
d2kF mean angu-

lar averaging over the Fermi surface. The quasiclassical Green
functions f (v,r,ωn) and g(v,r,ωn) are normalized by

g2 + ff † = 1, (6)

where f †(v,r,ωn) = f ∗(−v,r,ωn) and the asterisk means
complex conjugation. The self-consistency equation for the su-
perconducting order parameter 
(r) = � exp(iϕ) is given by


 = 2πT N (0)|V |
ωD∑

ωn=0

〈f 〉, (7)

where N (0) is the normal density of states per one spin at
the Fermi surface, V is the BCS coupling constant, and the
cut-off frequency ωD is of the order of Debye frequency. Here
V can be expressed in terms of the critical temperature Tc of
a superconductor without nonmagnetic impurities: |V |−1 =
N (0) ln(2ωDγ/πTc), where γ = 1.78. Equations (4)–(6)
are supplemented by the Maxwell equation for A and the
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supercurrent density J:

∇ × ∇ × A = 4π

c
J, (8)

J = −4πT eN (0) Im
∞∑

ωn=0

〈gv〉. (9)

B. Geometry and assumptions

To study the stability of the Meissner state with respect to
small perturbations, we consider a planar type-II superconduc-
tor occupying the region x > 0 with magnetic field H applied
along the z axis. For a large-κ superconductor, the previous
calculations based on the GL7–9,11 and Eilenberger16 theories
have shown that the instability at H = Hs is driven by coupled
fluctuations of δ
(x,y) and δJ(x,y) that rapidly oscillate on
the scale ∼ξκ1/4 parallel to the surface and decay on a longer
length ∼ξκ1/2 perpendicular to the surface. Taking these
inhomogeneous unstable modes into account is essential for
the calculation of small corrections ∼Hcκ

−1/2 to Hs . However,
the main contribution to Hs ∼ Hc is determined by the
condition that the superfluid velocity v(0) at the surface reaches
the critical pairbreaking value vc for which J (v) is maximum
and the superconducting state becomes unstable. It is the same
condition that defines the uniform depairing current density.30

For uniform current flow, the solution of the Eilenberger
equation can be sought in the form


(r) = �eiqy, (10)

f (r,ωn,θ ) = f (θ,ωn)eiqy, (11)

where q is the wave vector of the condensate, θ is the
angle between the Fermi velocity and the current, and the
amplitudes � and f (θ,ωn) are independent of the coordinates.
Equations (10) and (11) approximate the solution necessary
for the calculation of Hs , taking into account the difference
in characteristic lengthscales in an extreme type-II
superconductor with κ � 1. In this case Hs is reached as
the current density at the surface becomes of the order of the
depairing current density, which corresponds to the wavelength
2π/q � ξ .30 Slow decrease of the Meissner screening currents
over the London penetration depth increases Hs , which is
now limited by perturbations δJ(x,y) and δf (ωn,θ,x,y)
oscillating on the scale 2π/k ∼ (ξ 3λ)1/4 along the x axis
and decaying over ∼(ξλ)1/2 along the y axis.7–9,11 Thus,
Eqs. (10) and (11) give an asymptotically exact solution for
the lower bound of Hs in the limit of κ → ∞ which will
be addressed in this paper. The effect of London screening
resulting in the finite-k instability produces small corrections
in Hs = Hc(

√
5/3)(1 + 1/

√
2κ) in the GL region.7,11

Equations (10) and (11) can also be applicable for a wider
range of κ in a multilayer system in which superconducting
layers are separated by thin dielectric layers as shown in
Fig. 1. For thin superconducting layers of thickness d � λ,
the Meissner current is nearly uniform across the film, while
for d <

√
λξ , the vortex instability is suppressed as the

perpendicular components of J(x,y) cannot cross the dielectric
layers.8 In this case a uniform pairbreaking instability at H =
Hs develops, for which Eqs. (10) and (11) are exact solutions

0 x

y

zH

J

FIG. 1. (Color online) Schematic diagram of a multilayered
superconductor: Superconducting layers (gray) separated by insu-
lating layers (dark lines). Applied magnetic field applied along the
z direction induces currents flowing along y direction.

of the Eilenberger equations. These solutions will be used to
calculate nonlinear screening of magnetic field in multilayers.

C. Solution of the Eilenberger equations

Substituting Eqs. (10) and (11) into Eq. (4) gives the
following algebraic equations for the amplitudes g(θ,ωn) and
f (θ,ωn):

g

f
= 1

2� + 〈f 〉/τ−

(
2ωn + 〈g〉

τ+
+ iuv cos θ

)
, (12)

where we assumed a spherical Fermi surface for which 〈f 〉 =
1
2

∫ π

0 f (θ ) sin θdθ , where θ is the angle between the Fermi
velocity and the direction of current. The gauge-invariant wave
vector u = q + 2πAy/φ0 is proportional to the superfluid
velocity vs = h̄u/2m, where m is the effective electron mass.
Solving Eqs. (6) and (12) yields

f = b√
b2 + (a + i cos θ )2

, (13)

g = a + i cos θ√
b2 + (a + i cos θ )2

, (14)

where a and b depend on 〈g〉 and 〈f 〉,
a = (2ωn + 〈g〉/τ+)/uv, (15)

b = (2� + 〈f 〉/τ−)/uv. (16)

