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Zero-temperature transition and correlation-length exponent of the frustrated XY
model on a honeycomb lattice
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Phase coherence and vortex order in the fully frustrated XY model on a two-dimensional honeycomb lattice
are studied by extensive Monte Carlo simulations using the parallel tempering method and finite-size scaling.
No evidence is found for an equilibrium order-disorder or a spin/vortex-glass transition, suggested in previous
simulation works. Instead, the scaling analysis of correlations of phase and vortex variables in the full equilibrated
system is consistent with a phase transition where the critical temperature vanishes and the correlation lengths
diverge as a power law with decreasing temperatures and corresponding critical exponents νph and νv . This
behavior and the near agreement of the critical exponents suggest a zero-temperature transition scenario where
phase and vortex variables remain coupled on large length scales.
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I. INTRODUCTION

Two-dimensional frustrated XY models,1,2 in which vor-
tices form a dense incommensurate lattice, have attracted
considerable interest as a possible two-dimensional vortex
glass without quenched disorder3–7 or a structural glass
of supercooled liquids.8,9 In superconducting systems with
pinning described by XY models, frustration can be introduced
by applying an external magnetic field as in periodic arrays of
Josephson junctions,10–12 superconducting wire networks,13–15

and superconducting thin films with a periodic pattern of
nanoholes.16 The frustration parameter f sets the average
density of vortices in the lattice of pinning centers and can be
tuned by varying the strength of the external field.2 Depending
on the structure of the lattice of pinning centers and the value
of f , a commensurate vortex lattice is favored in the ground
state, which leads to discrete symmetries in addition to the
continuous symmetry of the phase variables characterizing the
superconducting order parameter. In this case, the phase tran-
sitions and resistive behavior of the system are reasonably well
understood for simple low-order commensurate phases such
as f = 1/2 on a square lattice2 and f = 1/3 on a triangular
lattice17 of pinning centers. However, when the vortex lattice
is incommensurate with the pinning centers, both the nature
of the equilibrium phase transition and of the low-temperature
state in the thermodynamic limit is less clear. This is the case
of Josephson-junction arrays10,12 and superconducting wire
networks13,14 on a square lattice, described by the frustrated
XY model with irrational f , which has been extensively
studied by various methods.3,4,6–8,18,19 Another interesting
physical realization but much less investigated so far should
occur in Josephson-junction arrays and superconducting wire
networks15 on a honeycomb lattice, and superconducting
films with a triangular pattern of nanoholes,16 which can be
described by the fully frustrated XY model (f = 1/2) on a
honeycomb lattice.

In early Monte Carlo (MC) simulations of the fully
frustrated XY model on a honeycomb lattice,17 a phase
transition at a nonzero temperature in the Koterlitz-Thouless
(KT) universality class was suggested, based on the saturation
of the specific-heat peak with increasing system sizes and the

apparent jump in the helicity modulus. On the other hand,
calculations of the the spin-glass order parameter by MC
simulations5 suggested that instead of an order-disorder tran-
sition, a spin-glass transition should take place approximately
at the same temperature. In contrast, from MC simulations of
a similar model in the vortex representation,20 it was argued
that only a crossover region rather than an equilibrium phase
transition should occur at any nonzero temperature, since the
energy of domain-wall excitations which disorder the ground
state was found to approach a finite constant for increasing sys-
tem sizes. However, the free energy of domain-wall excitations
in the frustrated XY model obtained analytically in the phase
representation21 was found to increase linearly with the system
length, but with an extremely small numerical coefficient. As
a consequence, although vortex ordering could be possible
in the thermodynamic limit, domain-wall excitations would
only be negligible for system sizes which are much beyond
the ones studied numerically or even experimentally. It is
unclear whether the behavior observed in the earlier numerical
works5,17 could be a signature of such vortex ordering or the
effect of slow dynamics which prevents observing the true
equilibrium behavior. Given these conflicting results, it should
be of interest to further investigate the fully frustrated XY
model using a MC method which can ensure full equilibration
and a scaling analysis of both phase and vortex correlations.