Integrating Eqs. (13) and (14) over θ , we obtain two self-
consistent equations for 〈f 〉 = −bIm sinh−1[(a + i)/b] and
〈g〉 = Im

√
b2 + (a + i)2. The equations for 〈f 〉 and 〈g〉 can

be recasted in the following form:

〈f 〉 = b tan−1 〈g〉
a

, (17)

〈g〉4 + 〈g〉2(a2 + b2 − 1) − a2 = 0. (18)
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It is convenient to introduce a new variable X such that

X = 〈f 〉uvτ−
2�τ− + 〈f 〉 , (19)

〈g〉 = 2ωnτ+
uvτ+ cot X − 1

. (20)

Substituting this into Eqs. (17) and (18) gives the following
equation for X:(

� sin Xτ−
uvτ− − X

)2

+
(

ωnτ+
uvτ+ cot X − 1

)2

= 1

4
. (21)

The gap equation and the current density J = |J| in Eqs. (7)
and (9) can be expressed in terms of X as follows:

ln
T

Tc

+ 2πT

∞∑
n=0

{
1

ωn

− 2Xτ−
uvτ− − X

}
= 0, (22)

J = 4πT evN (0)τ 2
−�2

∞∑
n=0

2X − sin 2X

(uvτ− − X)2 . (23)

Equations (19)–(23) implicitly define 〈f 〉, 〈g〉, and � as
functions of J in a superconductor with arbitrary concentration
of nonmagnetic and magnetic impurities in the entire range
0 < T < Tc. Generally, Eqs. (19)–(23) can be solved only
numerically, but analytical solutions can be obtained in some
limiting cases.

To make the effect of impurities on Hs more clear,
we, first, discuss the instructive case of a clean super-
conductor (τ+,τ−) → ∞.13,14,18 In the absence of current
u → 0, Eqs. (19) and (21) yield the Gor’kov result,
〈f 〉 = �/

√
�2 + ω2

n. Solving Eqs. (19) and (21) for a current-
carrying state, u > 0, gives

〈f 〉 = 2�

uv
tan−1

√
z/2, (24)

z = u2v2

4ω2
n

− �2

ω2
n

− 1 +
[(

u2v2

4ω2
n

− �2

ω2
n

− 1

)2

+ u2v2

ω2
n

]1/2

.

(25)

The dependence of � on u and T is then determined by
Eqs. (7), (24), and (25).

Let us discuss the clean limit at T = 0 in more detail. For
T → 0, the summation in Eqs. (22) and (23) can be replaced by
integration. Substituting Eq. (24) in those equations gives:18,30

ln
�

�00
=

{
0, w � 1
− cosh−1 w +

√
1 − 1/w2, w > 1

, (26)

where w = uv/2�, � is function of u, and �00 is the order
parameter at u = 0 and T = 0. Calculating J (u) in Eq. (23)
yields

J

J0
=

{
1, w � 1
1 − (1 − 1/w2)3/2, w > 1

. (27)

Here the current density

J0 = 1
3eN (0)v2u = envs

corresponds to superconducting flow of all electrons.
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FIG. 2. (a) Current density and (b) gap as functions of u at T → 0
(solid line) and at T = 0.5Tc (dashed line). For T = 0, J (u) increases
linearly with u, reaches Jc at us and decreases to zero. The gap
stays constant for u � 2�00/v and then drops. The arrow shows the
location of the deparing momentum us = 2.059�00/v, where current
reaches the critical current Jc. At T = 0.5Tc, us is shifted to lower u.

The calculated dependencies of J (u) and �(u) on u for
a clean superconductor at T → 0 are shown in Fig. 2. The
current J = envs increases linearly as u = 2mvs/h̄ increases
up to u = 2�00/v, then J (u) becomes nonlinear and reaches
the maximum value Jc at the pair-breaking momentum us =
2.059�00/v, and then drops to zero. At the same time, the gap
�(u) = �00 remains unaffected by current at 0 < u < 2�00/v

but rapidly drops to zero for u > 2�00/v. Here �s at u = us

is slightly smaller then �00.
A clean s-wave superconductor at T = 0 exhibits no current

pairbreaking in the broad range of 0 < u < 2�00/v where the
linear London electrodynamics is applicable. For finite temper-
atures, this anomalous feature no longer holds, as illustrated by
Fig. 2 which shows J (u,T ) and �(u,T ) calculated numerically
from Eqs. (22)–(25) for T = 0.5Tc. Here �(u) decreases as u

increases, and J (u) deviates from linearity for u smaller than
�00/v, similarly to the nonlinearity of J (u) ∝ u(1 − u2ξ 2) due
to current pairbreaking in the GL theory. Such a difference
in the behaviors of �(u) at T = 0 and T ∼ Tc is due to
thermally activated quasiparticles that are negligible at T � Tc

but become essential at higher temperatures. In any case, J (u)
reaches the maximum at the critical superfluid momentum u ∼
v/�00 ∼ 1/ξ0, where ξ0 = h̄v/π�00 is the superconducting
coherence length in the clean limit. The maximum of J (u) at
the critical momentum us defines the superheating field, which
will be calculated in the next section.

Impurities do not change qualitatively the behavior of J (u)
shown in Fig. 3, but they increase the critical momentum us .
We calculated the effect of nonmagnetic impurities on us at
T → 0 by solving the full Eqs. (21)–(23). The results are
shown in Fig. 3 which displays us as a function of the scattering
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FIG. 3. (a) The pairbreaking momentum us(α) as a function of
the nonmagnetic scattering rate α at T = 0. (b) �s at the critical
momentum u = us as a function of α. Here �s approaches 0.79�00

for α � 1.

parameter α ≡ 1/�00τ = πξ0/�, where � = vτ is the mean
free path. The critical momentum us increases as α increases,
approaching the square-root dependence us ∝ √

α for α >

1, consistent with the general result, us ∼ 1/ξ , where ξ �
(ξ0�)1/2 in the dirty limit. The dependence of us(α) can be
described by the interpolation formula

us ≈ [1.053(α + 0.655)1/2 + 1.146]�00/v, (28)

which approximates the calculated us(α) for 0 < α < 20 to an
accuracy better than 1%.

Numerical solutions of the equation for � at T = 0 show
that in the presence of impurities �(u) decreases as u increases
even if uξ � 1. As a result, nonmagnetic impurities become
pairbreakers, reducing the superfluid density as J increases.18

This manifests itself in a nonlinear Meissner effect even
at T = 0.22 Shown in Fig. 3 are the calculations of �s at
the depairing momentum us as a function of the scattering
parameter α at T = 0. Here �s decreases as α increases,
approaching �s(α → ∞) = 0.79�00 in the dirty limit.

III. SUPERHEATING FIELD

We calculate Hs for a superconductor occupying the half-
space x > 0 by solving the Maxwell equation

−∂B

∂x
= 4π

c
J, (29)

where the field is applied along the z axis, so both the
current density J (u) and the vector potential Ay have only
the y components. Here J (u) = −cδF/δAy in Eq. (9) can be

obtained by varying the free energy density12

F = �2N (0) ln
T

Tc

+ 2πN (0)T

×
∞∑

n=0

{
�2

ωn

− 2�〈f 〉 − 2ωn(〈g〉 − 1)

− iuv〈g cos θ〉 − 1

2

( 〈f 〉2

τ−
+ 〈g〉2 − 1

τ+

)}
, (30)

where f and g are the solution of Eqs. (4) and (6).
For κ � 1, the amplitudes � and f vary slowly on
the scale of us ∼ 1/ξ so the gradient terms ∇f in F
are negligible. In this case the variational derivative J =
−cδF/δA becomes the partial derivative, J = −c∂F/∂A.
Moreover, since dF/dA = ∂F/∂A + (∂F/∂�)(∂�/∂A) +
(∂F/∂f )(∂�/∂f ), where ∂F/∂� = ∂F/∂f = 0 in equilib-
rium, we have J = −cdF/dA.

Multiplying both sides of Eq. (29) by B = dA/dx and
integrating from x = 0 to x = ∞, we obtain

−
∫ ∞

0
B

dB

dx
dx = −4π

∫ ∞

0

dF
dA

dA

dx
dx. (31)

Here the boundary conditions are B → 0 and F → −H 2
c /8π

at x → ∞ and B → H at x = 0. Thus, Eq. (31) reduces to

H 2 = H 2
c + 8πF[u(0)], (32)

where Hc is the thermodynamic critical field and F[u(0)]
and u(0) are the free energy density and the momentum of
condensate at the surface, respectively. Equation (32) thus
determines the dependence of u(0) on the applied field.

As the magnetic field H increases, J (0) and u(0) at
the surface increase. However, as u(0) reaches us at which
J (u) is maximum, further increase of H does not cause any
increase of screening current density, making the Meissner
state absolutely unstable with respect to small perturbations of
the order parameter and initiating penetration of vortices. The
condition u(0) = us in Eq. (32) defines the superheating field:

H 2
s (T ) = H 2

c (T ) + 8πF(us,T ). (33)

Substituting the gap equation [Eq. (7)] and
2i〈g cos θ〉 = a(〈g〉 + 1/〈g〉) − b〈f 〉 to Eq. (30) yields
F = 2πN (0)T

∑
ωn>0 ωn(2 − 〈g〉 − 1/〈g〉). Hence, we

obtain the final expression for Hs ,

H 2
s = H 2

c + 16π2N (0)T
∞∑

n=0

ωn

{
2 − 〈gs〉 − 1

〈gs〉
}
. (34)

Here the index s means that the function 〈g〉 is calculated at the
critical momentum u = us . The thermodynamic critical field
Hc is given by

H 2
c = 16π2N (0)T

∞∑
n=0

{
2ω2

n + �2
0√

ω2
n + �2

0

− 2ωn

}
, (35)
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where �0(T ) is the superconducting order parameter at u = 0.
In the clean limit, Eq. (34) reduces to

H 2
s = 16π2T N (0)

∞∑
n=0

{
ω2

n√
ω2

n + �2
0

+
√

ω2
n + �2

0

− usv√
2z(us)

− ω2
n

√
2z(us)

usv

}
, (36)

where z(u) is given by Eq. (24).15

Equations (34) and (35) combined with Eqs. (21)–(23)
define Hs as a function of temperature and concentrations
of nonmagnetic and magnetic impurities. Calculations of Hs

involve solving coupled Eqs. (21)–(23) to obtain � and J as
functions of u and then finding self-consistently the depairing
momentum us from the condition dJ/du = 0. The results
of these calculations of Hs for different concentrations of
impurities and temperatures are presented below.