In this work we study phase coherence and vortex order in
the fully frustrated XY model on a honeycomb lattice, using
the parallel-tempering method (exchange MC method)22,23 to
obtain equilibrium configurations of the system. This method
has been shown to reduce significantly the long equilibration
times in glassy systems.22,24 To study the equilibrium phase
transitions we use numerical data in the temperature regime
in which full equilibration can be insured and employ a
scaling analysis of the correlation lengths of the phase and
vortex variables to extrapolate to the low-temperature and
large-system limits. No evidence of an equilibrium order-
disorder phase transition or even a spin/vortex-glass transition
is found at nonzero temperatures. Our results, however, are
consistent with an equilibrium zero-temperature transition,
where the critical temperature vanishes (Tc = 0) and the
correlation lengths diverge as a power law with decreasing
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temperatures and corresponding critical exponents νph and νv .
This transition has important consequences for the resistivity
behavior and current-voltage scaling6,31,32 at low temperatures
in the superconducting systems described by the frustrated XY
model. Moreover, the near agreement of the critical exponents
estimated numerically suggests a Tc = 0 transition scenario,
where phase and vortex variables remain coupled on large
length scales. This is in contrast with the Tc = 0 transition
in the frustrated XY model on a square lattice at irrational
frustration, where a decoupled scenario was found recently.7

II. MODEL AND MONTE CARLO SIMULATION

We consider a uniformly frustrated XY model described by
the Hamiltonian2

H = −J
∑
〈ij〉

cos(θi − θj − Aij ), (1)

where θi is a phase variable defined at the sites i of a
two-dimensional honeycomb lattice (Fig. 1), representing the
local angle of the XY spin with an arbitrary fixed direction.
J > 0 is a uniform ferromagnetic coupling and Aij is a
gauge-invariant quantity constrained to be

∑
ij Aij = 2πf

around each plaquette of the lattice. The parameter f controls
the frustration of the system. For the fully frustrated case
considered here, f = 1/2. In the calculations we choose a
gauge where Aij = 2πf ni/2 on the bonds along the horizontal
rows numbered by the integer ni and Aij = 0 on the vertical
bonds of the lattice.

As a model of an array of superconducting grains coupled
by Josephson junctions, the phase θi in Eq. (1) corresponds
to the phase of the superconducting order parameter of the
grains, J is the Josephson coupling between grains, and
Aij is the line integral of the vector potential �A due to an
external magnetic field �B = ∇ × �A applied perpendicular to
the array. The magnetic flux in each plaquette in units of the
flux quantum �o = hc/2e can be written as 2πf with the
frustration parameter f corresponding to the number of flux
quantum per plaquette.

In the Monte Carlo simulations we use the parallel
tempering method22 to obtain equilibrium configurations. In
this method, many replicas of the system with different tem-
peratures are simulated simultaneously and the corresponding
configurations are allowed to be exchanged with a probability
satisfying detailed balance. The exchange process allows the
configurations of the system to explore the temperature space,
being cooled down and warmed up, and the system can escape

x

y

FIG. 1. Honeycomb lattice and the coordinate axes.

more easily from metastable minima at low temperatures. Full
equilibration can be insured within reasonable computer time
in systems of sufficiently small sizes.22 Without the replica
exchange step, the method reduces to conventional MC simula-
tions at different temperatures. We performed MC simulations
using the heat-bath algorithm for each replica, simultaneously
and independently, for a few MC passes. Periodic boundary
conditions were used on lattices with rhombic geometry
(Fig. 1) of side L, containing N = 2L2 sites. Exchange of pairs
of replica configurations at temperatures Ti and Tj and energies
Ei and Ej is attempted with probability min (1, exp(−�)),
where � = (1/Ti − 1/Tj )(Ej − Ei), using the Metropolis
scheme. The equilibration time to reach thermal equilibrium
can be measured as the average number of MC passes required
for each replica to travel over the whole temperature range.
We used typically 4 × 106 MC passes for equilibration with
up to 120 replicas and 1.6 × 107 MC passes for calculations
of average quantities.