A. Effect of nonmagnetic impurities

We quantify the effect of nonmagnetic impurities on Hs by
the dimensionless scattering rate

α = h̄/τ�00 = πξ0/�, (37)
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FIG. 4. Temperature dependencies of Hs calculated for α = 0, 1,
and 10. (a) Hs(T ) in the units of Hc(0) and (b) the ratio Hs(T )/Hc(T ),
where Hc(T ) is calculated from Eq. (35). At low T , nonmagnetic
impurities result in nonmonotonic dependence of Hs on α, eliminating
the maximum in Hs(T ) at T = 0.04Tc for the clean limit, as shown
in the inset. The difference between Hs(T ) diminishes at higher T ,
where the Hs(T ) curves approach the GL result given by Eq. (1).

where ξ0 = h̄v/π�00 is the clean limit coherence length and
� = vτ is the mean free path. For u = 0, impurities do not
affect �, Hc, and Tc of s-wave superconductors,27,28 but in a
current state both � and us are affected by impurities,18 as
shown in Fig. 3.

We, first, consider the effect of nonmagnetic impurities on
the temperature dependence of Hs(T ). Shown in Fig. 4 are the
superheating fields calculated for the clean (α = 0), moder-
ately dirty (α = 1), and dirty (α = 10) limit. The first conclu-
sion apparent from Fig. 4 is that nonmagnetic impurities have
a rather weak effect on Hs , despite their pairbreaking nature
in the presence of current. Near Tc the Hs(T ) curves coincide,
approaching Hs(T ) = (

√
5/3)Hc predicted by the GL theory,

where Hc is independent of α according to the Anderson
theorem.27 At lower temperatures impurities result in different
behaviors of Hs(T ) for different α. For instance, one of the
features of the clean limit at low temperatures is a maximum
in Hs(T ) at T = 0.04Tc pointed out by Catelani and Sethna.16

As follows from Fig. 4, this maximum disappears in the
moderately dirty limit (α = 1), as well as the dirty limit (α =
10). As will be shown below, this change in the behaviors of
Hs(T ) at low temperatures results from the impurity-induced
change in the quasiparticle density of states at H = Hs from
the gapless state in the clean limit to a gapped state for α > αc.

We now turn to the dependence of Hs on the nonmagnetic
scattering rate α. Shown in Fig. 5 are Hs(α) calculated for
different temperatures. These Hs(α) curves exhibit surprising
maxima at low temperatures, resulting in a �4.2% enhance-
ment of Hs(α) at T = 0 as compared to the clean limit. Here
the arrows in the figure mark the maxima in Hs , the location of
which depends nonmonotonically on temperature as described
in the caption to Fig. 5. Thus, there is an optimum mean free
path �max = 5.32ξ0 at T = 0 for which the superheating field is
maximum. At higher temperatures, T � 0.3Tc, the maximum
in Hs(α) disappears.
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FIG. 5. Enhancement of Hs by nonmagnetic impurities at low
temperature where Hs(α,T ) is normalized to Hs0(T ) for a clean
superconductor. Here the position of the maximum αmax(T ) in Hs(α)
depends on temperature: αmax = 0.59 for T = 0, αmax = 0.91 for
T = 0.1Tc, and αmax = 0.53 for T = 0.2Tc. At higher temperatures,
the maximum disappears.
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The results of this section show that the effect of
nonmagnetic impurities on Hs is most pronounced at low
temperatures where impurities can eliminate the maximum in
the temperature dependence of Hs characteristic of the clean
limit. At the same time, impurities can cause a new maximum
in Hs as a function of the scattering rate α at low temperatures,
although the overall effect of nonmagnetic scattering on Hs

turns out to be comparatively weak. This results from two
opposite effects that nearly cancel each other: the increase of
Hs due to the increase of the pairbreaking momentum us shown
in Fig. 3 and the decrease of superfluid density as α increases.
Here Hs roughly scales like the thermodynamic critical field
Hc in which these opposite trends cancel out exactly, as
prescribed by the Anderson theorem. Yet our results show that
this cancelation is not exact for Hs , which depends weakly
on the scattering rate α, as illustrated by Fig. 6, which shows
the calculated Hs(0,α) at T = 0. For instance, Hs ≈ 0.82Hc

at α = 10 is rather close to Hs = 0.84Hc in the clean limit.
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FIG. 7. Temperature dependencies of Hs(T ) calculated for α = 0
and different magnetic scattering rates αm. Here Tc(0) is the critical
temperature for clean superconductors.
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and T = 0.5Tc(0). Insert shows the dependence of Tc on αm calculated
from the Abrikosov-Gor’kov theory.28

B. Effect of magnetic impurities

Unlike nonmagnetic impurities, magnetic impurities
strongly suppress Tc,28 resulting in a significant reduction
of Hs as well. We quantify this effect by the dimensionless
magnetic scattering rate αm similar to that was used above for
nonmagnetic impurities,

αm = h̄/τm�00 = πξ0/�m, (38)

where τm and �m = vτm are the spin-flip scattering time and
mean free path, respectively.