III. CORRELATION LENGTH AND SCALING ANALYSIS

For the study of phase coherence, we consider the overlap
order parameter33 of the phase variables defined as qph(j ) =
exp(iθ1

j − iθ2
j ), where 1 and 2 denote two thermally indepen-

dent copies of the system, with the same parameters J and
f in the model of Eq. (1). At high temperatures, where each
copy is thermally disordered, the correlation function

Cph(r) = 1

N

∑
j

〈qph(j )qph(j + r)〉 (2)

is short ranged, decaying exponentially with r , while at low
temperatures it is long ranged if an ordered phase or a glassy
phase exits. The latter possibility was suggested in Ref. 5 based
on MC simulations and the glass phase was characterized by
the behavior of the Edwards-Anderson order parameter qEA,
which corresponds here to 〈∑j qph(j )/N〉.

The correlation length in the finite system ξph(L,T ) can be
obtained as24,25

ξph(L,T ) = 1

2 sin(ko/2)

(
Sph(0)

Sph(ko)
− 1

)1/2

, (3)

where Sph(k) is the Fourier transform of Cph(r) and ko is
the smallest nonzero wave vector in the finite system. This
expression for the correlation length ξ (L,T ), which is both
temperature and size dependent, can be obtained from the
correlation length ξ (T ) in the large system limit, ξ (T )2 =
− 1

S(k)
∂S(k)
∂k2 |k=0, as a finite-difference approximation taking also

into account the lattice periodicity.24 Thus, ξ (L,T ) tends to
ξ (T ) for large L, when correlations are short ranged. If there
is long-range order, ξ (L,T ) ∼ L1+d/2, while if there is only
algebraic order ξ (L,T ) ∼ L. Note that the correlation length
defined in Eq. (3), in terms of the overlap order parameter
qph(j ), may have a different magnitude from the correlation
length defined in terms of a single copy of the system exp(iθ1

J ).
However, they should have the same leading scaling behavior
near the transition.
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Analogous expressions are used to determine the correla-
tion length for vortex variables ξv(L,T ),

ξv(L,T ) = 1

2 sin(ko/2)

(
Sv(0)

Sv(ko)
− 1

)1/2

, (4)

in terms of the overlap order parameter qv(p) = v1
pv2

p of the
net vorticity vp = np − f . The vorticity np is defined as np =∑

ij (θi − θj − Aij )/2π , where the summation is taken around
the elementary plaquette located at sites p of the dual lattice,
formed by plaquette centers, and the gauge-invariant phase
difference is restricted to the interval [−π,π ]. For the fully
frustrated case, f = 1/2, the vortex variables vp = ±1/2 are
Ising-like variables and equivalent to the chirality variables
originally introduced by Villain.1

Finite-size scaling can be used to extrapolate the behavior of
the system to the large-system limit and temperatures near the
transition. In the scaling analysis of the correlation length,24

we consider the dimensionless ratio ξ (L,T )/L which, for a
continuous transition, should satisfy the scaling form

ξ (L,T )/L = G((T − Tc)L1/ν), (5)

where Tc is the critical temperature and ν is the critical
exponent of the power-law divergent correlation length ξ (T ) ∝
|T − Tc|−ν . The scaling function G(x) has the properties
G(0) = C, a constant, and G(x) → x−ν as x → ∞. This
scaling form implies that data for the scaled correlation length
ξ (L,T )/L as a function of temperature, for different system
sizes L, should come together for decreasing temperatures
and cross at the same temperature T = Tc. In addition, the
data should splay out for different system sizes with slopes
determined by the critical exponent ν. If the data satisfy
the scaling form of Eq. (5) then we can infer that the
correlation length diverges as a power law ξ (T ) ∝ |T − Tc|−ν

and estimate the critical exponent ν. A very large value of ν

would be an indication that the correlation length may diverge
exponentially, ξ (T ) ∝ ec/|T −Tc |−ν′

, rather than as a power law.
In particular, for the standard (unfrustrated) XY model, which
is critical at temperatures equal and below Tc, curves of
ξ (L,T )/L as function of decreasing temperatures for different
system sizes merge24 near Tc and remain L-independent for
T < Tc.

IV. RESULTS AND DISCUSSION

We study the behavior of the correlations of phase and
vortex variables in thermal equilibrium, which implies that
we should only use the numerical data obtained from the MC
simulations in the temperature range where full equilibration
is achieved. To check equilibration, we follow the trajectory
in the temperature space of a replica starting at the highest
temperature, where the system equilibrates fast even without
the replica exchange process.7 In equilibrium, this replica
should be able to explore the whole temperature range. For the
system sizes studied, L � 24, equilibration was only possible
for temperatures above Tf ≈ 0.11, despite the improvement of
the parallel tempering method. Below Tf , the configurations
of the replicas at different temperatures cannot be warmed
up and cooled down. Thus Tf can be regarded as a freezing
temperature, below which the system remains trapped in
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FIG. 2. (Color online) Scaled correlation length of phase vari-
ables ξph/L for different system sizes L. Inset: Log-log plot of L/ξph

versus T for the corresponding system sizes L.

metastable configurations within the available time scale of the
present simulation. It is interesting to note that Tf agrees with
the apparent glass transition temperature Tg = 0.11 observed
in earlier MC simulations.5 However, as will be shown in the
following, Tf does not correspond to the critical temperature of
an equilibrium glass transition. Instead, it should be regarded
as the characteristic temperature of a dynamical freezing
transition.

Figures 2 and 3 show the temperature dependence of the
scaled correlation length in the x̂ direction for phase variables,
ξph/L, and for vortex variables, ξv/L, in the temperature
range (T � Tf ) where full equilibration was possible and
for different system sizes. Both quantities increase faster
on lowering the temperature as the system size L increases
indicating a divergent length scale for decreasing temperatures.
However, for fixed temperature they decrease with L even at
the lowest available temperature. Therefore, the curves for the
different system sizes do not cross or merge at a common
temperature, as would be expected from the scaling form of
Eq. (5), if a transition occurs in this temperature range. This is
more evident in the insets of Figs. 2 and 3, where lines joining
the data for different system sizes are presented as a log-log
plot of L/ξ (L,T ) versus T .
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FIG. 3. (Color online) Scaled correlation length of vortex vari-
ables ξv/L for different system sizes L. Inset: Log-log plot of L/ξv

versus T for the corresponding system sizes L.
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FIG. 4. Scaled correlation length of vortex variables ξv/L for
different system sizes L, when the frustration parameter is f = 1/3.

For the sake of comparison to the behavior of the vortex
correlation for the fully frustrated case (f = 1/2) in Fig. 3, we
show the results of additional calculations when the frustration
parameter is f = 1/3, in Fig. 4. In this case, a hexagonal
vortex pattern commensurate with the honeycomb dual lattice
is possible in the ground state and an order-disorder phase
transition is expected at finite temperature from symmetry
arguments. From the earlier work,17 this transition takes place
at a critical temperature Tc ∼ 0.23. Indeed, the curves in Fig. 4
cross for different system sizes at a common temperature Tc =
0.226(1), which is compatible with this estimate.