Shown in Fig. 7 are the temperature dependencies Hs(T )
calculated for α = 0 and different values of αm. The super-
heating field is significantly reduced by magnetic scattering,
the Hs suppression is stronger at higher temperatures. One can
see that for αm � 0.1, which corresponds to �m ∼ 30ξ0, the
superheating field is roughly reduced by half as compared to
the case of αm = 0.

Figure 8 shows the reduction Hs(αm) by magnetic impuri-
ties at a given temperature. Unlike the effect of nonmagnetic
impurities which is most pronounced at low temperatures, the
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FIG. 9. Hs(αm) calculated for T = 0.2Tc(0) and different non-
magnetic scattering rates α.
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effect of magnetic impurities is stronger at higher temperature.
Here Hs(αm) decreases as αm decreases, vanishing at a critical
scattering rate αmc(T ).

The combined effect of magnetic and nonmagnetic im-
purities on Hs is shown in Fig. 9. From the curves Hs(αm)
calculated for different α at T = 0.2Tc(0), we can see that
there is practically no interplay between the effects of magnetic
and nonmagnetic scattering on Hs . Similar to the case of
αm = 0, the effect of nonmagnetic impurities at αm > 0 is
most noticeable at low temperatures, where it remains rather
weak even for very dirty superconductors with α ∼ 100.

IV. QUASIPARTICLE DENSITY OF STATES
IN THE MEISSNER STATE

As was discussed in the Introduction, the effect of current
on the quasiparticle density of states N (ε) in the Meissner
state is rather nontrivial because a clean superconductor at
H = Hs is in a gapless state. The appearance of quasiparticle
at the Fermi level at Hs can have important consequences for
the breakdown of superconductivity under strong RF fields,
as will be discussed below. This feature of the s-wave clean
limit results from the spectrum of quasiparticles in a uniform
current-carrying state,13,14

εk =
√

�2
0 + v2(p − pF )2 + h̄u · v/2, (39)

where the last term describes the effect of current with
the superfluid velocity vs = h̄u/2m. The quasiparticle gap
εg corresponds to the minimum of εk, giving εg = �0 for
u = 0. However, in the presence of current, �0(T ) is no
longer the gap in the quasiparticle spectrum. For instance,
�00 at T = 0 remains independent of J in the entire interval
0 < u < 2�00/h̄v, as shown in Fig. 2, while the anisotropic
quasiparticle gap εg(u) = |�00| + 1

2h̄uv cos ϕ, obtained by
setting p = pF in Eq. (39), depends on the angle ϕ between
the current and quasiparticle momentum. The minimum gap
εg = |�00| − h̄uv/2 vanishes at the condensate momentum
u > ug = 2�00/h̄v slightly smaller than the pairbreaking
momentum us corresponding to H = Hs . The question is then
how the density of states at H = Hs is altered by impurity
scattering. To address this issue we use the approach developed
by Maki17,18 and Fulde23 to calculate N (ε,u) as functions of
energy ε and the superfluid velocity. For the sake of simplicity,
we only consider here the effect of nonmagnetic impurities on
N (ε,u).

The density of state N (ε) is given by the imaginary part
of the real frequency Eilenberger function g(ε) obtained by
analytic continuation of the thermodynamic function g(ωn)
from the imaginary Matsubara axis onto the the real energy axis
ε. We consider here the limit T = 0 for which this procedure
yields17,23

ν(ε) = Im
2uvτ 2ε

uvτ − tan χ
, (40)

where ν(ε) = N (ε)/N (0) is the normalized density of states
and χ is the solution of the real-frequency version of Eq. (21)
in which the substitution ω → −iε is made,

�2

(
uv

sin χ
− 1

τ

χ

sin χ

)−2

− ε2

(
uv

tan χ
− 1

τ

)−2

= 1

4
. (41)
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FIG. 10. (Color online) Density of state ν(ε) in the current-
carrying states for (a) clean limit, α = 0; (b) moderate dirty limit,
α = 3.6. Here � is understood as �(u) at T = 0 for a given α. The
red lines show ν(ε) at u = us . Solid lines show ν(ε) for u < us , while
dashed lines correspond to u > us . For α = 0, the gap in the spectrum
closed at u > 0.970us . For α = 3.6, we obtained εs = 0.211�.

Equations (40) and (41) allow us to obtain N (ε) using �(u)
and us calculated in the previous sections with the use of the
thermodynamic Eilenberger equations.

Figure 10(a) shows the evolution of ν(ε) calculated for a
clean superconductor (α = 0) as the condensate wave vector
u increases. For u = 0, we recover the BCS density of states
ν(ε) = ε/

√
ε2 − �2

0 for ε > �0 and ν(ε) = 0 for ε < �0. In
the presence of current, the singularity in ν(ε) at ε = �0

disappears, and the energy gap in the spectrum εg(α,u) defined
as the maximum energy at which ν(εg) vanishes, becomes
smaller than �0. Here the quasiparticle gap εg(u) decreases as
u increases. At the critical value u = us corresponding to the
superheating field, the density of state at the Fermi surface in
the gapless state equals ν(0) = 0.243.

The effect of impurities on ν(ε,u) for a moderately dirty
superconductor with α = 3.6 is shown in Fig. 10(b). For u = 0,
nonmagnetic impurities do not change the BCS density of
states, in accordance with the Anderson theorem. However,
ν(ε) in a current-carrying superconductor with impurities
begins to differ markedly from ν(ε) in a clean superconductor.
As it is evident from Figs. 10(a) and 10(b), impurities not only
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FIG. 11. Density of state ν(ε) at u = us for different scattering
rates α. Here � = �(α) at T = 0 and u = us .

smear the cusps in ν(ε) characteristic of the clean limit but also
reduce N (0) at u = us , eventually restoring the gapped state
at H = Hs , where ν(ε) = 0 for ε < εg(α). For the particular
case shown in Fig. 10(b), our calculations give εs(3.6) =
0.211�(us) = 0.169�00. For α � 1, the gap approaches the
limiting value εs = 0.410�(us) = 0.323�00.

23

The different behaviors of ν(ε) in the clean and dirty
limits shown in Fig. 10 suggest that at the superheating field
a quasiparticle gap εs(α) appears as a superconductor gets
dirtier. This is illustrated by Fig. 11, which shows the evolution
of ν(ε,us) at the depairing momentum as α increases. One
can clearly see the transition from a gapless to a gapped
state induced by nonmagnetic impurity scattering, giving,
for example, εs = 0.17�00 at α = 1. Therefore, at u = us ,
a quasiparticle gap εs(α) opens at α > αc, where the critical
scattering rate αc calculated numerically from Eqs. (40) and
(41) is

αc = 0.36. (42)

The calculated quasiparticle gap εs(α) at u = us is shown in
Fig. 12. Here εs(α) monotonically increases as α increases
above α > αc, approaching εs(∞) ≈ 0.323�00 at α → ∞.
The dependence of εs on α can be approximated by the formula

εg = 0.566�00[tan−1(0.626α + 1.345) − 1] (43)

to the accuracy better than 1.2%.

V. NONLINEAR SCREENING AND Hs IN MULTILAYERS

In this section, we use the results obtained above to calculate
screening of a magnetic field parallel to a multilayer consisting
of alternating superconducting (S) and insulating (I) layers, as
shown in Fig. 1. Such multilayers stabilize the Meissner state
against penetration of vortices up to the superheating field
of the material of the thin S layers with d � λ for which the
parallel lower critical magnetic field Hc1 = (2φ0/πd2) ln(d/ξ )
is greatly increased.29 In turn, the suppression of perpendicular
currents in thin S layers by nonconducting I layers also
suppresses the pairbreaking instability at the finite wave
vectors k along the surface,8 which initiates penetration of
vortices. As a result, the superheating field Hs in thin film
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FIG. 12. Gap in the quasiparticle spectrum at the depairing
momemtum u = us as a function of the nonmagnetic scattering rate
α. The gap εs opens at α � 0.36. (Insert) The behavior of εs(α) at
small α.

multilayers is defined by the condition that J (u) in the first
layer reaches the depairing current density.

Penetration of magnetic field is described by the Maxwell
equation ∇ × ∇ × A = 4πJ/c, where the supercurrent J (u)
depends on the gauge-invariant phase gradient u = ∇ϕ +
2πA/φ0, as shown in Fig. 2(a). Here ϕ(r) is the phase of
the order parameter. In the Meissner state B = ∇ × A =
(φ0/2π )∇ × u, the Maxwell equation for the planar multilayer
geometry in which u = [0,u(x),0] can be written in terms of
the y component u(x),

∂2u

∂x2
= 8π2

φ0c
J (u). (44)

We assume specular scattering of quasiparticles at the S-I
interfaces, so there is no suppression of the order parameter
due to surface scattering in the S layers. In this case J (u) is
nearly uniform across each S layer, a slight decreases of u(x)
as x increases resulting from the London screening over the
penetration length λ � d. The solution of Eq. (44) gives the
distribution of magnetic field B(x) = (φ0/2π )∂xu(x) across
the multilayer.

The boundary conditions to Eq. (44) are as follows:
∂xu(0) = 2πH/φ0 at x = 0, u(∞) = 0 at x → ∞, constant
B in the I layers, and the continuity of u(x) at the S-I
interfaces. Shown in Fig. 13 is the distribution of H (x)
calculated from Eq. (44) in which J (u) given by Eq. (23) was
calculated using the solution of the Eilenberger equations for
α = 1 and T = 0.5Tc. As a comparison, we also show H (x)
(dashed line) calculated by solving the linear London equation
λ2∂xxu − u = 0 for the same parameters. One can see that
the Eilenberger theory, which takes current pairbreaking into
account, gives slower penetration of the magnetic field in the
first few layers at the surface as compared to the London model,
which disregards current pairbreaking effects.