For the fully frustrated case, f = 1/2, the lack of intersec-
tion of the curves of ξph/L and ξv/L for different system sizes
at a common temperature in Figs. 2 and 3 suggests that phase
coherence and vortex order, or even glasslike order, can only
occur at T � Tf , which is not accessible in our calculations, or
else only at T = 0. The latter scenario corresponds to a phase
transition where Tc = 0 and the correlation length ξ (T ) is
finite at any nonzero T but diverges when approaching T = 0.
To verify the possibility of such zero-temperature transition,
we first consider the scaling of the total correlation function
χ defined as χph = ∑

r Cph(r) and χv = ∑
r Cv(r) for phase

and vortex variables, respectively. In the absence of finite-size
effects, χ should diverge as26,27

χ = A

(T − Tc)γ
+ B, (6)

where A and B are constants and γ is a critical exponent. B

represents possible background corrections to scaling. Using
data for a large system size, where finite-size effects are
negligible, we can then determine Tc from the best numerical
fit according to this scaling form. Using a least-squares fit28 we
have obtained the error estimate σ (Tc) when fitting ln(χ − B)
against ln(T − Tc) to a straight line, assuming different values
of Tc. The error estimate is defined as

σ 2 = 1

Np

Np∑
i=1

[yi − f (xi)]
2, (7)
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FIG. 5. Variation of the fitting error σ against Tc, for the total
phase correlation χph according to Eq. (6), with B = 2.6. Inset: log-
log fit assuming Tc = 0.

where Np is the number of data points {xi,yi} and f (xi) are
the values of the fitting function at the corresponding data
points. Figures 5 and 6 show the dependence of the error σ on
Tc, for phase and vortex variables, respectively, for L = 40. In
both cases, Tc = 0 gives the lowest error, which suggests that a
zero-temperature transition is possible. The insets in the figures
show the corresponding best fits, which provide estimates of
the critical exponents γph = 1.57(1) and γv = 1.14(1).

The Tc = 0 scenario can be further verified from the finite-
size scaling analysis of the correlation length ξ (L,T ). In this
case, the data for ξ (L,T ) should satisfy the finite-size scaling
form of Eq. (5) with Tc = 0. The best data collapse is obtained
by adjusting a single parameter, ν, providing an estimate of
this critical exponent. We use the following procedure, which
is a simplified version of more general methods of measuring
data collapse.29,30 The standard finite-size scaling expansion
near Tc,

G(x) = ao + a1x + a2x
2 + · · · , (8)
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FIG. 6. Variation of the fitting error σ against Tc, for the total
vortex correlation χv according to Eq. (6), with B = 0.04. Inset:
log-log fit assuming Tc = 0.
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FIG. 7. (Color online) Scaling plot according to Eq. (5), assuming
Tc = 0, for the phase correlation length ξph, giving the estimate νph =
1.29(15). Dashed line is a fit to the data with Eq. (8). Inset: Replot of
data collapse in terms of the variable LT νph .

truncated to low order [O(x5)], is used as a smooth interpo-
lation function, which is convenient both for numerical data
fitting and for providing a measure of the data collapse as the
error defined by Eq. (7). Then we determine ν from the best
least-squares fit of ξ (L,T )/L to this function with x = T L1/ν .
Data for the largest temperatures are successively removed
from the data collapse if this leads to a decrease of the fitting
error, since in this case such data are presumably outside the
asymptotic scaling regime where Eq. (5) applies. The best
data collapse is obtained for temperatures T < 0.16. Figure 7
shows that indeed the data for the phase variables ξph satisfy
the scaling form with an exponent νph = 1.29(15). Similarly,
for the vortex variables, we obtain from the data collapse in
Fig. 8 the critical exponent νv = 1.03(25), although the data
collapse is not as good. These exponents agree with each other
within the estimated errors. It should be noted, however, that
the scaling behavior in Eq. (5) has only been verified here
in a limited range of temperatures since there is no available
data below Tf , due to the lack of equilibration. This can be
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FIG. 8. (Color online) Scaling plot according to Eq. (5), assuming
Tc = 0, for the vortex correlation length ξv , giving the estimate νv =
1.03(25). Dashed line is a fit to the data with Eq. (8). Inset: Replot of
the data collapse in terms of the variable LT νv .

seen more clearly by replotting the data collapse as L/ξ (L,T )
versus y ≡ LT ν , as presented in the insets of Figs. 7 and 8.
Indeed, L/ξ (L,T ) tends to a linear behavior for large y as
expected but the finite limit for y → 0 cannot be explicitly
verified.

The zero-temperature transition, which was inferred here
from the behavior of correlations at finite temperatures as
discussed above, is also consistent with the ground-state
properties of the model. As first pointed out by Shih and
Stroud,17 the ground state is highly degenerate with an
infinite number of different vortex configurations. Therefore,
correlations at zero temperature, obtained by averaging over
the different configurations, can decay to zero for large
distances. One possibility is that such decay obeys a power law.
The triangular antiferromagnetic Ising model,34 for example,
displays such behavior. Another possibility is that correlations
decay exponentially as in the antiferromagnetic Ising model
on a kagome lattice.35 The Tc = 0 scenario for the present
model favors a power-law decay of vortex correlations. In
fact, the correlation function exponent ηv associated with
the transition can be obtained from the scaling law γ =
ν(2 − η) and the above estimates of γv and νv , giving ηv =
0.90, which is greater than zero implying a decay of the
correlation as Cv(r) ∝ r−ηv , at zero temperature. To verify
this behavior more quantitatively, we have also performed
additional calculations of the finite-size dependence of the
total correlation functions χph and χv near T = 0. However,
because full equilibration was only possible for temperatures
above the dynamical freezing transition Tf with the present
Monte Carlo method, we have to rely on the approximation of
using low-energy states close to the ground state to perform the
configuration averages. The low-energy states were obtained
using the simulated-annealing method28 by gradual annealing
from initial temperatures T � Tf . Figure 9 shows a log-log
plot of the finite-size behavior of χph and χv obtained by
averaging over 800 low-energy states within a range of 0.16%
above the known ground-state energy17 Eg = −1.2071. If
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FIG. 9. Finite-size behavior of the total correlation function of
phase χph and vortex χv variables obtained from low-energy states,
using simulated annealing. Lines correspond to log-log fits, which
give the estimates ηph = 0.4(2) and ηv = 0.4(3).
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correlations decay as a power law in the ground state, then
the finite-size behavior χ ∝ L2−η is expected near T = 0, for
sufficiently large systems. This behavior is consistent with the
data in Fig. 9 and from a log-log fit we estimate ηph = 0.4(2)
and ηv = 0.4(3), which are compatible within the estimated
errors with the corresponding values obtained from γ and ν,
using the finite-temperature scaling analysis.

A particular feature of the frustrated XY model on the
honeycomb lattice is the structure of the dual lattice, where
the chiralities are defined, which has the form of a triangular
lattice. Since the chiralities are Ising-like variables with
antiferromagnetic interactions, if interactions further than
nearest neighbors are neglected, there is a geometric frustration
effect which may appear similar to the case of the triangular
antiferromagnetic Ising model. The exact solution of this
model34 shows that there is no phase transition at nonzero
temperatures (Tc = 0), which is the same scenario we find in
the present case. However, while the correlation length for this
Ising model diverges exponentially,36 ξ ∝ e2/T , corresponding
to ν → ∞ in Eq. (5), in the present case we find νv ∼
1, suggesting a power-law correlation and correspondingly
different ground-state properties.

The near agreement of our estimates of the critical expo-
nents for vortex variables νv and phase variables νph, assuming
power-law divergent correlations, suggests that the Tc = 0
critical behavior may be described by a single divergent length
scale. In a zero-temperature transition scenario where there is
no decoupling, phase and vortex variables remain coupled on
large length scales and one expects that the corresponding
correlation lengths should diverge with a common critical
exponent νph = νv = ν. It is interesting to note that this
behavior is in contrast with that found for the two-dimensional
XY model at irrational frustration on a square lattice,7 where
a decoupled zero-temperature transition37 was found with
significant different exponents νv � νph.