A curious manifestation of pairbreaking effects in the
Meissner magnetization of moderately clean superconductors
occurs due to the transition from the gapped to the gapless state
as the field H increases above Hg defined by Eq. (3). Consider,
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FIG. 13. Distribution of the magnetic field H (x) in a multilayer
obtained by numerical solution of Eq. (44) for α = 1 and T = 0.5Tc

(solid line). The result of the London model for the same parameters
is shown by the dashed lines where λ is the penetration depth for the
material of the S layer.

for example, the magnetization m(H ) of a long cylinder of
radius R � λ in a parallel magnetic field,

m = 1

c

∫ R

0
J (vs)dr, (45)

where we use the dependence of J (vs) on the superfluid
velocity vs = vcH (x)/Hg for T = 0 in the clean limit given
by Eq. (27). For H < Hg , the dc magnetization m0(H ) =
−H/4π corresponds to the linear Meissner effect in the
entire field region 0 < H < Hg . However, as H exceeds
Hg the magnetization exhibits singularities in higher-order
derivatives, indicating a phase transition from the gapped
to the gapless state. Indeed, let H be slightly above Hg so
that m(H ) = m0(H ) + ma(H ), where m0(H ) = −H/4π is
the ideal Meissner magnetization and ma(H ) is the nonlinear
contribution due to the second term in Eq. (27),

ma = Jc

c

∫ L

0
(w2 − 1)3/2 dx

w3
, (46)

where w(x) = H (x)/Hg , Hg = 4πJcλ/c, H (x) ≈ H −
Hx/λ is the field profile at the surface x = 0 and L = (H −
Hg)λ/Hg � λ is the depth of the gapless layer. Equation (46)
at ε = (H − Hg)/Hg � 1 then yields ma = (

√
2/5π )Hgε

5/2,
which means a square-root singularity in the third derivative
of ma(H ) at H = Hg + 0,

d3ma

dH 3
= 3

4π
√

2H 2
g

(
H

Hg

− 1

)−1/2

. (47)

The singularity in the thermodynamic quantity d3m/dH 3

implies the singular discontinuity in the fourth derivative
of the thermodynamic potential, indicating a field-induced
fourth-order phase transition. Although Eq. (47) was obtained
for the clean limit α = 0, this singularity remains in the
moderately clean limit as well if the scattering rate α < 0.36
is smaller than the critical value given by Eq. (42) so the
transition from the gapped to the gapless state occurs below the
superheating field H = Hg < Hs . Experimentally, this rather

weak singularity may be smeared out by local inhomogeneities
of impurity concentration that result in a distribution of the
local fields Hg(r).

VI. DISCUSSION

In this paper, we use the Eilenberger equations to calculate
the effect of nonmagnetic and magnetic impurities on the
superheating field of type-II superconductors. Unlike magnetic
impurities that strongly suppress Hs , nonmagnetic impurities
affect Hs weakly, although they can cause a nonmonotonic
dependence of Hs on the scattering rate α at low temperatures.
For instance, at T = 0, nonmagnetic impurities can increase
Hs by �4% at α ≈ 0.6 as compared to the clean limit. As the
scattering rate α further increases, Hs(α) decreases and levels
off at Hs(∞) ≈ Hs(0), as shown in Fig. 6. This decrease of Hs

at α � 1 is consistent with the decrease of the gap parameter
�s at the pairbreaking momentum u = us shown in Fig. 3. Yet,
unlike the decrease of the depairing current density Jc ∝ α−1/2

in the dirty limit,30 our results show that the superheating field
roughly scales like Hc even at low temperatures, so Hs is
weakly affected by nonmagnetic impurity scattering.

Our results obtained in the limit of κ � 1 give the lower
bound of Hs(T ). The effect of finite κ increases Hs(T ) since
the condition vs(0) = vc is no longer sufficient to cause the
instability of the Meissner state in the surface layer of thickness
ξ where the superfluid velocities vs(x) � (1 − x/λ)vs(0)
decreases below vc because of the London screening. The
GL calculations7–9,11 have shown that the finite-κ effects
increase Hs(κ) � (1 + 0.7κ−1/2)Hs(∞), giving a correction
�7–16% as compared to Hs(∞) at κ → ∞ for κ = 20–100.
These effects also make Hs(κ) dependent on α since κ(α)
increases as α increases, approaching κ ∼ ακ0 in the dirty
limit. Thus, Hs(T ) generally decreases as the scattering rate
α increases, although this effect is comparatively weak for
high-κ materials. Addressing the dependence of Hs on α due to
the finite-κ effects at low temperatures requires the instability
analysis of the Meissner state with respect to 2D perturbations
of δf (x,y) and δJ(x,y) described by the linearized Eilenberger
equations.

The nonmonotonic dependence of Hs on α obtained in this
work results from interplay of Meissner currents and impurity
scattering, and their effect on the quasiparticle density of
states N (ε,J ). Our calculations revealed the disorder-induced
transition from the gapless to the gapped state at H = Hg ,
which can have important implications for the low-temperature
surface resistance Rs at high-RF fields, H (t) ∼ Hc. The BCS
surface resistance Rs at small RF fields, H � HcT/�0, low
frequencies (ω � �0), and T � Tc is given by24,25

Rs = ω2 A(�,ω)

T
exp

(
−�0

T

)
, (48)

where the factor A depends on the mean free path � and
(weakly) on the RF frequency ω. The main Boltzmann factor
exp(−�0/T ) accounts for the exponentially small density
of thermally activated quasiparticles due to the zero density
of states N (ε) for the energies ε < �0. In the presence of
Meissner current, the quasiparticle gap εg(J ) shifts to smaller
energies, giving rise to a highly nonlinear dependence of
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the surface resistance on the RF field amplitude at low
temperatures,

Rs ∝ exp

[
− εg(H )

T

]
. (49)

As the field increases, Rs(T ,H ) becomes essentially dependent
on H if the field-induced change of εg(H ) is of the order of
T .26 In the clean limit for which εg(H ) = (1 − H/Hg)�0, this
condition takes the form

H � T Hc/�0. (50)

Therefore, the dc superheating field Hs in the clean limit
has no direct relevance to the maximum RF magnetic field
at which the Meissner state can exist. Moreover, even at
fields Hω smaller than Hg < Hc, the RF field starts generating
quasiparticles as the gap εg(H ) becomes smaller than the RF
frequency: εg(Hω) = h̄ω. Hence,

Hg − Hω � h̄ωHg/�0. (51)

As the magnitude of H (t) approaches Hω, the surface resis-
tance increases strongly, becoming of the order of Rs(T ) in the
normal state. Calculation of the nonlinear surface impedance
requires solving equations for the nonequilibrium Keldysh
functions that take into account not only current pairbreaking
but also the effect of RF field on the quasiparticle distribution
function determined by collisions of electrons with impurities
and phonons.31 We will not discuss here this complex problem

in detail but only make a few qualitative remarks based on
our solutions of the dc Eilenberger equations that capture the
essential effect of impurities on the quasiparticle density of
states at high-RF fields.

Nonmagnetic impurities can strongly affect the field depen-
dence of Rs because they reduce Hs by only a few percentages
but restore the gap εg in the quasiparticle spectrum at H = Hs ,
as shown in Figs. 11 and 12. In the dirty limit, α > 1, the gap
εg � 0.3�00 may, therefore, be big enough to ensure both
the exponentially small surface resistance in Eq. (49) at low
temperatures and the lack of quasiparticles generated by the
RF field with ω < εg . As a result, nonmagnetic impurities
can drastically reduce the field-induced increase of Rs as
compared to the clean limit. Moreover, the dc superheating
field Hs ≈ 0.83Hc at α > 1 can now be regarded as a true
maximum field amplitude at which the Meissner state can
survive under low-frequency RF fields. This conclusion may
be essential for the materials optimization for superconducting
cavities used in particle accelerators.

ACKNOWLEDGMENTS

Funding for this work was provided by American Recovery
and Reinvestment Act through the US Department of Energy,
Office of High Energy Physics Department of Science to
Argonne National Laboratory, NSC99-2911-I-216-001.

*fareh.lin@gmail.com; flin@odu.edu
†gurevich@odu.edu
1C. P. Bean and J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964).
2H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for
Accelerators, 2nd ed. (Wiley, New York, 2007).

3V. L. Ginzburg, Zh. Exp. Teor. Fiz. 34, 113 (1958) [Engl. Transl.
Sov. Phys. JETP 7, 78 (1958)].

4P. G. de Gennes, Solid State Commun. 3, 127 (1965).
5J. Matricon and D. Saint-James, Phys. Lett. A 24, 241 (1967).
6L. Kramer, Phys. Rev. 170, 475 (1968).
7H. J. Fink and A. G. Presson, Phys. Rev. 182, 498 (1969).
8J. Chapman, SIAM J. Appl. Math. 55, 1233 (1995).
9A. J. Dolgert, S. J. Di Bartolo, and A. T. Dorsey, Phys. Rev. B 53,
5650 (1996); 56, 2883 (1997).

10H. Parr, Phys. Rev. B 14, 2849 (1976); Z. Phys. B 25, 359 (1976);
G. Pettersen and H. Parr, Phys. Rev. B 19, 3482 (1979).

11M. K. Transtrum, G. Catelani, and J. P. Sethna, Phys. Rev. B 83,
094505 (2011).

12G. Eilenberger, Z. Phys. 214, 195 (1968).
13R. H. Parmenter, RCA Reviews 26, 323 (1962).
14J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
15V. P. Galaiko, Zh. Eksp. Teor. Fiz. 50, 717 (1966) [Engl. Transl.

Sov. Phys. JETP 23, 475 (1966)].
16G. Catelani and J. P. Sethna, Phys. Rev. B 78, 224509 (2008).

17K. Maki, Prog. Theor. Phys. 29, 10 (1963); 10, 333 (1963).
18K. Maki, in Superconductivity: Part 2, edited by R. D. Parks,

(Marcel Dekker, New York, 1967).
19S. K. Yip and J. A. Sauls, Phys. Rev. Lett. 69, 2264 (1992); D. Xu,

S. K. Yip, and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).
20T. Dahm and D. J. Scalapino, J. Appl. Phys. 81, 2002 (1997); Phys.

Rev. B 60, 13125 (1999).
21M.-R. Li, P. J. Hirschfeld, and P. Wölfle, Phys. Rev. Lett. 81, 5640
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