An additional important feature of the zero-temperature
transition found from the above analysis is the temperature
dependence of the relaxation time for phase and vortex
equilibrium fluctuations. If Tc = 0 then the divergence of
the relaxation time τ as T → Tc is determined by thermal
activation.31 Thus, we expect that τ should increase ex-
ponentially with the inverse of temperature, corresponding
to a dynamical exponent z → ∞ in the usual power-law
assumption τ ∝ |T − Tc|−zν . To verify this behavior, we have
in addition calculated the relaxation time τ for different
temperatures from the autocorrelation function of phase and
vortex fluctuations, Cph(t) and Cv(t), as

τph,v = 1

Cph,v(0)

∫ ∞

0
dt Cph,v(t). (9)

In these calculations, the starting configurations were taken
from the equilibrium configurations obtained with the paral-
lel tempering method and the subsequent time dependence
was obtained from standard MC simulations at each fixed
temperature. The results shown on the log-linear plot in
Fig. 10 are indeed consistent with an activated behavior of
τph and τv . The straight lines in the plot indicate that the
data can be fitted to an Arrhenius behavior, with temperature-
independent energy barriers Eph = 1.00 and Ev = 1.02. In
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FIG. 10. (Color online) Temperature dependence of the relax-
ation times of phase fluctuations τph and vortex fluctuations τv for
system size L = 32.

general, the energy barrier can be temperature dependent,
scaling with the correlation length31 as E ∝ ξ� . The observed
Arrhenius behavior indicates that these additional exponents
are ψph ≈ 0, ψv ≈ 0. The behavior for the relaxation time
τph is particularly important when the frustrated XY model
is applied to superconductors since it determines the temper-
ature dependence of the linear resistivity,6,31,32 ρL ∝ 1/τph.
As a consequence, ρL should be finite at any nonzero
temperature but decrease exponentially as temperature
vanishes.

V. CONCLUSIONS

We have investigated the critical behavior of the fully
frustrated XY model on a two-dimensional honeycomb lattice
by Monte Carlo methods and a scaling analysis of the phase
and vortex correlations. No evidence of an equilibrium phase
transition is found at nonzero temperatures, in agreement with
the conclusion of Ref. 20 for a similar model. The absence of
vortex ordering at finite temperatures is also in agreement
with the estimates of Ref. 21, which finds that this can
only be observed for very large system systems (L > 105).
However, our finite-size scaling analysis is consistent with
a zero-temperature transition, where the critical temperature
vanishes and phase and vortex correlation lengths, ξph and
ξv , diverge for decreasing temperatures as a power law with
a common critical exponent, suggesting a coupled Tc = 0
transition scenario. Since both correlation lengths remain finite
in the temperature range T � 0.11, where a KT transition17

or a spin-glass transition5 was proposed to take place in
earlier MC simulations, our results also indicate that these
apparent transitions should be attributed to slow dynamics
effects and not to an equilibrium phase transition. Whether
a vortex ordering transition can, nevertheless, occur for very
large system sizes (L > 105), as predicted in Ref. 21, cannot
be tested by our numerical simulation, which needs small
system sizes in order to ensure full equilibration. The main
features of the correlation-length behavior obtained for the
present model are the same as those found in other frustrated
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XY models where the phase-coherence temperature vanishes,
such as the two-dimensional gauge glass model38 and the XY
model with irrational frustration,7 but with different critical
exponents. When applied to superconductors, the divergent
correlation length ξph in these models determine both the
linear an nonlinear resistivity behavior, leading to a ther-
mally activated linear resistivity and nonlinear current-voltage
scaling at low temperatures.6,31,32 Similar behavior should
be observed for Josephson-junction arrays on a honeycomb
lattice and superconducting films with a triangular pattern of
nanoholes16,39 in a perpendicular magnetic field corresponding
to half flux quantum per plaquette, since both systems can be
modeled by a frustrated XY model on a honeycomb lattice. The

predicted thermal activated behavior for the linear resistivity
seems to be already been observed in the latter system.16
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